JPH03204393A - Pitch control device for variable pitch propeller - Google Patents

Pitch control device for variable pitch propeller

Info

Publication number
JPH03204393A
JPH03204393A JP34357889A JP34357889A JPH03204393A JP H03204393 A JPH03204393 A JP H03204393A JP 34357889 A JP34357889 A JP 34357889A JP 34357889 A JP34357889 A JP 34357889A JP H03204393 A JPH03204393 A JP H03204393A
Authority
JP
Japan
Prior art keywords
engine
efficiency
propeller
relationship
pitch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP34357889A
Other languages
Japanese (ja)
Other versions
JP2805940B2 (en
Inventor
Yoshito Moriya
嘉人 守谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP34357889A priority Critical patent/JP2805940B2/en
Priority to DE69025738T priority patent/DE69025738T2/en
Priority to EP90125760A priority patent/EP0436231B1/en
Priority to US07/635,360 priority patent/US5209640A/en
Publication of JPH03204393A publication Critical patent/JPH03204393A/en
Application granted granted Critical
Publication of JP2805940B2 publication Critical patent/JP2805940B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

PURPOSE:To minimize fuel consumption by obtaining the optimum engine rpm at which the product of the engine efficiency and the propeller efficiency is maximized from the relationship between the propeller efficiency and the engine rpm and the relationship between the engine efficiency and the engine rpm and controlling the propeller pitch so that the calculated rpm is reached. CONSTITUTION:Based on the results detected with sensors 31-35, the relationship between the propeller efficiency etap and the engine rpm Ne at the current throttle opening thetat is obtained. From a preset engine performance data, the relationship between the engine efficiency etae and the engine rpm Ne at the current throttle opening thetat is obtained. From these relationships, an optimum engine rpm Nbest is obtained at which the product of the propeller efficiency etap and the engine efficiency etae is maximized. The pitch of the blade 15 is controlled so that the optimum engine rpm Nbest is reached. This maximizes the thrust produced with the propeller relative to the amount of fuel supplied to the engine.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、例えば、可変ピッチプロペラを備えた航空機
に使用される可変ピッチプロペラのピンチ制御装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a pinch control device for a variable pitch propeller used, for example, in an aircraft equipped with a variable pitch propeller.

〔従来の技術〕[Conventional technology]

特開昭60−76499号公報にて、航空機の運航条件
に応じてプロペラの作動効率(プロペラ効率)が最大と
なるようにプロペラピッチ及びプロペラ回転数を制御す
るようにした方法及び装置が提案されている。
Japanese Unexamined Patent Publication No. 60-76499 proposes a method and device for controlling the propeller pitch and propeller rotation speed so that the operating efficiency of the propeller (propeller efficiency) is maximized according to the operating conditions of the aircraft. ing.

(発明が解決しようとする課題〕 ところで、上記した従来の方法及び装置においては、プ
ロペラの作動効率が最大となるようにプロペラ回転数が
制御されるため、プロペラの推進力をエンジンの出力に
対して最大に保つことができるものの、エンジン効率(
燃料量に対するエンジン出力)を何等考慮していないた
め、燃料量に対してプロペラの推進力が常に最大になる
とは限らない。即ち燃費が最良とはいえない。
(Problems to be Solved by the Invention) By the way, in the conventional method and device described above, the propeller rotation speed is controlled so that the operating efficiency of the propeller is maximized. engine efficiency (
Since no consideration is given to the engine output relative to the amount of fuel, the propulsion force of the propeller is not always maximized relative to the amount of fuel. In other words, fuel efficiency is not the best.

本発明は上記した問題に着目してなされたものであり、
エンジン効率をも考慮してプロペラピッ(1) (2) チを制御して燃費が最良となる可変ピ・7チプロペラの
ピッチ制御装置を提供することを目的としている。
The present invention has been made focusing on the above-mentioned problems,
The object of the present invention is to provide a pitch control device for a variable pitch/7 pitch propeller that controls the propeller pitch (1) (2) in consideration of engine efficiency and achieves the best fuel efficiency.

〔課題を解決するための手段〕[Means to solve the problem]

上記した目的を達成するために、本発明においては、当
該ピッチ制御装置を、対気速度、大気圧大気温度、エン
ジン回転数及びスロットル開度等を検出する運航状態検
出手段と、この運航状態検出手段の検出結果に基いて現
在のスロットル開度におけるプロペラ効率とエンジン回
転数の関係を求める手段と、予め設定したエンジンの性
能データより現在のスロットル開度におけるエンジン効
率とエンジン回転数の関係を求める手段と、前記プロペ
ラ効率とエンジン回転数の関係及びエンジン効率とエン
ジン回転数の関係から前記プロペラ効率とエンジン効率
との積が最大値となる最適エンジン回転数を求める手段
と、この最適エンジン回転数となるようにプロペラピッ
チを制御する手段とを備える構成とした。
In order to achieve the above object, the present invention provides the pitch control device with an operational state detection means for detecting airspeed, atmospheric pressure, atmospheric temperature, engine rotation speed, throttle opening, etc. means for determining the relationship between propeller efficiency and engine speed at the current throttle opening based on the detection results of the means; and determining the relationship between engine efficiency and engine speed at the current throttle opening from preset engine performance data. means for determining an optimum engine rotation speed at which the product of the propeller efficiency and the engine efficiency is a maximum value from the relationship between the propeller efficiency and the engine rotation speed and the relationship between the engine efficiency and the engine rotation speed; and the optimum engine rotation speed. The configuration includes means for controlling the propeller pitch so that

〔作用〕[Effect]

本発明による可変ピッチプロペラのピンチ制御装置にお
いては、運航状態検出手段の検出結果に基いて現在のス
ロットル開度におけるプロペラ効率とエンジン回転数の
関係が求められるとともに、予め設定したエンジンの性
能データより現在のスロットル開度におけるエンジン効
率とエンジン回転数の関係が求められ、これら両関係か
らプロペラ効率とエンジン効率との積が最大値となる最
適エンジン回転数が求められ、この最適エンジン回転数
となるようにプロペラピッチが制御される。
In the pinch control device for a variable pitch propeller according to the present invention, the relationship between the propeller efficiency and the engine speed at the current throttle opening is determined based on the detection result of the operating state detection means, and the relationship between the propeller efficiency and the engine rotation speed is determined based on preset engine performance data. The relationship between engine efficiency and engine speed at the current throttle opening is determined, and from these relationships, the optimal engine speed at which the product of propeller efficiency and engine efficiency becomes the maximum value is determined, and this optimal engine speed is determined. The propeller pitch is controlled as follows.

〔発明の効果〕〔Effect of the invention〕

本発明においては、プロペラ効率とエンジン効率との積
が最大値となる最適エンジン回転数となるようにように
プロペラピッチが制御されるため、エンジンに与えられ
る燃料量に対するプロペラの発生する推進力を最大にす
ることができ燃費が向上する。
In the present invention, the propeller pitch is controlled so that the product of propeller efficiency and engine efficiency becomes the optimum engine speed, which is the maximum value, so the propulsive force generated by the propeller relative to the amount of fuel given to the engine is It can maximize fuel efficiency.

〔実施例〕〔Example〕

以下に、本発明の一実施例を図面に基いて説明する。 An embodiment of the present invention will be described below with reference to the drawings.

(3) (4) 第1図は小党飛行機に適用される本発明による可変ピッ
チプロペラのピンチ制御装置を概略的に示していて、当
該装置は可変ピンチ機構10と油圧制御回路20と電子
制御装置30により構成されている。
(3) (4) FIG. 1 schematically shows a pinch control device for a variable pitch propeller according to the present invention applied to a small aircraft, and the device includes a variable pinch mechanism 10, a hydraulic control circuit 20, and an electronic control device. It is composed of a device 30.

可変ピッチ機構10は、第2図にて示したように、軸方
向へのみ移動可能なビス1−ンllaとリターンスプリ
ングllbを備える油圧シリンダ11と、この油圧シリ
ンダ11のピストンllaと一体的に軸方向へ移動する
ビン12と、このピン12が嵌合するカム孔13aを有
してエンジン(図示省略)によって回転されるハウジン
グ14に回転可能かつ軸方向へ移動不能に組付けられた
ハブ13と、このハブ13の一端に一体的に形成された
ギヤ13bと、ハウジング14に回転可能かつ軸方向−
・移動不能に組付けられたブレード15の一端に一体的
に形成されて前記ギヤ13bに噛合するギヤ152等に
よって構成されていて、油圧制御回路20から油圧シリ
ンダ11に付与される作動油によりピストンllaが図
示右方に移動すると、ブレード15が図示矢印方向に回
転して当該ブレード15のピンチ(プロペラピッチ)が
高ピツチに変更されるようになっている。
As shown in FIG. 2, the variable pitch mechanism 10 includes a hydraulic cylinder 11 equipped with a screw 1-la and a return spring llb that are movable only in the axial direction, and a piston lla of this hydraulic cylinder 11 integrally. A hub 13 has a pin 12 that moves in the axial direction and a cam hole 13a into which the pin 12 fits, and is rotatably but immovably assembled in a housing 14 that is rotated by an engine (not shown). A gear 13b integrally formed at one end of the hub 13, and a gear 13b that is rotatably and axially connected to the housing 14.
- Consists of a gear 152 etc. that is integrally formed at one end of the blade 15 that is assembled immovably and meshes with the gear 13b, and the piston is activated by hydraulic oil applied to the hydraulic cylinder 11 from the hydraulic control circuit 20. When lla moves to the right in the figure, the blade 15 rotates in the direction of the arrow in the figure, and the pinch (propeller pitch) of the blade 15 is changed to a high pitch.

油圧制御回路20は、第1図に示したように、エンジン
によって駆動されるオイルポンプ21と、このオイルポ
ンプ21から吐出される油圧を一定にするレギュレータ
弁22と、前記油圧シリンダ11に供給される作動油の
流量を制御する電磁流量制御弁23及び絞り24等によ
って構成されている。電磁流量制御弁23は、スプリン
グセンタ型の3ポート電磁弁であって、電子制御装置3
0による各ソレノーイl′a、b−の電流付与値に応じ
て油圧シリンダ11−・の作動油の供給量及び排出量を
制御可能であり、各ソレノイl’a、bの非通電時には
図示中立位置に保持されて、油圧シリンダ11に接続さ
れたポー+−232がオイルポンプ21に接続されたボ
ート23b及び油溜25に接続されたボー1−23 c
から遮断されるように構成されている。なお、絞り24
は、油圧シリンダ11に供給される作動油の一部(少量
)を常に油溜(5) (6) 25に逃すものであり、電磁流量制御弁23の非制御状
態(例えば、電子制御装置30.ソレノイドa、bのシ
ョート又は断線等の故障時)において油圧シリンダ11
内の作動油を逃してブレード15のピッチを低ピツチ(
一般に知られている単発飛行機におけるフェイルセーフ
側)にするものである。
As shown in FIG. 1, the hydraulic control circuit 20 includes an oil pump 21 driven by an engine, a regulator valve 22 that keeps the hydraulic pressure discharged from the oil pump 21 constant, and a hydraulic pressure that is supplied to the hydraulic cylinder 11. It is comprised of an electromagnetic flow control valve 23, a throttle 24, etc., which control the flow rate of hydraulic oil. The electromagnetic flow control valve 23 is a spring center type 3-port electromagnetic valve, and the electronic control device 3
The amount of hydraulic fluid supplied and discharged from the hydraulic cylinder 11- can be controlled according to the current applied value to each solenoid l'a, b- by 0, and when each solenoid l'a, b is de-energized, the state is neutral as shown. The boat 23b is held in position and the port 232 connected to the hydraulic cylinder 11 is connected to the oil pump 21, and the boat 1-23c is connected to the oil sump 25.
It is configured to be blocked from In addition, the aperture 24
is to always release a part (a small amount) of the hydraulic oil supplied to the hydraulic cylinder 11 to the oil sump (5) (6) 25, and when the electromagnetic flow control valve 23 is in a non-controlled state (for example, the electronic control device 30 .In the event of a failure such as short circuit or disconnection of solenoids a and b), the hydraulic cylinder 11
Release the hydraulic oil inside and lower the pitch of the blade 15 (
This is a generally known fail-safe feature for single-engine airplanes.

電子制御装置30は、当該飛行機の対気速度Vを検出す
る機運センサ31.運航時の大気圧P。
The electronic control unit 30 includes a momentum sensor 31. which detects the airspeed V of the airplane. Atmospheric pressure P during operation.

を検出する大気圧センサ32.運航時の大気温度TOを
検出する大気温センサ33.当該飛行機のプロペラを駆
動するエンジンの回転数Neを検出するエンジン回転数
センサ34.前記エンジンの負荷を決定するスロットル
開度θtを検出するスロットル開度センサ35及びマイ
クロコンピュータ36等によって構成されていて、各セ
ンサ31〜35はマイクロコンピュータ36にそれぞれ
接続されている。
Atmospheric pressure sensor 32. Atmospheric temperature sensor 33 that detects the atmospheric temperature TO during operation. An engine rotation speed sensor 34 that detects the rotation speed Ne of the engine that drives the propeller of the airplane. It is composed of a throttle opening sensor 35 that detects the throttle opening θt that determines the load on the engine, a microcomputer 36, and the like, and each sensor 31 to 35 is connected to the microcomputer 36, respectively.

マ・イクロコンピュータ36は、インターフェイス、C
PU、ROM、RAM等を備えていて、第(7) 3図のフローチャー1・に対応したプログラムを記憶す
るとともに、同プログラムの実行に必要な演算式(一般
に知られている演算式)や各種のマツプ(例えば、第4
図に示したエンジン回転数Neとスロットル開度θtに
基くエンジン馬力Psマツプ、第5図に示した進行率J
とパワー係数Cpに基くプロペラ効率ηpマツプ、第6
図に示したエンジン回転数Neとスロットル開度θtに
基くエンジン効率ηeマツプであり、それぞれ実験等に
より予め求められたものである)を記憶しており、各セ
ンサ31〜35にて得られる検出信号に基いて電磁流量
制御弁23の各ソレノイドa、  b−・の通電を制御
する。
The microcomputer 36 has an interface, C
It is equipped with a PU, ROM, RAM, etc., and stores the program corresponding to flowchart 1 in Figure (7) 3, as well as the arithmetic expressions (generally known arithmetic expressions) necessary to execute the program. Various maps (e.g.
Engine horsepower Ps map based on engine speed Ne and throttle opening θt shown in the figure, progress rate J shown in FIG.
and the propeller efficiency ηp map based on the power coefficient Cp, the sixth
This is an engine efficiency ηe map based on the engine speed Ne and throttle opening θt shown in the figure, each of which has been determined in advance through experiments, etc.), and the detection obtained by each sensor 31 to 35 is stored. Based on the signal, energization of each solenoid a, b-. of the electromagnetic flow control valve 23 is controlled.

次に、上記のように構成した本実施例の動作を第3図の
フローチャーt・に沿って説明する。エンジンの始動に
より、マ・イクロコンピュータ36は第3図のステップ
100にてプログラムの実行を開始し、ステップ101
にて電子回路にとって必要な初期設定処理の実行後、ス
テップ102〜117からなる循環処理を繰り返し実行
する。
Next, the operation of this embodiment configured as described above will be explained along the flowchart t in FIG. Upon starting the engine, the microcomputer 36 starts executing the program at step 100 in FIG.
After executing the initial setting process necessary for the electronic circuit in step 1, the circulation process consisting of steps 102 to 117 is repeatedly executed.

(8) かかる循環処理においては、ステップ102にて対気速
度■、大気圧Po、大気温度To、エンジン回転数Ne
及びスロッ]・小開度θtが機運センサ31.大気圧セ
ンサ32.大気温セン+33エンジン回転数センサ34
及びスロットル開度センサ35から読み込まれ、ステッ
プ103にて上記読み込まれた大気圧Po、大気温度T
Oに基き空気密度ρが算出され、またステップ104に
て上記読み込まれたスロットル開度(9tに基き第4図
のエンジン馬力Psマツプからエンジン馬力PSとエン
ジン回転数Neの関係が導出される。
(8) In this circulation process, in step 102, the airspeed ■, atmospheric pressure Po, atmospheric temperature To, and engine speed Ne are
and slot]・The small opening degree θt is the momentum sensor 31. Atmospheric pressure sensor 32. Atmospheric temperature sensor +33 Engine speed sensor 34
and the atmospheric pressure Po and atmospheric temperature T read from the throttle opening sensor 35 and read in step 103.
The air density ρ is calculated based on O, and in step 104, the relationship between engine horsepower PS and engine speed Ne is derived from the engine horsepower Ps map in FIG. 4 based on the throttle opening degree (9t) read above.

次いで、ステップ105にて下記再演算式■。Next, in step 105, the following recalculation formula (■) is performed.

■と上記空気密度ρによりエンジン馬力Psとエンジン
回転数Neの関係がパワー係数Cpとエンジン回転数N
eの関係に変換される。
Based on ■ and the air density ρ above, the relationship between engine horsepower Ps and engine speed Ne is the power coefficient Cp and engine speed N.
It is converted into the relationship e.

演算式■  P s = p ・Cp−N p’ ・D
A′演算式■  Np=に−Ne (Kは定数)但しN
pはプロペラ回転数 D はプロペラ直径 また、ステップ106にて下記演算式■と上記演算式■
から進行率Jとエンジン回転数Neの関係が導出される
Arithmetic formula ■ P s = p ・Cp-N p' ・D
A' calculation formula ■ Np=-Ne (K is a constant) where N
p is the propeller rotation speed D is the propeller diameter.In step 106, the following calculation formula ■ and the above calculation formula ■
The relationship between the progress rate J and the engine rotation speed Ne is derived from .

演算式■  J =V/Np −D 次いで、ステップ107にて上記パワー係数Cpとエン
ジン回転数Neの関係及び進行率Jとエンジン回転数N
eの関係よりパワー係数Cpと進行率Jとの関係が導出
され、ステップ108にて上記パワー係数Cpと進行率
Jとの関係及び第6図のプロペラ効率ηpマツプよりプ
ロペラ効率ηpと進行率Jの関係が導出され、ステップ
109にて上記プロペラ効率ηpと進行率Jの関係及び
進行率Jとエンジン回転数Neの関係よりプロペラ効率
ηpとエンジン回転数Neの関係が導出される。なお、
プロペラ効率ηpは下記式■にて表されるものであり、
またプロペラにて発生する推進力Tは下記式■にて表さ
れるものである。
Arithmetic formula ■ J = V/Np -D Next, in step 107, the relationship between the power coefficient Cp and the engine speed Ne and the progress rate J and the engine speed N are determined.
The relationship between the power coefficient Cp and the advancement rate J is derived from the relationship of e, and in step 108, the propeller efficiency ηp and the advancement rate J are derived from the relationship between the power coefficient Cp and the advancement rate J and the propeller efficiency ηp map shown in FIG. In step 109, the relationship between the propeller efficiency ηp and the engine rotational speed Ne is derived from the relationship between the propeller efficiency ηp and the advancement rate J and the relationship between the advancement rate J and the engine rotational speed Ne. In addition,
The propeller efficiency ηp is expressed by the following formula ■,
Further, the propulsive force T generated by the propeller is expressed by the following formula (2).

式■ 771)=V−T/Ps=J−Ct/Cp式■ 
 T−ρ・Ct−Np−D 但しCtは推力係数 また、ステップ110にて上記読み込まれたス(9) (10) ロソトル開度θtに基き第6図のエンジン効率ηCマツ
プからエンジン効率ηCとエンジン回転数Neの関係が
導出され、ステ・ノブI11にて」−記エンジン効率η
(]とエンジン回転数Neの関係及びプロペラ効率ηp
とエンジン回転数Neの関係から総合効率η書 (ηe
×ηp)とエンジン回転数N eの関係が導出され、ス
テップ112にて総合効率ηtが最大値となる最適エン
ジン回転数Nbestが求められる。
Formula ■ 771)=V-T/Ps=J-Ct/Cp formula■
T-ρ・Ct-Np-D However, Ct is the thrust coefficient, and the engine efficiency ηC is calculated from the engine efficiency ηC map in FIG. The relationship between the engine speed Ne is derived and the engine efficiency η is determined by the steering knob I11.
Relationship between (] and engine speed Ne and propeller efficiency ηp
From the relationship between and engine speed Ne, the overall efficiency η (ηe
×ηp) and the engine rotational speed Ne is derived, and in step 112, the optimum engine rotational speed Nbest at which the overall efficiency ηt becomes the maximum value is determined.

その後、ステ・7ブ11:lこて再度エンジン回転数N
eが読み込まれるとともに、ステップ114にて上記最
適エンジン回転数Nbestと上記読め込まれたエン・
〉フン回転数N eとが比較され、エンジン回転数Ne
が大きいと判定されたときにはステップ115へ進み、
また小さいと判定されたときにはステ・/プ116へ進
み、更に等しいと判定されたときにはステップ117−
\と進む。
After that, Step 7B 11:l Trowel again engine speed N
e is read, and at step 114, the optimum engine speed Nbest and the engine speed read above are read.
〉The fan rotation speed Ne is compared with the engine rotation speed Ne.
If it is determined that is large, the process advances to step 115,
If it is determined that the difference is smaller, the process proceeds to step 116, and if it is determined that they are equal, the process proceeds to step 117-
Proceed with \.

いま、エンジン回転数Neが最適エンジン回転数N b
e:牲より大きいと、ステップ114での1” N e
 > N bestJとの判定の基に、ステップ115
にて電磁流量制御弁32のソ1/ノイドa−”、、の電
流伺与稙が増大されるとともυ=、ソレノ・イ1−b・
\の電流伺与が遮断される。これにより、油圧シリンダ
11に作動油が供給されてブI7・−f” I 5が第
2図矢印方向に回動されてそのビ・−fを大きくされ1
.プ[1ベラでの抵抗が増大してブlコベラ及びエンミ
、ンンの回転が低−1(Soなお、スゲ・ブII5の処
理後にはステップ113に戻で)。
Now, the engine speed Ne is the optimal engine speed N b
e: 1”N e in step 114.
>N bestJ, step 115
When the current applied to the solenoid flow control valve 32 is increased, υ=, solenoid a1-b.
The current flow of \ is cut off. As a result, hydraulic oil is supplied to the hydraulic cylinder 11, and the valve I7.-f" I5 is rotated in the direction of the arrow in FIG. 2, increasing its Bi-f.
.. The resistance at the pusher increases and the rotation of the turner and the turner becomes low -1 (return to step 113 after processing Suge II5).

一方、エンジン回転数Neが最適〕°ンジン回Φyモ数
Nbesjより小さいと、ステ、ブ11,1でのf” 
N e < N 1ees t J +正の′t11定
の基(6で、ステ1、・プ116にて電磁流量制御弁3
2のソ[2・ノーイl” a −・の電流付与が遮断さ
れK〕とともに、ツレ72イ1”b−゛・の電流付与値
が増大され4る。ごれにより、油圧シリンダ11から作
動油が排出されてプレーI’ l 5が第2図の矢印と
は逆方1ii)に回動されζそのピッチを小さくされ、
プIVベラでの抵抗が減少しrブ11ペラ及びエンジン
の回転がト昇1イ〕5、なお、ス−)′−ノブ116の
処理後にはステップ゛i、 i 3 Qi=11社で〕
、。
On the other hand, if the engine speed Ne is smaller than the optimum engine speed Φy motor number Nbesj, then f'' at step 11,1
N e < N 1ees t J + positive 't11 constant group (in step 6, step 1, step 116, electromagnetic flow control valve 3
At the same time, the current application value of the curve 72 1"b-" is increased. Due to the dirt, hydraulic oil is discharged from the hydraulic cylinder 11, and the play I'l5 is rotated in the direction 1ii) opposite to the arrow in FIG. 2, and its pitch is reduced.
The resistance at the IV blade is reduced, and the rotation of the blade 11 and the engine is increased by 1.
,.

また、エンジン回転数Neが最適エンジン回転数Nbe
stと等しいと、ステップ114でのrNe−N be
stjとの判定の基に、ステップ117にて電磁流量制
御弁32のソレノイl′aに設定値の電流が付与される
とともに、ソ1.・ノ・イドb −の電流付与が遮断さ
れて、絞り24を通して排出される流量に相当する流量
の作動油が電磁流量制御弁32を通して油圧シリンダ1
1に供給される。これにより、油圧シリンダ11内の作
動油量は変化せず、ブレード川5ば回動することなく保
持され”ζピンチを維持される。なお、ステップ117
の処理後にはステップ102に戻る。
Also, the engine speed Ne is the optimum engine speed Nbe
st, then rNe−N be in step 114
Based on the determination that stj, a set value of current is applied to the solenoid l'a of the electromagnetic flow control valve 32 in step 117, and the current of the solenoid l'a of the electromagnetic flow control valve 32 is applied to the solenoid l'a. - The application of current to node b - is cut off, and a flow rate of hydraulic oil corresponding to the flow rate discharged through the throttle 24 is supplied to the hydraulic cylinder 1 through the electromagnetic flow control valve 32.
1. As a result, the amount of hydraulic oil in the hydraulic cylinder 11 does not change, the blade 5 is held without rotating, and the "ζ pinch" is maintained. Note that in step 117
After processing, the process returns to step 102.

上記動作説明から理解できるように、」1記実施例にお
いては、各センサ31〜35等運航状態検出手段の検出
結果に基いて現在のスロットル開度etにおけるプロペ
ラ効率ηpとエンジン回転数Neの関係が求められる(
ステノブ102〜109参照)とともに、4予め設定し
たエンジンの性能データ(第6図のエンジン効率ηeマ
ツプ)より現在のスロットル開度Otにおけるエンジン
効率ηeとエンジン回転数Neの関係が求められ(ステ
ップ110参照)、これら両関係からプロパζう効率η
pとエンジン効率ηeとの積(総合効率)ηtが最大値
となる最適エンジン回転数Nbesfが求められ(ステ
ップ+11,11..2参照)、この求められた最適エ
ンジン回転数Nbestとなるよ・〕)にブレ・−1〜
15のピッチが制御される(ステ、ゾ1、13−]、 
17参照)。
As can be understood from the above operation description, in the first embodiment, the relationship between the propeller efficiency ηp and the engine rotation speed Ne at the current throttle opening et is required (
(see steno knobs 102 to 109), and the relationship between the engine efficiency ηe and the engine rotational speed Ne at the current throttle opening Ot is determined from 4 preset engine performance data (engine efficiency ηe map in FIG. 6) (step 110). ), and from these relationships, the efficiency η of the property ζ
The optimal engine speed Nbesf at which the product (overall efficiency) ηt of p and engine efficiency ηe is the maximum value is determined (see steps +11, 11..2), and this determined optimal engine speed Nbest is determined. ] ) to blur -1 ~
15 pitches are controlled (ste, zo 1, 13-],
17).

このように、上記実施例においζは、ブrJベラ効率η
pとエンジン効率ηCとの積(総合効率)ηtが最大値
となる最適エンジン回転数Nbesjとなるようによう
にブレード15のピンチか制御されるため、エンジンに
与えられる燃料量に対するブClベラの発生ずる推進力
′rを最大にすることができ燃費が向上する。
In this way, in the above example, ζ is equal to
Since the pinch of the blade 15 is controlled so that the product (overall efficiency) ηt of p and the engine efficiency ηC becomes the optimum engine rotation speed Nbesj, the amount of fuel given to the engine is The generated propulsive force 'r can be maximized, resulting in improved fuel efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明によるビ、千制御装置の一例を示す概略
構成図、第2図は可変ピンチ機構の−・例を示す要部断
面図、第3図は第1回のマイク1−jコンピュータにて
実行されるプログラムのフIニドーチャー1−1第4図
は第1図の′・′イクl:Iコンビューり〈13) (14) に記憶されているエンジン回転数とスロットル開度に基
くエンジン馬力のマツプを表す図、第5図は第1図のマ
イクロコンピュータに記憶されている進行率とパワー係
数に基くプロペラ効率のマツプを表す図、第6図は第1
図のマ・イクロコンピュータに記憶されているエンジン
回転数とスロットル開度に基くエンジン効率のマツプを
表す図である。 符号の説明 10・・・可変ピッチ機構、20・・・油圧制御回路、
30・・・電子制御装置、31〜35・・・センサ、3
6・・・マイクロコンピュータ、■・・・対気速度、P
o・・・大気圧、To・・・大気温度、Ne・・・エン
ジン回転数、θt・・・スロットル開度、ηp・・・プ
ロペラ効率、ηC・・・エンジン効率、ηt・・・総合
効率、Nbest・・・最適エンジン回転数。
FIG. 1 is a schematic configuration diagram showing an example of a control device according to the present invention, FIG. 2 is a cross-sectional view of essential parts showing an example of a variable pinch mechanism, and FIG. 3 is a first microphone 1-j. 1-1 Figure 4 of the program executed by the computer is based on the engine speed and throttle opening stored in Figure 1. Figure 5 is a map of propeller efficiency based on the advance rate and power coefficient stored in the microcomputer in Figure 1. Figure 6 is a map of propeller efficiency based on engine horsepower.
FIG. 3 is a diagram showing a map of engine efficiency based on engine speed and throttle opening stored in the microcomputer shown in the figure. Explanation of symbols 10... Variable pitch mechanism, 20... Hydraulic control circuit,
30... Electronic control device, 31-35... Sensor, 3
6... Microcomputer, ■... Airspeed, P
o...Atmospheric pressure, To...Atmospheric temperature, Ne...Engine speed, θt...Throttle opening, ηp...Propeller efficiency, ηC...Engine efficiency, ηt...Total efficiency , Nbest...optimum engine speed.

Claims (1)

【特許請求の範囲】[Claims] 対気速度、大気圧、大気温度、エンジン回転数及びスロ
ットル開度等を検出する運航状態検出手段と、この運航
状態検出手段の検出結果に基いて現在のスロットル開度
におけるプロペラ効率とエンジン回転数の関係を求める
手段と、予め設定したエンジンの性能データより現在の
スロットル開度におけるエンジン効率とエンジン回転数
の関係を求める手段と、前記プロペラ効率とエンジン回
転数の関係及びエンジン効率とエンジン回転数の関係か
ら前記プロペラ効率とエンジン効率との積が最大値とな
る最適エンジン回転数を求める手段と、この最適エンジ
ン回転数となるようにプロペラピッチを制御する手段と
を備えてなる可変ピッチプロペラのピッチ制御装置。
Operation status detection means for detecting airspeed, atmospheric pressure, atmospheric temperature, engine speed, throttle opening, etc., and propeller efficiency and engine rotation speed at the current throttle opening based on the detection results of this operation status detection means. means for determining the relationship between engine efficiency and engine speed at the current throttle opening from preset engine performance data; and means for determining the relationship between propeller efficiency and engine speed and the relationship between engine efficiency and engine speed A variable pitch propeller comprising: means for determining the optimum engine speed at which the product of the propeller efficiency and the engine efficiency is maximized from the relationship; and means for controlling the propeller pitch so as to obtain the optimum engine speed. Pitch control device.
JP34357889A 1989-12-30 1989-12-30 Pitch control device for variable pitch propeller Expired - Fee Related JP2805940B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP34357889A JP2805940B2 (en) 1989-12-30 1989-12-30 Pitch control device for variable pitch propeller
DE69025738T DE69025738T2 (en) 1989-12-30 1990-12-28 Blade adjustment control for propellers with variable pitch
EP90125760A EP0436231B1 (en) 1989-12-30 1990-12-28 Pitch control apparatus for variable pitch propeller
US07/635,360 US5209640A (en) 1989-12-30 1990-12-28 Pitch control apparatus for variable pitch propeller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34357889A JP2805940B2 (en) 1989-12-30 1989-12-30 Pitch control device for variable pitch propeller

Publications (2)

Publication Number Publication Date
JPH03204393A true JPH03204393A (en) 1991-09-05
JP2805940B2 JP2805940B2 (en) 1998-09-30

Family

ID=18362608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34357889A Expired - Fee Related JP2805940B2 (en) 1989-12-30 1989-12-30 Pitch control device for variable pitch propeller

Country Status (1)

Country Link
JP (1) JP2805940B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6224021B1 (en) 1998-03-10 2001-05-01 Toyota Jidosha Kabushiki Kaisha Thrust control apparatus and method for an airplane
US6468035B1 (en) 2000-08-31 2002-10-22 Toyota Jidosha Kabushiki Kaisha Method and apparatus for controlling airplane engine
JP2007519866A (en) * 2004-01-30 2007-07-19 プラット アンド ホイットニー カナダ コーポレイション Reversible drive device for pump for propeller control device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6224021B1 (en) 1998-03-10 2001-05-01 Toyota Jidosha Kabushiki Kaisha Thrust control apparatus and method for an airplane
US6468035B1 (en) 2000-08-31 2002-10-22 Toyota Jidosha Kabushiki Kaisha Method and apparatus for controlling airplane engine
JP2007519866A (en) * 2004-01-30 2007-07-19 プラット アンド ホイットニー カナダ コーポレイション Reversible drive device for pump for propeller control device

Also Published As

Publication number Publication date
JP2805940B2 (en) 1998-09-30

Similar Documents

Publication Publication Date Title
KR920002454B1 (en) Throttle valve control apparatus
US5209640A (en) Pitch control apparatus for variable pitch propeller
US5284418A (en) Electric pitch control apparatus for variable pitch propeller capable of controlling the pitch angle based instantaneous operational conditions of the propeller
CN112334385B (en) Control system and method for electrohydraulic servo actuator
CN111936384A (en) System and method for combined propeller speed and propeller pitch control for a turboprop
JP4702385B2 (en) Fan control device
JPS6038295A (en) Pitch controller for variable pitch propeller
JP3294270B2 (en) Helicopter engine speed increase during high rotor load and rapid descent speed operation.
JPH03204393A (en) Pitch control device for variable pitch propeller
JPS6385234A (en) Throttle valve control device
CN108150293A (en) For limiting the control method of the extraction on the turbogenerator of surge risk and device
JP2009270467A (en) Centrifugal compressor
JP2871209B2 (en) Pitch control device for variable pitch propeller
JP3563365B2 (en) Actuator device for controlling the control surface of aircraft
CN110963027A (en) Abnormality detection device and control device
JP3006026B2 (en) Pitch control device for variable pitch propeller
EP3985239A1 (en) System and method for providing in-flight reverse thrust for an aircraft
JPS6219579B2 (en)
JPH0424200A (en) Pitch controller of variable pitch propeller
JPS6385231A (en) Throttle valve control device for engine
JPH0424198A (en) Pitch controller of variable pitch propeller
JPH0424199A (en) Pitch controller of variable pitch propeller
JPH0424197A (en) Controller for variable pitch propeller machine in inboard/outboard motor
JP2002130183A (en) Inlet guide vane device for aircraft engine and control method therefor
JPH0255872A (en) Intake air flow controller for engine

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees