JPH0255872A - Intake air flow controller for engine - Google Patents

Intake air flow controller for engine

Info

Publication number
JPH0255872A
JPH0255872A JP63205899A JP20589988A JPH0255872A JP H0255872 A JPH0255872 A JP H0255872A JP 63205899 A JP63205899 A JP 63205899A JP 20589988 A JP20589988 A JP 20589988A JP H0255872 A JPH0255872 A JP H0255872A
Authority
JP
Japan
Prior art keywords
throttle valve
piston
engine
intake
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63205899A
Other languages
Japanese (ja)
Inventor
Akitsugu Ishida
石田 尭嗣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mikuni Makino Industrial Co Ltd
Original Assignee
Mikuni Makino Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mikuni Makino Industrial Co Ltd filed Critical Mikuni Makino Industrial Co Ltd
Priority to JP63205899A priority Critical patent/JPH0255872A/en
Publication of JPH0255872A publication Critical patent/JPH0255872A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make a fear of causing a vehicle's runaway due to intake air flow sharply increased preventable by performing intake air flow control at a time when a throttle valve is in low opening by means of turning motion of a piston. CONSTITUTION:In a box body 12 being formed in an intake passage 1, there is provided with a cylindrical hole 13 which is opened to an inner circumferential surface of this intake passage 1 in opposition to an outer circumferential edge of a throttle valve 2 existing in a full-close position. A piston 14 is set up in this hole 13 free of rotation, and it is turned round together with a turning shaft 4-1 of a motor 4. Here a recess is formed in an inner end face of this piston 4, and when opening of the throttle valve 2 is small, a flow passage section area of intake air being formed in a gap with an outer circumferential edge of the throttle valve 2 can be varied by turning motion of the piston 4. With this constitution, since a range, where intake air flow is controlled, is restricted by a diameter of the piston 4, such a fear that the intake air flow is sharply increased by a malfunction of an actuator or a control circuit as in the case of being controlled by the opening of the throttle valve 2 is thus brought to nothing.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はエンジンの吸気流量制御装置に関し、絞り弁を
備えたエンジンの吸気通路を形成する筐体に穿設され、
全閉状態にある前記絞り弁の外周縁と相対する位置にお
いて前記吸気通路の内周面に開口する円筒状の孔に、内
端面に凹部が形成されたピストンを配置し、該ピストン
の回動によって、絞り弁低開度時に、前記ピストンの内
端面と前記絞り弁の外周縁との間に形成される吸気流路
断面積を変化させて、吸気流量を制御することができる
吸気通路の構成に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an engine intake flow rate control device, which is provided in a housing that forms an intake passage of an engine and includes a throttle valve.
A piston having a recess formed on the inner end surface is disposed in a cylindrical hole opening in the inner circumferential surface of the intake passage at a position facing the outer circumferential edge of the throttle valve in the fully closed state, and rotation of the piston is provided. According to the configuration of the intake passage, the intake flow rate can be controlled by changing the cross-sectional area of the intake passage formed between the inner end surface of the piston and the outer peripheral edge of the throttle valve when the throttle valve is opened at a low opening degree. Regarding.

[従来技術] 自動車用エンジンのアイドリング運転時における回転速
度制御のための吸気流量制御装置には従来次の構成のも
のがある。
[Prior Art] Conventionally, intake flow rate control devices for controlling the rotational speed of an automobile engine during idling operation have the following configuration.

(1) 制御回路にエンジンの実際の回転速度信号を入
力し、設定回転速度と比較して該制御回路が出力する信
号によってアクチュエータを動作させて、絞り弁の開度
を制御するもの、第12図において符号1が吸気通路、
2が絞り弁、3が絞り弁の回動軸、4がアクチュエータ
、5が進退動する、前記アクチュエータのロッド、6は
絞り弁の回動軸3に固定されたレバーで、ロッド5の進
退勤を受けて絞り弁2を開閉させる。絞り弁2の開閉に
よってアイドリング回転速度を制御す構成は特開昭63
−27535号、特開昭56−20730号、特開昭5
1−2834号、特開昭57−18240号、実開昭5
8−5934号の各公報に開示されている。
(1) A control circuit that inputs an actual rotational speed signal of the engine to a control circuit, compares it with a set rotational speed, and operates an actuator based on the signal output from the control circuit to control the opening degree of the throttle valve. In the figure, code 1 is the intake passage.
2 is a throttle valve, 3 is a rotating shaft of the throttle valve, 4 is an actuator, 5 is a rod of the actuator that moves forward and backward, and 6 is a lever fixed to the rotating shaft 3 of the throttle valve, which moves the rod 5 forward and backward. The throttle valve 2 is opened and closed in response to this. The configuration in which the idling speed is controlled by opening and closing the throttle valve 2 is disclosed in Japanese Patent Application Laid-Open No. 63
-27535, JP-A-56-20730, JP-A-5
No. 1-2834, Japanese Unexamined Patent Publication No. 18240/1983, Japanese Unexamined Patent Publication No. 18240/1983
It is disclosed in each publication of No. 8-5934.

(2) 吸気の流量制御を絞り弁2の開度制御によらな
いで、制御回路にエンジンの実際の回転速度信号を入力
し、設定回転速度と比較して該制御回路が出力する信号
によって、吸気通路1の、絞り弁2の上流側と下流側と
を結ぶバイパス吸気通路を流れる吸気Amを制御する方
式のものがあり、例えば第13図において、符号1が吸
気通路。
(2) The intake air flow rate is not controlled by the opening degree control of the throttle valve 2, but by inputting the actual rotational speed signal of the engine into the control circuit, comparing it with the set rotational speed, and using the signal output from the control circuit. There is a system that controls the intake air Am flowing through a bypass intake passage that connects the upstream side and the downstream side of the throttle valve 2 in the intake passage 1. For example, in FIG. 13, the reference numeral 1 is the intake passage.

2が絞り弁、7がバイパス吸気通路であって、該バイパ
ス吸気通路7を流れる吸気流量が、アクチュエータ4に
よって開閉制御される吸気流量制御弁8によって制御さ
れる構成(実開昭58−9948号)、第14図に示す
様に、バイパス吸気通路7を流れる吸気の流量が、負圧
で動作する弁9で制御され、該弁9を動作させる負圧室
10の負圧がアクチュエータ4に従動する弁11によっ
て制御される構成(特開昭49−40886号)のもの
などがある[発明が解決しようとする課題] アクチュエータ4のロッド5の進退勤によって絞り弁2
の開度を制御する第12図の構成では、アイドリング回
転速度を設定回転速度に制御する機能のほかに、低温始
動時のファーストアイドル運転時、暖機運転時などの吸
気流量をも制御する機能を持たせであるので、アクチュ
エータ4または、制御回路の誤動作によって、絞り弁が
必要以上に開き、吸気流量が大幅に増大して車両の暴走
を起こす危険がある。また、エンジンがアイドリング運
転をしているときには、アクセルの動きによって絞り弁
2を回動させるケーブルに多少の緩みが与えられていて
も、アクチュエータの動作による絞り弁2の開閉に伴っ
てアクセルペダルが動くから、車両が暴走を起こすので
はないかと言う不安を運転者に与える。
2 is a throttle valve, 7 is a bypass intake passage, and the intake flow rate flowing through the bypass intake passage 7 is controlled by an intake flow rate control valve 8 whose opening/closing is controlled by an actuator 4 (Japanese Utility Model Publication No. 58-9948) ), as shown in FIG. 14, the flow rate of intake air flowing through the bypass intake passage 7 is controlled by a valve 9 that operates with negative pressure, and the negative pressure in the negative pressure chamber 10 that operates the valve 9 is driven by the actuator 4. There is a configuration (Japanese Unexamined Patent Application Publication No. 49-40886) in which the throttle valve 2 is controlled by the valve 11 that moves forward or backward by the rod 5 of the actuator 4.
The configuration shown in Fig. 12, which controls the opening degree of Therefore, there is a risk that a malfunction of the actuator 4 or the control circuit will cause the throttle valve to open more than necessary, significantly increasing the intake flow rate and causing the vehicle to run out of control. In addition, when the engine is idling, even if the cable that rotates the throttle valve 2 is given some slack by the movement of the accelerator, the accelerator pedal will move as the throttle valve 2 opens and closes due to the operation of the actuator. Because it moves, it makes the driver worry that the vehicle will run out of control.

一方第13図または、第14図に示す絞り弁2の上流側
と下流側とを結ぶバイパス吸気通路7を流れる吸気の流
量を制御する方式のアイドル回転速度制御装置では、絞
り弁2の上流側と下流側との圧力差が一定の場合に、吸
気通路1を流れる吸気の流量は、絞り弁2の開度変化に
伴って第15図に示す曲線のように変化する。第15図
において、縦軸には吸気流量を、横軸には絞り弁開度を
とってあって1曲線aは絞り弁2の外周縁と吸気、曲線
Cは両者を合計した吸気流量を示す。而してバイパス吸
気通路7を流れる、曲vAbで示す吸気の流量は、運転
者のアクセル操作とは、はぼ無関係に制御されるから、
ファーストアイドル、即ち暖機が未だ完了していない時
期における加減速の際、暖機運転完了後の運転感覚とは
異なった運転感覚を運転者に与えて不安要因となるのみ
ならず、若し、制御回路またはアクチュエータ4の誤動
作によって、バイパス吸気通路7を流れる吸気の流量、
即ち曲gbで示す吸気流量が著しく増大したときは、曲
線Cで示される合計の吸気流量も増大して、車両暴走の
恐れがある。また、第13図、第14図で示す構成では
バイパス吸気通路7を特に設ける必要があるので構造が
複雑となって製作コスト上不利である。 従って、アイ
ドリング運転時の様に、小流量の吸気流量を制御するも
のとしては、径が大き過ぎる絞り弁2であって。
On the other hand, in the idle rotation speed control device of the type that controls the flow rate of intake air flowing through the bypass intake passage 7 connecting the upstream side and the downstream side of the throttle valve 2 shown in FIG. 13 or 14, the upstream side of the throttle valve 2 When the pressure difference between the intake air and the downstream side is constant, the flow rate of intake air flowing through the intake passage 1 changes as shown in the curve shown in FIG. 15 as the opening degree of the throttle valve 2 changes. In Fig. 15, the vertical axis shows the intake flow rate, and the horizontal axis shows the throttle valve opening degree.Curve 1 shows the outer peripheral edge of the throttle valve 2 and the intake air, and curve C shows the intake flow rate that is the sum of both. . The flow rate of the intake air flowing through the bypass intake passage 7, indicated by the curve vAb, is controlled almost independently of the driver's accelerator operation.
When accelerating or decelerating during a first idle period, that is, when warming up has not yet been completed, it not only gives the driver a driving sensation that is different from the driving sensation that occurs after warm-up has been completed, but also causes anxiety. The flow rate of intake air flowing through the bypass intake passage 7 due to malfunction of the control circuit or actuator 4,
That is, when the intake air flow rate shown by curve gb increases significantly, the total intake air flow rate shown by curve C also increases, which may cause the vehicle to run out of control. Further, in the configuration shown in FIGS. 13 and 14, it is necessary to specifically provide the bypass intake passage 7, which makes the structure complicated and disadvantageous in terms of manufacturing cost. Therefore, the diameter of the throttle valve 2 is too large to be used for controlling a small intake flow rate such as during idling.

かつ、アクセルペダルと連動する絞り弁2を使用した第
12図の構成のアイドリング制御装置とは違って、車両
の暴走の恐れが無く、また車両暴走の不安感を運転者に
与えることが無く、更に、第13図または第14図に示
す構成のように、構造が複雑となり、かつ暖機完了前の
加減速の際に不安感を与え、或は車両暴走の恐れがある
、バイパス吸気通路7の吸気流量を制御するものでもな
く、絞り弁2の開度を制御する代わりに、絞り弁2の外
周縁と相対する吸気通路1の内壁面の一部に形状変化を
与える手段によって、絞り弁2が小開度時の吸気流量を
制御し、第16図に示す様に。
Moreover, unlike the idling control device having the configuration shown in FIG. 12, which uses the throttle valve 2 that is linked to the accelerator pedal, there is no fear of the vehicle running out of control, and the driver does not feel anxious about the vehicle running out of control. Furthermore, as in the configuration shown in FIG. 13 or 14, the bypass intake passage 7 has a complicated structure and gives a sense of uneasiness during acceleration/deceleration before completion of warm-up, or may cause the vehicle to run out of control. The throttle valve does not control the intake flow rate of the throttle valve 2, but instead of controlling the opening degree of the throttle valve 2, the throttle valve 2 controls the intake flow rate when the opening is small, as shown in Fig. 16.

絞り弁2がアイドリング運転時の開度から開度を増すの
に伴って、前記手段によって制御される吸気流量が減少
し、絞り弁2が一定開度以上になるとゼロとなって、吸
気通路1を流れる吸気の全流量には影響を及ぼさない絞
り弁小開度時の流量制御装置を構成して吸気流量を制御
し、アイドル回転速度制御、始動時のファーストアイド
ル回転速度制御のみならず、ダッシュポット機能制御。
As the throttle valve 2 increases its opening from the opening during idling, the intake flow rate controlled by the means decreases, and when the throttle valve 2 reaches a certain opening, it becomes zero and the intake passage 1 The intake flow rate is controlled by configuring a flow rate control device when the throttle valve is opened at a small opening, which does not affect the total flow rate of the intake air flowing through the engine. Pot function control.

02センサを使用する、いわゆるフィードバック空燃比
制御などをも行わせる事が出来る吸気流量制御装置を得
る事が、本発明の課題である。尚、第16図において、
各曲線に付しである符号のうち、a及びCは第15図の
場合と同一の内容を示し、dは吸気通路1の内壁面の一
部の形状変化によって制御される吸気流量を示す。第1
6図については、本発明の詳細な説明の後で更に言及す
る。
It is an object of the present invention to obtain an intake flow rate control device that can also perform so-called feedback air-fuel ratio control using a 0.02 sensor. In addition, in Fig. 16,
Of the symbols attached to each curve, a and C indicate the same content as in FIG. 15, and d indicates an intake flow rate controlled by a change in shape of a part of the inner wall surface of the intake passage 1. 1st
6 will be further referred to after the detailed description of the invention.

[課題を解決するための手段] 絞り弁2を備えたエンジンの吸気通路を形成する筐体に
、全閉状態にある前記絞り弁の外周縁と相対して、前記
吸気通路の内周面に開口する円筒状の孔を穿設し、該円
筒状の孔に、内端面に凹部が形成され、アクチュエータ
の動作によって回動するピストンを配置して、該ピスト
ンの内端面と前記絞り弁2の外周縁との間に、前記ピス
トンの回動によって通路断面積が変化する。絞り弁低開
度のエンジン運転時における吸気流路を形成させ、エン
ジン運転パラメータを入力する制御回路の出力信号によ
って、前記アクチュエータを動作させ、前記ピストンを
回動させる構成とする。
[Means for Solving the Problem] A housing forming an intake passage of an engine including a throttle valve 2 is provided with a casing forming an intake passage on an inner circumferential surface of the intake passage opposite to an outer circumferential edge of the throttle valve in a fully closed state. A cylindrical hole that opens is bored, and a piston having a recess formed on the inner end surface and rotating by the operation of the actuator is arranged in the cylindrical hole, so that the inner end surface of the piston and the throttle valve 2 are connected to each other. The cross-sectional area of the passage changes between the piston and the outer peripheral edge due to rotation of the piston. The actuator is configured to operate the actuator and rotate the piston in response to an output signal from a control circuit that forms an intake flow path when the engine is operated with a low opening of the throttle valve and inputs engine operating parameters.

[作用] 絞り弁2が低開度のときの吸気流量制御がピストンの回
動によって行われ、アクセルと機械的に連動する絞り弁
2は回動しないから、アイドル回転速度制御、戎はファ
ーストアイドル回転速度制御の際に、アクセルが動くこ
とが無く、運転者に不安を与える事無くアイドル回転速
度、ファーストアイドル回転速度が制御される。
[Function] When the throttle valve 2 is at a low opening, the intake flow rate is controlled by the rotation of the piston, and the throttle valve 2, which is mechanically linked to the accelerator, does not rotate, so the idle rotation speed is controlled and the fast idle is used. When controlling the rotation speed, the accelerator does not move and the idle rotation speed and fast idle rotation speed are controlled without causing anxiety to the driver.

ピストンの回動によって制御される吸気流量範囲は、ピ
ストンの径によって制限されるから、アクチュエータま
たは制御回路の誤動作によって車両の暴走を起こす恐れ
がない。
Since the intake flow rate range controlled by the rotation of the piston is limited by the diameter of the piston, there is no risk of the vehicle running out of control due to malfunction of the actuator or control circuit.

ピストンの回動が吸気流量に影響を与える絞り弁2の開
度範囲は、絞り弁2の外周縁がピストンの内端面、即ち
円筒状の孔の開口部と相対する開度範囲に限定され、そ
れ以上の開度、例えば20度以上ではピストンの回動は
吸気流量に全く影響を与えないから、暖機完′了前であ
るか暖機完了後であるかによって、加減速の際の運転感
覚に、不安を伴う変化を生じない。
The opening range of the throttle valve 2 in which the rotation of the piston affects the intake flow rate is limited to the opening range in which the outer peripheral edge of the throttle valve 2 faces the inner end surface of the piston, that is, the opening of the cylindrical hole. If the opening is larger than that, for example 20 degrees or more, the rotation of the piston has no effect on the intake flow rate. Does not cause any disturbing changes in sensation.

[実施例] 第1図は本発明の、エンジンの吸気流量制御装置の実施
例の断面図で、符号1が吸気通路。
[Embodiment] FIG. 1 is a sectional view of an embodiment of an engine intake flow rate control device according to the present invention, and reference numeral 1 indicates an intake passage.

2が絞り弁、3が絞り弁2の回動軸、4がアクチュエー
タで、第1図の実施例では回動するモータ(以後単にモ
ータ4と称す)、12は前記吸気通路1が形成されてい
る筐体、13は前記筺体12に穿設され、全閉位置にあ
る前記絞り弁2の外周縁と相対して前記吸気通路1の内
周面に開口する円筒状の孔、14はピストンで、前記円
筒状の孔13内に回動自在に配置され、前記モータ4の
回動軸4−1と共に回動する。4−2はモータ4の回転
角度センサである。前記ピストン・14の内端面には凹
部が形成されていて、前記絞り弁2の開度が小さいとき
に、該ピストン14の回動によって、絞り弁2の外周縁
との間に形成される吸気の流路断面積を変化させること
ができる。第1図の実施例においては、ピストン14の
内端面には半月形状の凹部が形成されている。第2図は
第1図のU−11断面矢視図であって、ピストン14の
回動によって、流路断面積が変化する状況を示している
。第1図において矢印15の方向に吸気が流れるものと
すれば、(a)では流入側(絞り弁2の上流側)が開い
ていても、流出側(絞り弁2の下流側)は閉じられてい
るから、吸気流量は最小となる(流量ゼロを含む) 、
 (alの状態から矢印16方向にピストン14が回動
して(b)の状態となると。
2 is a throttle valve; 3 is a rotating shaft of the throttle valve 2; 4 is an actuator; in the embodiment shown in FIG. 13 is a cylindrical hole bored in the casing 12 and opens into the inner peripheral surface of the intake passage 1 opposite to the outer periphery of the throttle valve 2 in the fully closed position; 14 is a piston; , is rotatably disposed within the cylindrical hole 13 and rotates together with the rotation shaft 4-1 of the motor 4. 4-2 is a rotation angle sensor of the motor 4. A recess is formed in the inner end surface of the piston 14, and when the opening degree of the throttle valve 2 is small, the intake air formed between the piston 14 and the outer peripheral edge of the throttle valve 2 due to rotation of the piston 14 is formed. The cross-sectional area of the flow path can be changed. In the embodiment shown in FIG. 1, a half-moon-shaped recess is formed in the inner end surface of the piston 14. FIG. 2 is a cross-sectional view taken along line U-11 in FIG. 1, and shows a situation in which the cross-sectional area of the flow path changes as the piston 14 rotates. Assuming that the intake air flows in the direction of arrow 15 in Fig. 1, in (a), even if the inflow side (upstream side of throttle valve 2) is open, the outflow side (downstream side of throttle valve 2) is closed. Therefore, the intake flow rate is the minimum (including zero flow rate),
(When the piston 14 rotates in the direction of arrow 16 from the state shown in FIG. 1), it becomes the state shown in FIG.

絞り弁2の下流側が開いて吸気通路1の、絞り弁2の上
流側から円筒状の孔13内に流入した吸気が、絞り弁2
の下流側で吸気通路1に流出して。
The downstream side of the throttle valve 2 is opened, and the intake air flowing into the cylindrical hole 13 from the upstream side of the throttle valve 2 in the intake passage 1 flows through the throttle valve 2.
flows into the intake passage 1 on the downstream side of the

吸気流量が増加する。(b)の状態から更に矢印16方
向にピストン14が回動すると(C1の状態となって、
吸気流量が最大となる。従ってモータ4の回動軸4−1
の回動制御を行えばピストン14の回動によって絞り弁
2が全閉時、または小開度時の吸気流量を制御して、ア
イドル回転速度或はファーストアイドル回転速度の制御
を行うことができる。絞り弁2が全閉または小開度の時
に吸気流量を制御するための、絞り弁2の外周縁と、ピ
ストン14の内端面凹部との関係位置は必ずしも第2図
に示す関係位置に限定されず、第3図の様にすることも
出来る。即ち、第3図では吸気流量が最小となるta+
では絞り弁2の上流側が閉じられ、この状態から矢印1
6方向にピストン14が回動して[blの状態を経てt
c+の状態で吸気流量が最大となる。ピストン14の内
端面の凹部の形状は、第1図の実施例に示した半月形状
に限定されるものではなく、凹部形状の選択によって、
ピストン14の回動角度に対する吸気流量の特性を異な
ったものとすることが出来、第4図に例示する内端面の
凹部形状を実験的に定めることが出来る。凹部の形状と
、ピストン14の回動角度に伴う有効開口面積(或は、
絞り弁2の上流側と下流側との圧力差が一定と仮定した
ときの吸気流量)との関係を例示すると、第5図は、凹
部が第4図のfa)で示す形状の場合の、ピストン14
の回動角度と有効開口面積との関係を示し、横軸にピス
トン14の回動角度θを、縦軸に有効開口面積の最大有
効開口面積(90度回動したときの有効開口面積)に対
する比率(パーセント)をとってあって、この値はピス
トン14の軸方向の凹部の深さが、円筒状の孔13の径
に対して十分深い場合には、ピストン14の回動角度に
比例する。但し、第4図の(a)で示す形状の凹部は、
本発明の詳細な説明するために便宜上単純化した形状で
あって、アイドル回転速度を精度良く制御すためには、
ピストン14の回動角度がノJsさいときの、回動角度
の変化に対する有効開口面積の変化が小さくなければな
らない。第4図において、(bl FCl (el (
f+で示す凹部の形状は、凹部の深さを制限することに
よって、回動角度の変化に対する有効開口面積の変化を
小さくしたものであり、(dl (gl Q−1+は凹
部の深さを一定として、その断面形状によって、ピスト
ン14の回動角度が小さいときの、有効開口面積の変化
率を小さくしたものである。第6図は凹部の形状が第4
図の村の場合のピストン14の回動角度と有効開口面積
との関係を定性的に示す図である。第7図に見るピスト
ン14が回動角度Oの位置から矢印16方向に回動して
第8図に示す位置となるまでの間は回動角度の増加と共
に、絞り弁2の下流側となる凹部を形成する曲面14−
1の断面曲線の弦の長さが次第に大きくなるから回動角
度の増加に伴う有効開口面積の増加率は、回動角度が大
きくなるのに伴って次第に大きくなり、第8図の状態か
ら矢印16方向に回動するときは、回動角度と開口面積
とは比例するから、回動角度と有効開口面積との関係は
、第6図に示す曲線となる。この発明は吸気流量を制御
するための、吸気通路の構成に関するものであって、エ
ンジン冷機時のファーストアイドル回転速度、及び暖機
完了後のアイドル回転速度を制御する機能のほか、空燃
比のフィードバック制御を行う機能、減速時のダッシュ
ポットとしての機能をも与えることが出来るものである
が、ファーストアイドル回転速度およびアイドル回転速
度の制御についてのみを例にとって、以下作用を説明す
る。第9図は本発明の吸気流量制御装置とエンジンとの
接続関係を示し、符号1が吸気通路、2が絞り弁、3が
絞り弁2の回動軸、4が吸気流量制御装置を制御するモ
ータであることは、第1図の場合と同様であって、17
はエンジン、18は制御回路で、該制御回路18は、エ
ンジン回転速度センサ19の出力信号、エンジン温度セ
ンサ2oの出力信号、始動モータ21のオン、オフ信号
、ニアコンディショナ22のオン、オフ信号、絞り弁2
の開度センサ23の信号、モータ4の回転角度センサ2
4の信号、および車両変速機25が中立位置にあるかど
うかの信号などを入力して、モータ4への邪動信号を出
力する。
Inspiratory flow rate increases. When the piston 14 further rotates in the direction of arrow 16 from the state of (b), it becomes the state of C1,
Inspiratory flow rate is maximum. Therefore, the rotation axis 4-1 of the motor 4
By controlling the rotation of the piston 14, the intake flow rate when the throttle valve 2 is fully closed or slightly opened can be controlled by the rotation of the piston 14, and the idle rotation speed or fast idle rotation speed can be controlled. . The relative position between the outer periphery of the throttle valve 2 and the concave portion of the inner end surface of the piston 14 for controlling the intake flow rate when the throttle valve 2 is fully closed or at a small opening is not necessarily limited to the relative position shown in FIG. Alternatively, it is also possible to do as shown in FIG. That is, in FIG. 3, the intake flow rate is the minimum at ta+
Now, the upstream side of throttle valve 2 is closed, and from this state arrow 1
The piston 14 rotates in six directions, and after passing through the state of bl, t
The intake flow rate is maximum in the c+ state. The shape of the recess on the inner end surface of the piston 14 is not limited to the half-moon shape shown in the embodiment of FIG.
The characteristics of the intake flow rate with respect to the rotation angle of the piston 14 can be made different, and the shape of the recess on the inner end surface illustrated in FIG. 4 can be determined experimentally. The shape of the recess and the effective opening area (or
To illustrate the relationship between the intake flow rate and the intake flow rate assuming that the pressure difference between the upstream side and the downstream side of the throttle valve 2 is constant, FIG. Piston 14
The horizontal axis represents the rotation angle θ of the piston 14, and the vertical axis represents the effective opening area relative to the maximum effective opening area (effective opening area when rotated 90 degrees). A ratio (percentage) is taken, and this value is proportional to the rotation angle of the piston 14 if the depth of the axial recess of the piston 14 is sufficiently deep with respect to the diameter of the cylindrical hole 13. . However, the recess shaped as shown in FIG. 4(a) is
The shape is simplified for convenience in explaining the present invention in detail, and in order to accurately control the idle rotation speed,
When the rotation angle of the piston 14 is Js, the change in the effective opening area with respect to the change in rotation angle must be small. In FIG. 4, (bl FCl (el (
The shape of the recess indicated by f+ is such that by limiting the depth of the recess, the change in the effective opening area with respect to the change in rotation angle is reduced. , the cross-sectional shape reduces the rate of change in the effective opening area when the rotation angle of the piston 14 is small.
FIG. 4 is a diagram qualitatively showing the relationship between the rotation angle of the piston 14 and the effective opening area in the case of the village shown in the figure. Until the piston 14 rotates in the direction of the arrow 16 from the position of the rotation angle O shown in FIG. 7 to the position shown in FIG. 8, as the rotation angle increases, the piston 14 becomes downstream of the throttle valve 2. Curved surface 14- forming a recess
Since the length of the chord of the cross-sectional curve 1 gradually increases, the rate of increase in the effective opening area as the rotation angle increases gradually increases as the rotation angle increases. When rotating in 16 directions, since the rotation angle and the opening area are proportional, the relationship between the rotation angle and the effective opening area is a curve shown in FIG. This invention relates to the configuration of an intake passage for controlling the intake flow rate, and includes a function to control the first idle rotation speed when the engine is cold and the idle rotation speed after warm-up, as well as feedback of the air-fuel ratio. Although it is possible to provide a control function and a function as a dashpot during deceleration, the operation will be explained below by taking only the control of the first idle rotation speed and the idle rotation speed as an example. FIG. 9 shows the connection relationship between the intake flow rate control device of the present invention and the engine, where 1 is the intake passage, 2 is the throttle valve, 3 is the rotating shaft of the throttle valve 2, and 4 is the control device for controlling the intake flow rate control device. The fact that it is a motor is the same as in the case of Fig. 1, and 17
is an engine; 18 is a control circuit; the control circuit 18 includes an output signal of the engine rotational speed sensor 19, an output signal of the engine temperature sensor 2o, an on/off signal of the starting motor 21, an on/off signal of the near conditioner 22; , throttle valve 2
The signal of the opening sensor 23 of the motor 4, the rotation angle sensor 2 of the motor 4
4, a signal indicating whether the vehicle transmission 25 is in the neutral position, etc. are input, and a disturbance signal to the motor 4 is output.

第10図および第11図に示すフローチャートによって
、モータ4の動作を説明する。
The operation of the motor 4 will be explained with reference to the flowcharts shown in FIGS. 10 and 11.

例えばエンジン回転速度センサ19或はエンジン温度セ
ンサ20の信号によって、エンジン17が、既に運転さ
れているかどうかを判定(ステップ26)、エンジン1
7が既に運転中と判定されればステップ27へ、運転中
でなければステップ28に進む、ステップ27ではエン
ジン温度が暖機完了状態にあるかを判定し、ステップ2
8では始動モータ21のオンまたはオフの信号によって
、エンジンを始動する操作が行われているかどうかを判
定し、エンジンが始動されるときは、暖機運転期間、モ
ータ4によってファーストアイドル回転速度が制御され
るが、これについては後述する。ステップ28でエンジ
ン17の始動操作が行われていないと判定されればモー
タ4は動作しない。ステップ27においてエンジン17
の温度が暖機を完了した状態にあると判定したときはス
テップ29に進み、車両の変速機25のレバーが中立に
あると判定されればステップ30に進み、絞り弁2の開
度センサ23の信号によって絞り弁2がアイドリング開
度にあると判定されれば第11図に示すアイドル回転速
度制御ルーチンに移行する。ステップ29で車両の変速
機25のレバーが中立位置にないと判定され、ステップ
30で絞り弁2の開度がアイドリング開度にないと判定
されたときは、別の制御、即ち空燃比のフィードバック
制御、或は減速時のダッシュポットとしての制御が行わ
れるが説明は省略する。ステップ28でエンジが始動と
判定されるとステップ31に進んで、エンジン17の温
度センサ20の信号に対応してモータ4への出力信号が
テーブル・ルックアップされステップ32に進んで、出
力信号によってモータ4を回転する。ステップ33に進
んでモータ4が必要量回転したかどうかが、モータ4の
回転角度センサ24の信号によって判定され、必要量回
転したものと判定されると、ステップ34に進んでモー
タ4が停止してスタートに戻り、必要量回転していない
と判定するとステップ35に・進んで更に回転してステ
ップ33に戻る。尚、前述したステップ27においてエ
ンジン17の温度が暖機完了状態にないと判定されたと
きにはステップ31に移行して、暖機運転期間における
ファーストアイドル回転速度の制御が行われる。
For example, based on the signal from the engine speed sensor 19 or the engine temperature sensor 20, it is determined whether the engine 17 is already being operated (step 26), and the engine 1
If it is determined that the engine 7 is already in operation, the process proceeds to step 27, and if it is not in operation, the process proceeds to step 28.In step 27, it is determined whether the engine temperature is in a warm-up completed state,
At 8, it is determined whether an operation to start the engine is being performed based on the on or off signal of the starting motor 21, and when the engine is started, the first idle rotational speed is controlled by the motor 4 during the warm-up period. However, this will be discussed later. If it is determined in step 28 that the engine 17 has not been started, the motor 4 will not operate. In step 27 the engine 17
When it is determined that the temperature of the vehicle has been warmed up, the process proceeds to step 29, and when it is determined that the lever of the vehicle transmission 25 is in the neutral position, the process proceeds to step 30, where the opening sensor 23 of the throttle valve 2 If it is determined by the signal that the throttle valve 2 is at the idling opening, the routine shifts to the idling rotational speed control routine shown in FIG. When it is determined in step 29 that the lever of the vehicle's transmission 25 is not in the neutral position, and in step 30 that the opening degree of the throttle valve 2 is not at the idling opening degree, another control, that is, feedback of the air-fuel ratio is performed. Control or control as a dashpot during deceleration is performed, but the explanation will be omitted. When it is determined in step 28 that the engine has started, the process proceeds to step 31, where the output signal to the motor 4 is looked up in response to the signal from the temperature sensor 20 of the engine 17, and the process proceeds to step 32, where the output signal is determined based on the output signal. Rotate motor 4. The process proceeds to step 33, where it is determined whether or not the motor 4 has rotated by the required amount, based on the signal from the rotation angle sensor 24 of the motor 4. If it is determined that the motor 4 has rotated by the required amount, the process proceeds to step 34, where the motor 4 is stopped. If it is determined that the required amount of rotation has not been made, the process proceeds to step 35, where the process further rotates and returns to step 33. Incidentally, when it is determined in the above-mentioned step 27 that the temperature of the engine 17 is not in the warm-up completed state, the process moves to step 31, and the first idle rotational speed during the warm-up period is controlled.

次に、アイドル回転速度制御ルーチンを第11図によっ
て説明する0図中、Naはエンジン17の実際の回転速
度を、Nsはエンジン17の目標回転速度を、Npはエ
ンジン17の目標回転速度の許容訊差(±)を、Neは
エンジンの目標回転速度Nsと実際の回転速度Naとの
差、即ちNs−Naを、Aはエンジン回転速度が許容範
囲からどれだけ外れているかを示す。ステップ36にお
いてはエンジン17の目標回転速度と実際の回転速度と
の差が許容範囲内にあるかどうかを判定し。
Next, the idle rotation speed control routine will be explained with reference to FIG. Ne is the difference between the target rotational speed Ns and the actual rotational speed Na of the engine, that is, Ns-Na, and A is the deviation of the engine rotational speed from the allowable range. In step 36, it is determined whether the difference between the target rotational speed and the actual rotational speed of the engine 17 is within an allowable range.

許容範囲内にあれば、ステップ37に進んでモータ4は
回転せず、許容範囲外にあれば、ステップ38に進んで
エンジンの目標回転速度の許容範囲から外れている量、
即ちAの値からモータ4を回転させるべき量nをテーブ
ル・ルックアップする、nはAの関数f (A)として
求められる。 次にステップ39に進んでエンジン17
の実際の回転速度Naが目標回転速度Nsよりも大きい
か小さいかを判定し、実際の回転速度Naが目標の回転
速度Nsよりも小さければ(Ne=Ns−Na〉0)ス
テップ4oに進んでモータ4がn回転正回転しく吸気流
量を増す方向にピストン14を回転させるモータ回転を
正回転とする)、ステップ41に進んでn回転正回転し
たことが確認されると、ステップ42に進んでモータが
回転を停止してスタートに戻り、ステップ41で回転が
不十分と判定されるとステップ43に進んで、更に回転
してステップ41に戻る。一方、ステップ39でエンジ
ン17の実際の回転速度Naが目標回転速度Nsよりも
大きい(Ne<O)と判定されるとスップ44に進んで
モータはn回転逆回転してステップ45に進み、n回転
逆回転したものと判定されるとスップ46に進んでモー
タが回転を停止してスタートに戻り、ステップ45で回
転が不十分と判定されるとステップ47に進んで、更に
逆方向に回転してステップ45に戻る。第16図に戻っ
て、第1図の実施例の構成において、絞り弁2の外周縁
が、ピストン14が配置されている円筒状の孔13の下
端位置まで(第1図に破線で示す)、絞り弁2が開くと
、ピストンの内端面と絞り弁2の外周縁とからなる通路
構成が消滅し、吸気通路1を流れる吸気の流量の制御は
、専ら吸気通路1の内周面と絞り弁2とによって行われ
る様になる。横軸上のP点はピストンの回動が吸気流量
に影響を与えない絞り弁2の最小開度位置を示す、従っ
て制御回路18またはモータ(一般的表現としてはアク
チュエータ)4の誤動作によって、ピストン14の内端
面の凹部の位置が有効開口面積最大位置のままとなって
も、P点で示す開度以上では曲線Cは曲11.aと一致
し、即ち合計の吸気流量は、絞り弁2のみによって制御
される吸気流量と一致し、車両の暴走を起こす恐れがな
い。
If it is within the allowable range, the process proceeds to step 37 and the motor 4 does not rotate, and if it is outside the allowable range, the process proceeds to step 38 to determine the amount by which the target rotational speed of the engine is out of the allowable range.
That is, the amount n by which the motor 4 should be rotated is looked up from the value of A, and n is determined as a function f (A) of A. Next, proceed to step 39 and engine 17
It is determined whether the actual rotational speed Na is larger or smaller than the target rotational speed Ns, and if the actual rotational speed Na is smaller than the target rotational speed Ns (Ne=Ns-Na>0), proceed to step 4o. If the motor 4 rotates forward n rotations and rotates the piston 14 in the direction of increasing the intake flow rate (normal rotation is defined as the motor rotation), the process proceeds to step 41, and when it is confirmed that the motor 4 has rotated forward n rotations, the process proceeds to step 42. The motor stops rotating and returns to the start, and if it is determined in step 41 that the rotation is insufficient, the process proceeds to step 43, where it further rotates and returns to step 41. On the other hand, if it is determined in step 39 that the actual rotational speed Na of the engine 17 is larger than the target rotational speed Ns (Ne<O), the process proceeds to step 44, where the motor reversely rotates n rotations, and the process proceeds to step 45. If it is determined that the motor has rotated in the opposite direction, the process proceeds to step 46, where the motor stops rotating and returns to the start, and if it is determined that the rotation is insufficient in step 45, the process proceeds to step 47, where the motor further rotates in the reverse direction. Then, the process returns to step 45. Returning to FIG. 16, in the configuration of the embodiment shown in FIG. 1, the outer circumferential edge of the throttle valve 2 reaches the lower end position of the cylindrical hole 13 in which the piston 14 is disposed (as shown by the broken line in FIG. 1). When the throttle valve 2 opens, the passage structure consisting of the inner end surface of the piston and the outer periphery of the throttle valve 2 disappears, and the flow rate of intake air flowing through the intake passage 1 is controlled exclusively by the inner periphery of the intake passage 1 and the throttle. This is done by valve 2. Point P on the horizontal axis indicates the minimum opening position of the throttle valve 2 at which the rotation of the piston does not affect the intake flow rate. Even if the position of the recess on the inner end surface of No. 14 remains at the maximum effective opening area position, the curve C will change to curve No. 11 at the opening degree shown at point P or more. a, that is, the total intake flow rate matches the intake flow rate controlled only by the throttle valve 2, and there is no risk of the vehicle running out of control.

Pで示す絞り弁2の開度は、吸気通路1の径が50粍、
ピストン14の外径、従って円筒状の孔13の径が10
粍、絞り弁2の削り角度が10゜の組合せの場合、アイ
ドリング開度(第16図中に○で示す)からほぼ15°
開いた角度となる。
The opening degree of the throttle valve 2 indicated by P is when the diameter of the intake passage 1 is 50mm,
The outer diameter of the piston 14, and therefore the diameter of the cylindrical hole 13, is 10
In the case of a combination in which the cutting angle of the throttle valve 2 is 10 degrees, it is approximately 15 degrees from the idling opening (indicated by ○ in Fig. 16).
It becomes an open angle.

[発明の効果] 絞り弁2が小開度または全閉となっているときに、内端
面が絞り弁2の外周縁と相対する吸気通路1の内壁面の
一部を形成するピストンの回動によって吸気流量を制御
できる構成であって、(1)吸気流量が制御される範囲
が回動するピストンの径によって限定されるから、アイ
ドル回転速度、ファーストアイドル回転速度を絞り弁の
開度によって制御する場合のように、アクチュエータま
たは制御回路の誤動作によって、吸気流量が大幅に増加
して、車両の暴走を起こす恐れがない(2)アイドル回
転速度、ファーストアイドル回転速度が絞り弁によって
制御される場合の様に。
[Effects of the Invention] When the throttle valve 2 is slightly opened or fully closed, the piston whose inner end surface forms part of the inner wall surface of the intake passage 1 facing the outer peripheral edge of the throttle valve 2 rotates. (1) Since the range in which the intake flow rate is controlled is limited by the diameter of the rotating piston, the idle rotation speed and fast idle rotation speed are controlled by the opening degree of the throttle valve. (2) When idle rotation speed and fast idle rotation speed are controlled by a throttle valve Like.

アイドル回転速度、ファーストアイドル回転速度の制御
によってアクセルが動かされることがなく、運転者に不
安感を与えない。
By controlling the idle rotation speed and first idle rotation speed, the accelerator is not moved and the driver does not feel uneasy.

(3)ピストンの回動が吸気流量に影響を与える範囲が
、絞り弁の小開度範囲に限定されているから、加減速の
際の運転感覚が、暖機完了後と暖機完了前とで著しく異
なることが無く、運転者に不安を与えることが無く、か
つ、車両暴走の恐れもない。(バイパス吸気通路を通る
吸気の流量を制御する場合との比較)
(3) The range in which the rotation of the piston affects the intake air flow rate is limited to the small opening range of the throttle valve, so the driving sensation during acceleration and deceleration is different after warm-up is completed and before warm-up is completed. There is no significant difference in the speed, the driver does not feel anxious, and there is no fear of the vehicle running out of control. (Comparison with controlling the intake flow rate through the bypass intake passage)

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す縦断面図、第2図の(a
l (bl (C1及び第3図のfat (bl (C
1は第1図の■−n断面矢視であって内端面に半月形状
の凹部を有するピストンの回動によって変化する流路断
面形状を示す図、第4図はピストンの内端面の形状例を
示す斜視図、第5図は内端面に半月形状の凹部を有する
ピストンの回動角度と有効開口面積との関係を示す図、
第6図は第4同市)に示す形状の凹部を有するピストン
の回動角度と有効開口面積との関係を示す図、第7図お
よび第8図は内端面に第4図(hlの形状の凹部を有す
るピストンの回動経過を示す図、第9図は本発明のエン
ジンの吸気流量制御装置をエンジンに使用したときの接
続関係を示す図、第10図、第11図はモータ(アクチ
ュエータ)の動作経過を示すフローチャート、’;i’
r 12図、第13図および第14図は、アイドル回転
制御装置の従来構成を示す図、第15図はバイパス吸気
流量を制御する従来構成のアイドル回転速度制御装置の
吸気流量と全吸気流量との関係を示す図、第16図は本
発明にかかる、絞り弁小開度時のピストンの回転による
吸気流量制御と全゛吸気流量との関係を示す図である。 符号の説明: 1・・・吸気通路、 2・・・絞り弁、3・・・絞り弁
の回動軸、 4・・・モータ(アクチュエータ)、 4−1・・・モータの回動軸、 12・・・筐体。 13・・・円筒状の孔、14・・・ピストン。 出願人 ミクニ・マキノ工業株式会社 箒 塾 り 図 第 ど 圀 第 関 竿δ図 ’ff−* 図 夕5 条 圓 ÷10目 牟 /3 図 箒 !″′y 図
FIG. 1 is a longitudinal sectional view showing an embodiment of the present invention, and FIG.
l (bl (C1 and fat (bl (C
1 is a cross-sectional view taken along the line ■-n in FIG. 1, showing the cross-sectional shape of the flow path that changes with the rotation of a piston that has a half-moon-shaped recess on its inner end surface. FIG. 4 is an example of the shape of the inner end surface of the piston. FIG. 5 is a diagram showing the relationship between the rotation angle and the effective opening area of a piston having a half-moon-shaped recess on its inner end surface.
Figure 6 is a diagram showing the relationship between the rotation angle and effective opening area of a piston having a recess shaped as shown in Fig. A diagram showing the rotation progress of a piston having a concave portion, FIG. 9 is a diagram showing the connection relationship when the engine intake flow rate control device of the present invention is used in an engine, and FIGS. 10 and 11 are diagrams showing the motor (actuator). A flowchart showing the operation progress of ';i'
r Figures 12, 13, and 14 are diagrams showing the conventional configuration of an idle rotation control device, and Figure 15 shows the intake flow rate and total intake flow rate of an idle rotation speed control device with a conventional configuration that controls the bypass intake flow rate. FIG. 16 is a diagram showing the relationship between the intake flow rate control by the rotation of the piston and the total intake flow rate when the throttle valve is opened at a small opening according to the present invention. Explanation of symbols: 1... Intake passage, 2... Throttle valve, 3... Throttle valve rotation axis, 4... Motor (actuator), 4-1... Motor rotation axis, 12...Housing. 13... Cylindrical hole, 14... Piston. Applicant: Mikuni Makino Kogyo Co., Ltd. Houkijuku Zu No. Koku No. 6 Sekikan δ Map'ff-* Figure 5 5th row ÷ 10th square / 3 Figure broom! ″′y figure

Claims (1)

【特許請求の範囲】[Claims] 絞り弁(2)を備えた、エンジンの吸気通路(1)を形
成する筐体(12)に、全閉状態にある前記絞り弁(2
)の外周縁と相対して、前記吸気通路(1)の内周面に
開口する円筒状の孔(13)を穿設し、該円筒状の孔(
13)に、内端面に凹部が形成され、アクチュエータ(
4)の動作によって回動するピストン(14)を配置し
て、該ピストン(14)の内端面と前記絞り弁(2)の
外周縁との間に前記ピストン(14)の回動によって通
路断面積が変化する、絞り弁低開度のエンジン運転時に
おける吸気流路を形成させ、エンジン運転パラメータを
入力する制御回路(18)の出力信号によって、前記ア
クチュエータ(4)を動作させ、前記ピストン(14)
を回動させるエンジンの吸気流量制御装置。
The throttle valve (2) in a fully closed state is attached to a housing (12) that is provided with a throttle valve (2) and forms an intake passage (1) of the engine.
A cylindrical hole (13) opening in the inner circumferential surface of the intake passage (1) is bored opposite to the outer circumferential edge of the cylindrical hole (
13), a recess is formed on the inner end surface, and the actuator (
A piston (14) that rotates by the operation of step 4) is disposed, and a passage is cut off between the inner end surface of the piston (14) and the outer peripheral edge of the throttle valve (2) by the rotation of the piston (14). The actuator (4) is actuated by the output signal of the control circuit (18) which forms an intake flow path during engine operation with a small opening of the throttle valve and inputs engine operating parameters, and the area changes, and the piston ( 14)
An engine intake flow control device that rotates the engine.
JP63205899A 1988-08-19 1988-08-19 Intake air flow controller for engine Pending JPH0255872A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63205899A JPH0255872A (en) 1988-08-19 1988-08-19 Intake air flow controller for engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63205899A JPH0255872A (en) 1988-08-19 1988-08-19 Intake air flow controller for engine

Publications (1)

Publication Number Publication Date
JPH0255872A true JPH0255872A (en) 1990-02-26

Family

ID=16514591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63205899A Pending JPH0255872A (en) 1988-08-19 1988-08-19 Intake air flow controller for engine

Country Status (1)

Country Link
JP (1) JPH0255872A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11149656B1 (en) * 2020-12-08 2021-10-19 Ford Global Technologies, Llc Engine throttle body hydrocarbon emissions reduction system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11149656B1 (en) * 2020-12-08 2021-10-19 Ford Global Technologies, Llc Engine throttle body hydrocarbon emissions reduction system

Similar Documents

Publication Publication Date Title
US7243635B2 (en) Throttle valve opening and closing device
US5722366A (en) Throttle valve control device for internal combustion engines
JPH05301535A (en) Power train control device
JPH0345219B2 (en)
JPS6385234A (en) Throttle valve control device
JP2004143976A (en) Intake controller of internal combustion engine and intake controller of gasoline engine
JPH0255872A (en) Intake air flow controller for engine
JPH0419332A (en) Throttle opening control device for internal combustion engine
JPH0237169A (en) Intake air flow controller for engine
JPS6385231A (en) Throttle valve control device for engine
JP2021088960A (en) Throttle device
JPS63150438A (en) Throttle valve control device
JP2000038931A (en) Throttle valve control device
JPH02157475A (en) Device for controlling flow rate of intake air of engine
JPH0421058B2 (en)
JP2000297660A (en) Intake air flow control device for diesel engine
US6945908B2 (en) Electronic transmission throttle valve actuator
JP2711674B2 (en) Throttle valve opening control device
JPH0586906A (en) Rotational speed controller for internal combustion engine
JPH04301145A (en) Intake air quantity controller for engine
JPH01159432A (en) Accelerating slip controller for vehicle
JPH0381534A (en) Motor driven throttle device
JPH03204393A (en) Pitch control device for variable pitch propeller
JPH05141281A (en) Throttle valve control device
JPH1162598A (en) Intake swirl control device for internal combustion engine