JPH0255882B2 - - Google Patents

Info

Publication number
JPH0255882B2
JPH0255882B2 JP10403683A JP10403683A JPH0255882B2 JP H0255882 B2 JPH0255882 B2 JP H0255882B2 JP 10403683 A JP10403683 A JP 10403683A JP 10403683 A JP10403683 A JP 10403683A JP H0255882 B2 JPH0255882 B2 JP H0255882B2
Authority
JP
Japan
Prior art keywords
composition
dielectric
present
range
temperature coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10403683A
Other languages
Japanese (ja)
Other versions
JPS59228309A (en
Inventor
Kazuaki Endo
Kenji Fujimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP10403683A priority Critical patent/JPS59228309A/en
Publication of JPS59228309A publication Critical patent/JPS59228309A/en
Publication of JPH0255882B2 publication Critical patent/JPH0255882B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Inorganic Insulating Materials (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、Ba(Co1/3Nb2/3)O3−Ba(Zn1/3
Nb2/3)O3−Ba(Ni1/3Nb2/3)O3系のマイクロ波
用誘電体磁器組成物に関するものである。 近年、マイクロ波を利用した自動車電話や衛星
放送の受信器において、誘電体材料を用いた共振
器やフイルタ等が用いられている。このような用
途で使用される誘電体材料は、高透電率、低損
失、高安定であることが要望される。しかしなが
ら従来使用されているBaO−TiO2系あるいは
ZrO2−SnO2−TiO2系誘電体材料は、誘電損失が
充分に小さいとは言えず、また温度安定性も充分
に満足しうるものではなかつた。特に、回路技術
の向上等に伴い誘電体材料を組込んだ装置全体と
して高性能化(例えば高度の温度安定性)が追求
されていくなかで、使用する誘電体材料は、周辺
の回路部分等の温度特性との兼ね合いで、それに
適した温度補償を行なうことができ、しかも誘電
損失の小さい特性を持つことが要求されている。 本発明の目的は、これら従来の誘電体材料の特
性を更に一層改善し、より高い誘電率、より低い
損失を呈し、かつ共振周波数の温度係数を自由に
調整しうるようなマイクロ波用誘電体磁器組成物
を提供することにある。 本発明は、Ba(Co1/3Nb2/3)O3とBa(Zn1/3
Nb2/3)O3とBa(Ni1/3Nb2/3)O3との固溶体とし、
かつBa(Ni1/3Nb2/3)O3の組成比率を70モル%未
満とすることによつて、得られた誘電体材料のマ
イクロ波(ミリ波等も含む)における電気的特性
が著しく改善されるとともに、その組成比率を変
化させることによつて共振周波数の温度係数を所
望の値に調整しうるという事実の知得に基づき完
成されたものである。 以下、本発明について更に詳しく説明する。本
発明は、Ba(Co1/3Nb2/3)O3とBa(Zn1/3Nb2/3
O3とBa(Ni1/3Nb2/3)O3との固溶体からなる誘電
体磁器組成物である。そして、その固溶体の組成
比率は、Ba(Ni1/3Nb2/3)O3が70モル%未満であ
れば全く任意であつてよい。Ba(Ni1/3Nb2/3)O3
を70モル%未満としたのは、それより多いとQが
悪くなつてしまうからである。 すなわち、組成を一般式xBa(Co1/3Nb2/3
O3・yBa(Zn1/3Nb2/3)O3・zBa(Ni1/3Nb2/3)O3
で表わしたとき、0<x<1、0<y<1、0<
z<0.7、x+y+z=1の範囲内の組成物であ
る。かかる組成物とすることによつて、誘電損失
が充分に小さく、しかも共振周波数の温度係数を
負側から正側まで広い範囲にわたつて調整するこ
とができる。なかでもより好ましい範囲は、0<
z≦0.3である。この範囲内であれば、Qが約
4500以上と充分大きく、また共振周波数の温度係
数τfを−5〜+20(ppm/℃)の範囲に納めるこ
とができるからである。これは装置側からの要求
も充分満たしうるものである。通常、共振周波数
温度係数を−5〜+20ppm/℃の範囲内のあるポ
イントに設定でき、しかも低損失のものが望まれ
るからである。 なお、製法的には従来同様の粉末成形法であつ
てよい。すなわち、仮焼粉体に有機結合剤を加え
て造粒し、所定形状に加圧成形してから焼成すれ
ばよい。 次に実験例について述べる。 実験例 1100℃で6時間焼成して得られたBa(Co1/3
Nb2/3)O3とBa(Zn1/3Nb2/3)O3とBa(Ni1/3
Nb2/3)O3の各原料粉体をそれぞれ秤量配合し、
ボールミルにより40時間微粉砕し乾燥する。これ
にポリビニルアルコール等の有機結合剤を加えて
造粒し、1000〜3000Kg/cm2の圧力で成形する。次
に、この成形体を1350〜1500℃の温度で2〜40時
間焼成する。この焼成品を直径12mmφ、高さ5.8
mmの円柱に加工することによつて、それぞれ組成
の異なる8種類の試料を得た。そして、誘電体共
振器法により、誘電率ε、誘電体損失tanδ、共振
周波数の温度係数τfを測定した。測定周波数は約
6.5GHzである。 各試料の組成比率と電気的特性を第1表に示
す。
The present invention provides Ba(Co 1/3 Nb 2/3 )O 3 −Ba(Zn 1/3
The present invention relates to a microwave dielectric ceramic composition based on Nb2/3)O3 - Ba(Ni1 / 3Nb2/ 3 )O3. In recent years, resonators, filters, and the like using dielectric materials have been used in car telephones and satellite broadcasting receivers that utilize microwaves. Dielectric materials used in such applications are required to have high conductivity, low loss, and high stability. However, the conventionally used BaO−TiO 2 system or
ZrO 2 -SnO 2 -TiO 2 based dielectric materials cannot be said to have sufficiently small dielectric loss, nor are their temperature stability sufficiently satisfactory. In particular, with the improvement of circuit technology, higher performance (e.g. high temperature stability) is being pursued for the entire device incorporating dielectric materials, and the dielectric materials used are In consideration of the temperature characteristics, it is required to be able to perform appropriate temperature compensation and to have characteristics with small dielectric loss. The purpose of the present invention is to further improve the properties of these conventional dielectric materials, to create a microwave dielectric material that exhibits a higher dielectric constant, lower loss, and can freely adjust the temperature coefficient of the resonant frequency. An object of the present invention is to provide a porcelain composition. The present invention combines Ba(Co 1/3 Nb 2/3 ) O 3 and Ba(Zn 1/3
A solid solution of Nb 2/3 ) O 3 and Ba(Ni 1/3 Nb 2/3 ) O 3 ,
In addition, by setting the composition ratio of Ba(Ni 1/3 Nb 2/3 ) O 3 to less than 70 mol%, the electrical properties of the obtained dielectric material at microwaves (including millimeter waves, etc.) are improved. It was completed based on the knowledge that the temperature coefficient of the resonant frequency can be adjusted to a desired value by changing the composition ratio. The present invention will be explained in more detail below. The present invention combines Ba(Co 1/3 Nb 2/3 ) O 3 and Ba(Zn 1/3 Nb 2/3 )
This is a dielectric ceramic composition consisting of a solid solution of O 3 and Ba(Ni 1/3 Nb 2/3 ) O 3 . The composition ratio of the solid solution may be completely arbitrary as long as Ba(Ni 1/3 Nb 2/3 ) O 3 is less than 70 mol %. Ba(Ni 1/3 Nb 2/3 ) O 3
The reason why the content is less than 70 mol % is because if it is more than that, the Q will be poor. That is, the composition is given by the general formula xBa(Co 1/3 Nb 2/3 )
O 3・yBa (Zn 1/3 Nb 2/3 ) O 3・zBa (Ni 1/3 Nb 2/3 ) O 3
When expressed as 0<x<1, 0<y<1, 0<
The composition is within the range of z<0.7 and x+y+z=1. By using such a composition, the dielectric loss is sufficiently small, and the temperature coefficient of the resonance frequency can be adjusted over a wide range from the negative side to the positive side. Among them, a more preferable range is 0<
z≦0.3. Within this range, Q is approximately
This is because it is sufficiently large at 4500 or more, and the temperature coefficient τ f of the resonant frequency can be kept within the range of −5 to +20 (ppm/° C.). This can fully satisfy the requirements from the equipment side. This is because it is generally desired that the resonant frequency temperature coefficient can be set at a certain point within the range of -5 to +20 ppm/°C and that the loss is low. Note that the manufacturing method may be a powder molding method similar to the conventional method. That is, the calcined powder may be granulated by adding an organic binder, pressure-molded into a predetermined shape, and then fired. Next, an experimental example will be described. Experimental example Ba(Co 1/3
Nb 2/3 ) O 3 and Ba (Zn 1/3 Nb 2/3 ) O 3 and Ba (Ni 1/3
Weigh and blend each raw material powder of Nb 2/3 ) O 3 ,
Pulverize and dry for 40 hours using a ball mill. An organic binder such as polyvinyl alcohol is added to this, granulated, and molded at a pressure of 1000 to 3000 kg/cm 2 . Next, this molded body is fired at a temperature of 1350 to 1500°C for 2 to 40 hours. This fired product has a diameter of 12 mmφ and a height of 5.8
Eight types of samples with different compositions were obtained by processing into mm cylinders. Then, the dielectric constant ε, dielectric loss tan δ, and temperature coefficient τ f of the resonance frequency were measured by the dielectric resonator method. The measurement frequency is approx.
It is 6.5GHz. Table 1 shows the composition ratio and electrical characteristics of each sample.

【表】 なお、ここで、Q=1/tanδであり、τfの単位
はppm/℃である。また*印は、本発明の範囲外
の組成比率の場合をについて比較のため掲示した
ものである。 各試料番号の組成ポイントをBa(Co1/3Nb2/3
O3、Ba(Zn1/3Nb2/3)O3、Ba(Ni1/3Nb2/3)O3
三元図で示すと図面の如くである。図面中の符号
は試料番号を表わしており、また斜線領域(境界
線は含まず)は本発明の組成範囲を示している。
第1表と図面とを対照させて検討すると、組成比
率z、xを少なくしていくとQが高くなる傾向に
あり、また、組成比率y、zが大きくなるほど共
振周波数の温度係数は低くなる傾向にあることが
判る。それ故、これらの実験結果から、装置側か
ら要求されるQや共振周波数の温度係数に応じて
前記三元図上の適当な組成ポイントを推定でき、
それに基づき原料粉末の配合を調整することで、
前記要求を要易に満たすことができる。 本発明は上記のように、Ba(Co1/3Nb2/3)O3
Ba(Zn1/3Nb2/3)O3とBa(Ni1/3Nb2/3)O3との固
溶体とし、かつBa(Ni1/3Nb2/3)O3の組成比率を
70モル%未満とすることによつて、マイクロ波帯
において誘電率を大きく、誘電損失を極めて小さ
くすることができるとともに、共振周波数の温度
係数を負側から正側に至る広い範囲にわたつて調
整でき、それ故、この誘電体材料からなるマイク
ロ波共振器やフイルタと組込んだ装置の温度安定
性を著しく向上させることができるなど、数々の
すぐれた効果を奏しうるものである。
[Table] Here, Q = 1/tan δ, and the unit of τ f is ppm/°C. Also, the * mark indicates a case where the composition ratio is outside the range of the present invention for comparison. The composition point of each sample number is Ba (Co 1/3 Nb 2/3 )
The figure shows a ternary diagram of O 3 , Ba(Zn 1/3 Nb 2/3 )O 3 , and Ba(Ni 1/3 Nb 2/3 )O 3 . The symbols in the drawings represent sample numbers, and the shaded areas (not including boundary lines) represent the composition range of the present invention.
Comparing Table 1 with the drawings, we find that as the composition ratios z and x decrease, Q tends to increase, and as the composition ratios y and z increase, the temperature coefficient of the resonant frequency decreases. It is clear that there is a trend. Therefore, from these experimental results, it is possible to estimate an appropriate composition point on the ternary diagram according to the Q required by the device and the temperature coefficient of the resonance frequency.
By adjusting the blend of raw material powder based on this,
The above requirements can be easily met. As described above, the present invention combines Ba(Co 1/3 Nb 2/3 ) O 3 and
A solid solution of Ba (Zn 1/3 Nb 2/3 ) O 3 and Ba (Ni 1/3 Nb 2/3 ) O 3 is used, and the composition ratio of Ba (Ni 1/3 Nb 2/3 ) O 3 is
By setting it to less than 70 mol%, it is possible to increase the dielectric constant and extremely reduce dielectric loss in the microwave band, and also adjust the temperature coefficient of the resonant frequency over a wide range from the negative side to the positive side. Therefore, it can produce many excellent effects, such as significantly improving the temperature stability of devices incorporating microwave resonators and filters made of this dielectric material.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は、本発明の組成範囲及び実験例の組成ポ
イントを示す三元図である。
The drawing is a ternary diagram showing the composition range of the present invention and composition points of experimental examples.

Claims (1)

【特許請求の範囲】[Claims] 1 Ba(Co1/3Nb2/3)O3とBa(Zn1/3Nb2/3)O3
Ba(Ni1/3Nb2/3)O3との固溶体からなり、Ba
(Ni1/3Nb2/3)O3が70モル%未満含まれているこ
とを特徴とするマイクロ波用誘電体磁器組成物。
1 Ba(Co 1/3 Nb 2/3 )O 3 and Ba(Zn 1/3 Nb 2/3 )O 3
Ba (Ni 1/3 Nb 2/3 ) consists of a solid solution with O 3 , and Ba
A dielectric ceramic composition for microwave use, characterized in that it contains less than 70 mol% of (Ni 1/3 Nb 2/3 )O 3 .
JP10403683A 1983-06-10 1983-06-10 Microwave dielectric porcelain composition Granted JPS59228309A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10403683A JPS59228309A (en) 1983-06-10 1983-06-10 Microwave dielectric porcelain composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10403683A JPS59228309A (en) 1983-06-10 1983-06-10 Microwave dielectric porcelain composition

Publications (2)

Publication Number Publication Date
JPS59228309A JPS59228309A (en) 1984-12-21
JPH0255882B2 true JPH0255882B2 (en) 1990-11-28

Family

ID=14369995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10403683A Granted JPS59228309A (en) 1983-06-10 1983-06-10 Microwave dielectric porcelain composition

Country Status (1)

Country Link
JP (1) JPS59228309A (en)

Also Published As

Publication number Publication date
JPS59228309A (en) 1984-12-21

Similar Documents

Publication Publication Date Title
US5256639A (en) Dielectric ceramic composition
US4338403A (en) Dielectric ceramics
JPH04321B2 (en)
JPH0255882B2 (en)
KR100234017B1 (en) Dielectric ceramic composition
JP3214308B2 (en) Dielectric porcelain composition
JPS5951088B2 (en) dielectric porcelain material
KR100234018B1 (en) Dielectric ceramic compositions
JP3006188B2 (en) High frequency dielectric ceramic composition
US4829032A (en) Dielectric ceramic composition
JP3239707B2 (en) Dielectric porcelain composition
JP2792951B2 (en) Microwave dielectric porcelain composition
KR20040078525A (en) Dielectric Ceramic Compositions for High Frequency Applications
JP3407524B2 (en) Dielectric porcelain composition
KR100234019B1 (en) Dielectric ceramic compositions
KR100234020B1 (en) Dielectric ceramic compositions
JPH0126123B2 (en)
JPH0255885B2 (en)
JPH0580764B2 (en)
JPH08310859A (en) Microwave dielectric porcelain composition
JP3239708B2 (en) Dielectric porcelain composition
JPH05298922A (en) Dielectric ceramic for microwave
JP3357479B2 (en) Microwave dielectric porcelain composition and method for producing the same
JP3384610B2 (en) Microwave dielectric porcelain composition and method for producing the same
JPH04300243A (en) Dielectric ceramic composition