JPH025584A - 固体レーザ装置 - Google Patents

固体レーザ装置

Info

Publication number
JPH025584A
JPH025584A JP15719488A JP15719488A JPH025584A JP H025584 A JPH025584 A JP H025584A JP 15719488 A JP15719488 A JP 15719488A JP 15719488 A JP15719488 A JP 15719488A JP H025584 A JPH025584 A JP H025584A
Authority
JP
Japan
Prior art keywords
laser
laser medium
slab
optically smooth
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15719488A
Other languages
English (en)
Other versions
JPH0728071B2 (ja
Inventor
Kazuki Kuba
一樹 久場
Yasuto Nai
名井 康人
Shigenori Yagi
重典 八木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP15719488A priority Critical patent/JPH0728071B2/ja
Publication of JPH025584A publication Critical patent/JPH025584A/ja
Publication of JPH0728071B2 publication Critical patent/JPH0728071B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/0915Processes or apparatus for excitation, e.g. pumping using optical pumping by incoherent light
    • H01S3/092Processes or apparatus for excitation, e.g. pumping using optical pumping by incoherent light of flash lamp
    • H01S3/093Processes or apparatus for excitation, e.g. pumping using optical pumping by incoherent light of flash lamp focusing or directing the excitation energy into the active medium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/04Arrangements for thermal management
    • H01S3/042Arrangements for thermal management for solid state lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/04Arrangements for thermal management
    • H01S3/0405Conductive cooling, e.g. by heat sinks or thermo-electric elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/0602Crystal lasers or glass lasers
    • H01S3/0606Crystal lasers or glass lasers with polygonal cross-section, e.g. slab, prism
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08072Thermal lensing or thermally induced birefringence; Compensation thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/0915Processes or apparatus for excitation, e.g. pumping using optical pumping by incoherent light
    • H01S3/0933Processes or apparatus for excitation, e.g. pumping using optical pumping by incoherent light of a semiconductor, e.g. light emitting diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/0941Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は固体レーザ装置、とくにそのレーザ媒質の冷
却・支持構造及び励起方法に関するものである。
〔従来の技術〕
第14図及び第L5図は各々1例えば実開昭62−42
269号公報に示され九従来の固体レーザ装置の概略を
示す斜視図及び断面図であり、第15図falは横断面
を、第15図iblは縦断面?示す。
図において、(1)は光軸に沿って直交する断面が矩形
のレーザ媒質でありスラブである。■は冷却!質(:T
h)のシール材で、レーザ媒質111の支持も兼ねる。
■はホルダ、(4)はランプ、 (66)はランプの冷
却媒質、(7)は集光器である。
第16図(at、 fblFi各々従来の固体レーザ装
置に2ける各部材の相対関係を示す説明図であり、第1
6図1alは縦断面、第16図1alは横断面を示して
いる。
図において、(tta)、 (llb) (a称する時
はC1,) >  は励起光、C3は高温領域、C4は
応力による光学歪発生領域、(15a)は表面冷却領域
、(15b )は非冷却領域である。
次に動作について説明するっ レーザ媒質11)は集光器(2)に工って集光され九ラ
ンプ(4)からの励起光(lla) 、 (ttb) 
’jz吸収し、励起される。
励起されtエネルギーの一部は、内部全反射をくり返し
ながらジグザグ状に伝搬するレーザビームとして媒質外
に取り出される。しかしながら、励起光エネルギーの犬
1■分はレーザ媒質11)内で熱エネルギーとなり、最
終的には冷却媒質(3b)へ流れる。冷却媒質(3b)
 tIi外へもれない様にシール材(2)によって、シ
ールされている。
又、シール材+21はスラブ(1)の支持も兼ねている
〔発明が解決しLうとする課題〕
従来の固体レーザ装置は以上の様に構成されているので
シール部エリ外側Ifi表面冷却されない非冷却領域(
15b)となり、この非冷却領域(15b)のうちラン
プ(4)に近い所は、励起光(llb)にさらされるの
でシール部内側工9高温領域03が生じ、スラブ幅方向
に温度分布をもたらす。
父、冷覆が直接スラブ面に接触するので冷媒の流れの不
均一性にLつてもスラブの幅及び長手方向に温度分布を
生じる。
そし°C1この温度分布にLリレーザ媒質の屈折率分布
、即ち光学歪が発生する。またシール材(2)とスラプ
ロ)の接触状態はほぼ線接触とな9、この接触部近傍に
局所的に応力歪α4が発生する。
この発明は上記のような問題点を解消するためになされ
たもので、レーザ媒質を均一に冷却すると共に、レーザ
媒質に発生する歪を低減し、ビーム品質が高く、出力の
安定性に優れた固体レーザ装置を得ることを目的とする
〔課題を解決する九めの手段〕
この発明に係る固体レーザ装置に、そのレーザ媒質がレ
ーザ媒質の光学的平滑面全面にゎtって密着、又は接着
又は介在物を介して密着される間接冷却部材にエリ間接
冷却、支4?されると′#に、側面は断熱され、かつこ
の側面エリ励起光を入射して励起されるものである。
また、この発明に係る固体レーザ装置に2いては、レー
ザビームは、レーザ媒質の光学的平滑面間を内部全反射
、もしくは上記光学的平滑面に設けられた誘電体多層膜
又は金属膜による反射を行いながらジグザグに伝搬する
ものであっても工いし、レーザ媒質と間接冷却部材間の
介在物を、上記レーザ媒質とほぼ等しい屈折率の部材と
すると共に、上記間接冷却部材の、上記レーザ媒質側表
面を光学的平滑面として、この間接冷却部材の光学的平
滑面間全レーザビームが反射を行ないながらジグザグ状
に伝搬するものであっても工い。
ま九、レーザ媒質の側面から入射する励起光を、上記レ
ーザ媒質またに間接冷却部材の光学的平滑面で反射させ
、上記レーザ媒質中に閉じ込める工うにしてもよい。
〔作用〕
この発明に2ける間接冷却部材及び側面からの励起構造
はレーザ媒質内の温度分布を低減し、かつ局所的な応力
集中を防いでレーザ媒質の光学歪を低減する。
ま九、この発明の固体レーザ装置ではレーザ媒質内のレ
ーザビームは、レーザ媒質の光学的平滑面、1次は間接
冷却部材の7一ザ媒質側表面に形成され次光学的平滑面
間を反射しながらジグザグ状に伝搬する。
さらに、側面からの励起光を上述の光学的平滑面で反射
させ、レーザ媒質内に閉じ込めるようにすれば効率が上
がる。
〔実施例〕
以下、この発明の一実施例を図について説明する。第1
図1a1. fblは各々、この発明の一実施例による
固体レーザ装置を示す横断面図及び縦断面図であり、第
1図1a1は第1図1a1のA−A線断面図、第を図1
b+は第1図1alのB−B線断面図である。図におい
て、(2)はレーザ媒質(1)Lり低屈折率の薄い透明
な介在物、(3)はレーザ媒質(1)の光学的平滑面(
la)全面にわ九って介在物(2)ヲ介して密着される
間接冷却部材であり、レーザ媒質+t)k間接冷却、支
持して2す、その内部には、冷却媒質(3b)の流路(
3c)を有している。なsr (3a)は間接冷却部材
(3)のレーザ媒質側表面であり、また介在物(2)は
レーザ媒質111の光学的平滑面(ta)での内部全反
射を保障している。(4)はスラブ励起用のランプであ
り、(5)はランプの冷却、冷媒(6)のフローチュー
ブである。ランプ(4)からの励起光は集光器(2)に
よって集光さn、レーザ謀質をその(Ill而(1b)
から励起する。
レーザ媒質に2ける熱の流れが、幅方向に生じない様、
スラブ側面近傍は空気等の気体が光されているか、真空
で断熱状態の断熱空間である。(8)は有効な励起光に
対し透明な断熱層の分離板で、レーザ媒質に対する有害
光遮光用のフィルターである。
また、(66)は断熱層分離板(8)の冷却媒質であり
、α1はレーザビームである。
次に上記実施例の作用・動作の詳細について述べる。
まず冷却について述べる。スラブ川として厚さ7m、幅
35aam、長さ130+wのGGG結晶(熱伝導率0
.09 W/crndeg 、屈折率1.95)を用い
、平均電気入力20席で2本のランプ(4)全発光させ
励起したとすると、レーザ出力は約400 W、効率的
2幅、又、スラプロ)内で励起光が熱に変換する割合は
約64で、発熱rI′i1.21&となる。スラブの幅
方向が厚み方向に比べ充分断熱されて2す、かつ、励起
光及び冷却がほぼ均一な場合、この1.2KWの発熱は
、スラブ(1)の光学的平滑面(1a)から介在物(2
)ヲ介して間接冷却部材(3)へ熱伝導で放熱され、矢
印(2)に示す様に熱iは厚み方向のみ生じる。この時
スラブ(1)には厚み方向のみに、2乗温度分布が生じ
、中心−表面(光学的平滑面)間の温度差は約26℃で
ある。温度分布及び熱流を厚み方向に限定する具体的構
成としては、介在物(2)としてダウコーニング社シル
ボット184(熱伝導率1.47 x 10” W/y
r+deg屈折率1.43)  を厚さ100μm以下
で用い、スラブ側面(lfi) k ’2気で断熱すれ
ば良く、この時、スラブ表面(la)の熱伝達率は、L
 50 W/rn”d e g以上で側面(lb)の熱
伝達率5〜20 W/rn” degに比べ、2桁以上
大キく、熱Irf、はスラブ(1)の厚み方向のみに限
定される。又、この時介在物(2)即ちシルボット18
4の表裏面での温度差は85 deg以下で耐熱温度2
00℃以下での動作が光分可能である。介在物の厚みの
下限は全反射条件で決まり、レーザ光の波長(1,06
μm)/屈折率(1,43)〜0.74μm程度以上で
あれば良く、厚みを2μmとし7’C場合、温度差はさ
らに低減され1.7℃となり、スラブの絶対温度を大幅
に低減できる。
この他の介在物としては透明シリコンポット剤例、f−
ハダウコーニング社、シルボッ)186.信越シリコー
ン社KE 1204 T、光学接肩剤、例えばノーラン
ド社N0A65、ゲル状物質、例えばダウコーニング社
、シルボット300A辰B、信越シリコーン社KE10
4 、光学グリス、例えばダウコーニング社Q2−30
6クオプテイカルカプラント、透明液体オイル等が熱伝
導率1,2 x 1(r” W/crItdeg以上、
屈折率1.F1程度、耐熱温度200℃程度で適用可能
である。
尚、これらの介在物は柔軟性を有しているため。
間接冷却部材とスラブの熱膨張の差を吸収する効果もあ
る。父、逆に間接冷却部材とスラブの熱膨張が同程度の
場合、介在物に未軟性が要求されぬことは言うまでもな
い。
上記実施例では側面(11))の断熱?空気で行う場合
について述べ友が、空気以外の気体でも一般に熱伝導率
は小さく、同様の断熱効果が得られる。
さらに、この断熱層を真空とする場合、Lり一層の効果
が得られることは言うまでもない。
次にスラブ表面全面での間接冷却支持の利点について述
べる。
従来の直接冷却法に比べ、この発明の間接冷却法では、
スラブ上での0リングによる冷媒のシールの必要がなく
、スラブ表面全面もしくは任意の部分を冷却でき、均一
冷却も含めt冷却の制御性が高くなる。特に励起領域を
全て冷却することが容易に行えることは、従来の冷媒に
よる直接冷却に対して進歩性が大きい。
又、スラブ自体の支持を表面全面で行えることは、0リ
ングによる局所的支持に比べ、機械的ストVス低減及び
、スラブ全体のたわみヲ押えると言う意味で効果が大き
い。
又、従来の直接冷却の場合、冷媒の流量むらによる冷却
の不均一性が、スラブの温度分布を発生させていたが、
間接冷却部材として、熱伝導率の大きい金属たとえば、
アルミや銅等を用いれば、内部の冷媒の流量むらによる
冷却むらを緩和する作用があり、さらには間接冷却であ
るがゆえ、スラブへの圧力影響なしに、冷媒の流I即ち
冷却能を向上させたり、第2図(b)(第2図1alは
第1図に示す実施例)に示す工うにスラブ表面エリ大き
な間接冷却部材(3)を用いることでスラブ表面に相当
する部分の冷媒の流れを均一化し、冷却を均一に行える
という長所もある。(第2図1alに比べ、第2図1b
lに2けるスラブ温度分布は均一である)。
又、第3図に示す工うに励起・発熱の不均一性に応じて
、異なる冷却能を得るべく、間接冷却部材を構成するこ
とも可能である。
さらに、冷却系とスラブを独立にし之事で組立、分解が
容易である等、メインテナンスの上でも有効である。
次に励起系について述べる。
スラブの励起は第4図に示すように、側面(*b)の断
熱面から行う。ラング(4)から励起光Ql)は、波長
が500〜900 nm程度であり、レーザ光の波長i
1060nに比較的近く、励起光に対するスラブill
及び透明充填剤(介在物+2))の屈折率はレーザ光に
対するそれと大差がない。従って励起光も、スラブ表面
(la)で全反射され、この間接冷却支持構造は、励起
光をスラブ内にとじ込める効果も有する。又、側面励起
の場合、表面励起に比べ励起光の吸収長を長くとれ、ス
ラブへの効率的な吸収を実現する事が可能である。
以上2点工0@面励起には励起光の効率的吸収によるレ
ーザ発撮の効率向上という利点がある。
次に他の実施例を示す。
第2図1al、 lblは各々この発明の他の実施例(
@2実施例)による固体レーザ装置を示す横断面図及び
縦断面図である。
第1実施例では、レーザ光及び励起光をスラブ表面で内
部全反射させ、各々伝搬閉じ込めを行ってい友が、第2
実施例ではスラブ表面(1a)に多層膜(lc) ’t
:コーティングし、これによってレーザ光の反射伝搬2
行っている。多層膜(lc)はレーザ光の波長及び入射
角に対して、高反射率になるエラ構成し、励起光は間接
冷却部材のスラブ側表面(3a) vi−金属反射面と
する事で反射・閉じ込めを行なえばよい。尚、この場合
金4反射面は励起光に対する反射率が高ければ、散乱反
射面でもよい。
17t、第3実施例としてスラブ表面の多層膜(lc)
t”金属薄膜とする事で、レーザ光、励起光ともスラブ
表面で反射させる事も可能である。この場合、介在物(
2)は光学的に透明でなくても工い。
また、第4′i4施例として第6図1al、 lblに
示す工うに、間接冷却部材(3)の表面(3a)を7−
ザ光に対する金属鏡面とし、かつ、介在物(2]を、ス
ラブ11)とほぼ同時の屈折率?持つ光学的透明体とす
ることで、レーザ光、及び励起光の反射全間接冷却部材
(3)の表面(3a)で行わせることも可能である。具
体的には、間接冷却部材の材@を金属とし、表面をダイ
ヤモンドターニング等の超精密加工を行えば、レーザ光
の位相を乱さない高反射率の光学的に平滑な金属鏡面を
得る慣が出来る。
又、第7図1m1. fblに示すように金属境面に、
高反射率の金属4膜、もしくは多1−膜(3d)kコー
ティングすれば、さらに反射率?向とさせる事が可能で
ある。
な2、上記第2実施例ないし第4実施例を屈折率が1.
5程度で、直接水冷が不可能なガラス系のレーザ媒質に
対しても、水冷とほぼ同程度の冷却が行なえる。
次に、スラブ励起に関する他の実施例について述べる。
第8図は第5%施例によるレーザ装置の断面図であり、
図に示す様にスラブ側面(lb)を散乱面とすれば、ス
ラブ側面を反射光路に持つ寄生発掘を抑制出来1余振効
率の同上が行える他、スラブからみた励起光源となり、
集光器構造に伴う、局所的な励起を緩和する利点もある
。尚、側面?散乱面とする場合、スラブ表面(la)又
は間接冷却部材表面(3a)が励起光の反射面である事
は、光の閉じ込めの観点から持Vこ効果が人さい事を併
記して2〈0励起系の冷却に関する他の実施例としては
第9図に示す様に、フローチューブを用いず、断熱層(
9) ノ分1’a @ (8) テ冷gf6)k封止L
 fC,11)、第10図に示す様に、フローチューブ
に断熱層(9)の分離機能?持たせる事も出来る。
1t、上記各実施例でrま、励起光源がランプである場
合について述べたが、第11図に示す様に、レーザダイ
オードは刀で励起しても良く、この場合励起光の放出空
間自体がスラブ側面の断熱空間となる。
さらに、上記各実施例では、間接冷却部材の冷却を冷媒
の通流に工って行う場合について述べ九が、第12図1
al、 lblに示す様に、間接冷却部材の背面に放熱
フィン(3e)を設け、空冷する事も出来る。
また、第13図1a1. lblに示すように間接冷却
部材背面をペルチェ素子(3f)で冷却する事も出来る
な2、上記各実施例ではいずれも、間接冷却部材(3)
は介在物+2) ’i介してレーザ媒質(1)に密着さ
れるものを示し九が、介在物(2)ヲ介さずに直接密着
又は接層させる構成であってもよい。
〔発明の効果〕
以上のように、この発明に工れば、光軸に沿って対向す
る1組の光学的平滑面を有し、上記光軸に直交する断面
がほぼ矩形のレーザ媒質内全レーザビームがジグザグ状
に伝搬するレーザ装置において、上記レーザ媒質は、上
記光学的平滑面全面にわtって、密着又は接層又は介在
物を介して密着される間接冷却部材により間接冷却、支
持されると共に、上記光軸に沿って対向する他の1組の
側面は断熱され、この側面より励起光を入射して励起さ
れるようにし九ので、レーザ媒質が均一に冷却され、レ
ーザ媒質に発生する光学歪が低減でき、ビーム品質が高
く、出力の安定性に優れ九固体ンーザ装置を得ることが
できる。また、側面励起によりレーザ発振の効率が向上
する効果もある。
まt、レーザ媒質内に2けるレーザビームはレーザ媒質
の光学的平滑面間を内部全反射もしくは上記光学的平滑
面に設けられた誘電多層膜又は金属膜による反射により
ジグザグ伝搬するようにすればレーザビームのジグザグ
伝搬が効率よく行なわれる。
さらに、レーザ媒質と間接冷却部材間の介在物を、上記
レーザ媒質とほぼ等しい屈折率の部材とすると共に、上
記間接冷却部材の、上記レーザ媒質側表面?光学的平滑
面としても、この間接冷却部材の光学的平滑面間をレー
ザビームが反射を行ないながらジグザグ状に伝搬するこ
とが可能である0 また、レーザ媒質の側面から入射する励起光を上記レー
ザ媒質または間接冷却部材の光学的平滑面で反射させ、
上記レーザ媒質中に閉じ込める工うにすれば、効率よく
レーザ発振をさせることができる。
【図面の簡単な説明】
第1図ta1. fblは各々この発明の一実施例によ
る固体レーザ装置を示す横断面図及び縦断面図、第2図
fat、 lblは各々スラブの冷却状態と温度分布及
び断面構造を第1実施例と、他の実施例に対して比較し
之説明図、第3図はこの発明の他の実施例による固体レ
ーザ装置の断面構童と対応する冷却能分布を示し之説明
図、第4図はこの発明の一実第7図1blは各々この発
明の他の実施例による固体レーザ装置を示す横断面図及
び縦断面図、第8図ないし第11図は各々この発明の他
の実施例による固体レーザ装fX示す横断面図、第12
図1al第13図1al及び第12図1al第13図(
blは各々この発明の他の実施例による固体レーザ装[
i1示す横断面図及び縦断面図、第14図は従来の固体
レーザ装置を示す斜視構成図、第12図1al、 fb
lは各々従来の固体し−ザ装置を示す横断面図及び縦断
面図、並びに第16図1a 1. Ib lは各々従来
の固体レーザ装置に2ける各部材の相対関係を示す説明
図である。 図において、
【1】・・・ンーザ媒質、(la)・・・
レーザ媒質の光学的平滑面、 (lb)・・・側面、(
1c)・・・多層膜、(2)・・・介在物、(3)・・
・間接冷却部材、(4)・・・ランプ、(9)・・・断
熱空間、αQ・・・レーザビーム、(ロ)・・・励起光
。 な2、図中、同一符号は同一、又は相当部分を示す。

Claims (4)

    【特許請求の範囲】
  1. (1)光軸に沿つて対向する1組の光学的平滑面を有し
    、上記光軸に直交する断面がほぼ矩形のレーザ媒質内を
    レーザビームがジグザグ状に伝搬する固体レーザ装置に
    おいて、上記レーザ媒質は、上記光学的平滑面全面にわ
    たつて密着、又は接着又は介在物を介して密着される間
    接冷却部材により間接冷却、支持されると共に、上記光
    軸に沿つて対向する他の1組の側面は断熱され、この側
    面より励起光を入射して励起されることを特徴とする固
    体レーザ装置。
  2. (2)レーザビームはレーザ媒質の光学的平滑面間を反
    射を行ないながらジグザグ状に伝搬し、その反射手段は
    内部全反射、もしくは上記光学的平滑面に設けられた誘
    電体多層膜又は金属膜による反射である請求項1記載の
    固体レーザ装置。
  3. (3)レーザ媒質と間接冷却部材間の介在物を、上記レ
    ーザ媒質とほぼ等しい屈折率の部材とすると共に、上記
    間接冷却部材の、上記レーザ媒質側表面を光学的平滑面
    として、この間接冷却部材の光学的平滑面間をレーザビ
    ームが反射を行ないながらジグザグ状に伝搬する請求項
    1記載の固体レーザ装置。
  4. (4)レーザ媒質の側面から入射する励起光を、上記レ
    ーザ媒質または間接冷却部材の光学的平滑面で反射させ
    、上記レーザ媒質中に閉じ込めることを特徴とする請求
    項1ないし3記載の固体レーザ装置。
JP15719488A 1988-06-24 1988-06-24 固体レーザ装置 Expired - Fee Related JPH0728071B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15719488A JPH0728071B2 (ja) 1988-06-24 1988-06-24 固体レーザ装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15719488A JPH0728071B2 (ja) 1988-06-24 1988-06-24 固体レーザ装置

Publications (2)

Publication Number Publication Date
JPH025584A true JPH025584A (ja) 1990-01-10
JPH0728071B2 JPH0728071B2 (ja) 1995-03-29

Family

ID=15644255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15719488A Expired - Fee Related JPH0728071B2 (ja) 1988-06-24 1988-06-24 固体レーザ装置

Country Status (1)

Country Link
JP (1) JPH0728071B2 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04174577A (ja) * 1990-01-19 1992-06-22 Mitsubishi Electric Corp 半導体励起固体レーザ
EP0903819A2 (en) * 1997-09-22 1999-03-24 TRW Inc. Passively conductively cooled laser crystal medium
WO1999033149A1 (en) * 1997-12-19 1999-07-01 Raytheon Company Thermally improved slab laser pump cavity apparatus with integral concentrator
JP2008140877A (ja) * 2006-11-30 2008-06-19 Tecnisco Ltd 複合材ヒートシンクとその製造方法
US20180219348A1 (en) * 2016-10-17 2018-08-02 Universitaet Stuttgart Radiation field amplifier system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04174577A (ja) * 1990-01-19 1992-06-22 Mitsubishi Electric Corp 半導体励起固体レーザ
EP0903819A2 (en) * 1997-09-22 1999-03-24 TRW Inc. Passively conductively cooled laser crystal medium
EP0903819A3 (en) * 1997-09-22 2000-10-04 TRW Inc. Passively conductively cooled laser crystal medium
WO1999033149A1 (en) * 1997-12-19 1999-07-01 Raytheon Company Thermally improved slab laser pump cavity apparatus with integral concentrator
AU730093B2 (en) * 1997-12-19 2001-02-22 Raytheon Company Thermally improved slab laser pump cavity apparatus with integral concentrator
JP2008140877A (ja) * 2006-11-30 2008-06-19 Tecnisco Ltd 複合材ヒートシンクとその製造方法
US20180219348A1 (en) * 2016-10-17 2018-08-02 Universitaet Stuttgart Radiation field amplifier system
US10840669B2 (en) * 2016-10-17 2020-11-17 Universitaet Stuttgart Radiation field amplifier system

Also Published As

Publication number Publication date
JPH0728071B2 (ja) 1995-03-29

Similar Documents

Publication Publication Date Title
US7551656B2 (en) Low stress optics mount using thermally conductive liquid metal or gel
JP2555260B2 (ja) 伝導性表面冷却レーザ結晶
JP3155132B2 (ja) 固体レーザ装置及びレーザ加工装置
JP2007536735A (ja) 偏光制御された反射体を伴うジグザグレーザー増幅器
CA2246640C (en) Passive conductively cooled laser crystal medium
JP3059952B2 (ja) ダイオードレーザでポンピングされる固体レーザ利得モジュール
US20020110166A1 (en) Method and system for cooling a laser gain medium
US20050094689A1 (en) Laser beam source with a laser element containing a thin crystal disk as a laser-active medium
US20080304534A1 (en) Power scaleable thin disk lasers
EP0860040B1 (en) Solid state lasers
JPH025584A (ja) 固体レーザ装置
US5299213A (en) Solid state laser apparatus
US7965757B2 (en) Thermal distortion compensation for laser mirrors
US4761789A (en) Cooling method for a slab-geometry solid state laser medium and a laser device which employs that cooling method
JPH1022551A (ja) 固体レーザ励起モジュール
JP2692012B2 (ja) 固体レーザ装置
JP2588931B2 (ja) 固体レーザ
JPH1187813A (ja) 固体レーザ発振器
JPH0466396B2 (ja)
JPH06310782A (ja) スラブ形固体レーザ装置
JPH0210784A (ja) スラブ型レーザー素子
US20140126592A1 (en) Air-cooled laser device
JPH0240222B2 (ja)
JPH05190938A (ja) 固体レーザ装置
JPH0451495Y2 (ja)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees