JPH0255715B2 - - Google Patents
Info
- Publication number
- JPH0255715B2 JPH0255715B2 JP59102593A JP10259384A JPH0255715B2 JP H0255715 B2 JPH0255715 B2 JP H0255715B2 JP 59102593 A JP59102593 A JP 59102593A JP 10259384 A JP10259384 A JP 10259384A JP H0255715 B2 JPH0255715 B2 JP H0255715B2
- Authority
- JP
- Japan
- Prior art keywords
- condensate
- condenser
- water
- degassing
- nozzle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 31
- 238000007872 degassing Methods 0.000 claims description 16
- 238000010793 Steam injection (oil industry) Methods 0.000 claims description 8
- 238000005192 partition Methods 0.000 claims description 7
- 238000011144 upstream manufacturing Methods 0.000 claims description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 12
- 239000001301 oxygen Substances 0.000 description 12
- 229910052760 oxygen Inorganic materials 0.000 description 12
- 239000007788 liquid Substances 0.000 description 9
- 230000000694 effects Effects 0.000 description 8
- 238000000605 extraction Methods 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 239000007921 spray Substances 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 239000000498 cooling water Substances 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 239000002344 surface layer Substances 0.000 description 2
- 230000002730 additional effect Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
- 230000001932 seasonal effect Effects 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 235000020681 well water Nutrition 0.000 description 1
- 239000002349 well water Substances 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28B—STEAM OR VAPOUR CONDENSERS
- F28B9/00—Auxiliary systems, arrangements, or devices
- F28B9/10—Auxiliary systems, arrangements, or devices for extracting, cooling, and removing non-condensable gases
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Degasification And Air Bubble Elimination (AREA)
- Physical Water Treatments (AREA)
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明は蒸気タービン用復水器に係り、特に、
復水器内において、ホツトウエル内に貯溜する復
水および補給水の脱気手段とその運転制御手段を
具備した復水器に関する。[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a condenser for a steam turbine, and in particular,
The present invention relates to a condenser equipped with means for degassing condensate and make-up water stored in a hot well and means for controlling its operation.
〔発明の背景〕
蒸気タービン用復水器はタービン背圧を下げて
効率を高めるために相当高度な真空状態で運転さ
れるから、復水中の溶存酸素をし、プラント運転
中には復水器中にタービン排気が流入し、復水器
の管巣で凝縮する過程でその大量の蒸気との接触
がなされ、不凝縮ガスとして空気抽出装置で系外
に取出されるため、復水中の溶存酸素濃度は充分
に低く制御され、比較的に高濃度の補給水を導入
してもこの運転状態では脱気され、終局的に復水
器出口の溶存酸素濃度を抑えることができるのは
周知の通りである。[Background of the Invention] Condensers for steam turbines are operated in a fairly high vacuum state in order to reduce turbine back pressure and increase efficiency. Turbine exhaust flows into the condenser, and in the process of condensing in the condenser tube nest, it comes into contact with a large amount of steam, and is taken out of the system as a non-condensable gas by an air extraction device, so the dissolved oxygen in the condensate is As is well known, the concentration is controlled to be sufficiently low, and even if relatively high concentration make-up water is introduced, it will be degassed under this operating condition, ultimately suppressing the dissolved oxygen concentration at the condenser outlet. It is.
しかし、プラント起動時には、復水器内へター
ビン排気は流入せず、復水器低部のホツトウエル
に貯溜する復水は、大気圧下、常温で保持され、
溶存酸素濃度が8000ppb前後と高く、直接、ボイ
ラへ給水するにはボイラ水管の防食上使用できな
いから、上述のように、蒸気タービン排気が介在
しない状態で、一般のボイラ給水の規定濃度
7ppb近くまで迅速に脱気せねばならない。次い
で、その脱気水をボイラ側へ供給する間に、復水
器内に補給水が流入した場合にも、タービン排気
が器内に安定して流入するまで復水出口の溶存酸
素濃度を低く持続する必要がある。 However, when the plant starts up, the turbine exhaust does not flow into the condenser, and the condensate stored in the hot well at the bottom of the condenser is maintained at room temperature under atmospheric pressure.
The dissolved oxygen concentration is high at around 8000 ppb, and it cannot be used to prevent corrosion of boiler water pipes if it is directly supplied to the boiler.As mentioned above, the specified concentration of general boiler feed water is
It must be rapidly degassed to near 7ppb. Next, while supplying the degassed water to the boiler, even if make-up water flows into the condenser, the dissolved oxygen concentration at the condensate outlet is kept low until the turbine exhaust stably flows into the condenser. It needs to last.
従来、脱気作用を備えた復水器では、管巣上流
に設けたスプレイ装置にホツトウエル内の復水を
再循環させて、器内の真空圧上昇に伴つて液界面
から酸素を放出させ酸素を空気抽出装置で系外へ
排出する。しかし、これは単に液界面からの気相
側への移動によるもので器内の圧力及び液温度に
よる影響を受け易く、脱気に要する時間が長く、
且つ、到達する復水の溶存酸素濃度も不安定であ
る。このため、復水器内へ加熱蒸気を導入して付
加的手段を講ずることも考えられている。例え
ば、復水器内に散布された復水をトレイ等で受け
落下液と加熱蒸気との接触を図る。この場合は、
器内の真空圧に相当した温度まで加熱蒸気の急激
な減衰を伴うので多段にトレイを設置して流動抵
抗をつけて器内で真空状態の異なる雰囲気を形成
する等複雑な構造部材を狭い器内に設置せねばな
らず、脱気効果の割に大型化する欠点がある。ま
た、復水器の運転は、通常、冷却水が管巣を流
れ、空気抽出装置が作動して器内の真空状態が、
漸次、保持される。しかし、復水器の冷却水は、
一般に、海水を使用するから季節的に温度が異な
り、冬期には極めて低温となる。このため、従来
例のような、管巣上流側に設けたスプレイ装置に
より散布された復水は低温となる管巣を通り、例
え、加熱蒸気を導入して付加的手段を講じても、
液温度の低下によつて脱気効果が阻害され易い。
すなわち、器内圧力が、漸次、降下する間にその
液の温度がその圧力に相当する飽和温度以下の状
態に陥つた時に、阻害され、器内圧力が液の温度
に相当する圧力以下に到達した時に、脱気作用が
進むことになる。このことは、蒸気タービン排気
が介在しない復水器内に補給水を導入する場合も
同様であり、補給水の溶存酸素は一般に脱気しよ
うとする濃度より高いことを勘案すれば従来のス
プレイ装置からの補給水の導入によつて終局の復
水出口の溶存酸素濃度を下げ得ない恐れも生じ
る。 Conventionally, in a condenser equipped with a deaeration function, the condensate in the hot well is recirculated to a spray device installed upstream of the tube nest, and oxygen is released from the liquid interface as the vacuum pressure inside the vessel increases. is discharged from the system using an air extraction device. However, this is simply due to movement from the liquid interface to the gas phase side, and is easily affected by the pressure and liquid temperature inside the vessel, and the time required for degassing is long.
Moreover, the dissolved oxygen concentration of the condensate that reaches the condensate is also unstable. For this reason, it has been considered to take additional measures by introducing heated steam into the condenser. For example, the condensate sprinkled in the condenser is received by a tray or the like and the falling liquid is brought into contact with the heated steam. in this case,
Since the heated steam rapidly attenuates until the temperature corresponds to the vacuum pressure inside the vessel, it is necessary to install trays in multiple stages to provide flow resistance and create atmospheres with different vacuum conditions within the vessel. This has the disadvantage of being large in size despite its deaeration effect. In addition, when operating a condenser, cooling water normally flows through the tube nest, and the air extraction device operates to create a vacuum inside the condenser.
Gradually, it is retained. However, the cooling water of the condenser is
Generally, since seawater is used, the temperature varies seasonally, and it can be extremely cold in the winter. Therefore, as in the conventional example, condensate sprayed by a spray device installed upstream of the tube nest passes through the tube nest at a low temperature, even if additional measures such as introducing heating steam are taken.
The deaeration effect is likely to be inhibited by a drop in liquid temperature.
In other words, when the pressure in the vessel gradually decreases and the temperature of the liquid falls below the saturation temperature corresponding to the pressure, it is inhibited and the pressure in the vessel reaches the pressure corresponding to the temperature of the liquid. At that time, the deaeration effect will proceed. This is also true when introducing make-up water into a condenser without the presence of steam turbine exhaust, and considering that the dissolved oxygen in the make-up water is generally higher than the concentration to be degassed, conventional spray equipment There is also the possibility that the dissolved oxygen concentration at the final condensate outlet cannot be lowered by introducing make-up water.
本発明の目的は、プラント起動時に復水器内に
貯溜する復水を復水器内で短時間で脱気する脱気
手段を備え、起動時に流入する補給水の影響を抑
制する制御手段を備えた復水器を提供するにあ
る。
An object of the present invention is to provide a deaeration means for quickly deaerating condensate stored in a condenser at the time of plant startup, and a control means for suppressing the influence of make-up water flowing in at the time of startup. It is to provide equipped condenser.
上記の目的を達成するために、本発明の復水器
は、ホツトウエル内に仕切板と天井板で復水の出
口を末端とする連続した流路を配設して復水を一
方向に流動させ、その流路の上流側水流中に補助
蒸気噴射管を設けて復水中に直接蒸気を吹込み液
音を高め、復水器の管巣下部で、かつ天井板上部
の空間に脱気ノズルを配設し、復水出口から一旦
出た復水をこの脱気ノズルに導き器内に噴出させ
て器内真空圧の降下にともなう自己蒸発を促進
し、プラント起動時タービン排気の介在しない状
態にある復水器内の復水を迅速に脱気するもので
ある。さらに、このようなプラント起動時に導入
される補給水を脱気ノズルの循環系に供給して、
復水器に蒸気タービン排気が流入するまで、復水
器出口の復水の溶存酸素濃度を抑制するものであ
る。
In order to achieve the above object, the condenser of the present invention has a continuous flow path that terminates at the outlet of condensate using a partition plate and a ceiling plate in the hot well to flow condensate in one direction. An auxiliary steam injection pipe is installed in the water flow on the upstream side of the flow path to blow steam directly into the condensate to increase the liquid noise, and a deaeration nozzle is installed in the space below the condenser tube nest and above the ceiling board. The condensate once discharged from the condensate outlet is guided to this degassing nozzle and is ejected into the vessel to promote self-evaporation as the vacuum pressure inside the vessel decreases. This is to quickly degas the condensate in the condenser. Furthermore, the make-up water introduced at the time of plant start-up is supplied to the circulation system of the deaeration nozzle,
This suppresses the dissolved oxygen concentration in condensate at the condenser outlet until steam turbine exhaust flows into the condenser.
以下、本発明の実施例を図面に従つて説明す
る。第1図、第2図において、復水器1の下部に
あるホツトウエル5の内部に、仕切板21、天井
板22を構成し、仕切板21は、ホツトウエル底
部を、例えば、第2図に示すように、復水出口8
に向けて連続した復水の流路を分割して設け、復
水出口8と反対位置に開放する復水流路を形成す
るように天井板22で覆い、その開放された復水
の流路中に補助蒸気噴射管23をホツトウエル水
位より下方位置に設置する。そして、復水出口8
は復水系11と連結され、その系中の復水ポンプ
7の後流側で系11から分岐した循環系27を復
水器の管巣2の下方に設置した脱気ノズル28と
接続する。さらに、循環系27は、補給水系41
をもち、補給水系41は、定常時に運用する補給
水散水装置6に至つている補給水系13から分岐
する。ここで、補助蒸気噴射管23に至る蒸気系
25中の制御弁24は、器内圧力Pの変化に応じ
て調整すること、あるいは、タイマー等によりプ
ラント起動時に補助蒸気の導入を制御弁24の開
度で調整することができる。
Embodiments of the present invention will be described below with reference to the drawings. 1 and 2, a partition plate 21 and a ceiling plate 22 are constructed inside a hot well 5 at the bottom of the condenser 1, and the partition plate 21 covers the bottom of the hot well as shown in FIG. 2, for example. As in, condensate outlet 8
A continuous condensate flow path is divided into parts and covered with a ceiling plate 22 so as to form a condensate flow path that opens at a position opposite to the condensate outlet 8. The auxiliary steam injection pipe 23 is installed at a position below the hot well water level. And condensate outlet 8
is connected to the condensate system 11, and a circulation system 27 branched from the system 11 on the downstream side of the condensate pump 7 in the system is connected to a deaeration nozzle 28 installed below the tube nest 2 of the condenser. Further, the circulation system 27 includes a make-up water system 41
The make-up water system 41 branches from the make-up water system 13 that leads to the make-up water sprinkler 6 that is operated during normal operation. Here, the control valve 24 in the steam system 25 leading to the auxiliary steam injection pipe 23 may be adjusted according to changes in the internal pressure P, or the control valve 24 may be controlled to introduce auxiliary steam at the time of plant startup using a timer or the like. Can be adjusted by opening.
次に動作と脱気作用について説明する。プラン
トの起動時に、復水器内の復水をポンプ7により
引出し、循環系26から複数個の脱気ノズル28
に導入し器内に戻り、天井板22と仕切板21で
形成される流路を通り、再び、復水出口30から
上述の径路を再循環する。そして、空気抽出装置
4が作動すると、復水器1内の空気は管巣2内に
設けた抽出口3から系10により排除され、漸次
減圧して真空状態に保持される。この減圧過程に
補助蒸気を噴射管23に導入してホツトウエル内
で復水温度を高め、同時に、蒸気噴射による復水
の撹拌を促進して良好な脱気を進めることがで
き、さらに、この領域を過ぎた後流側では仕切板
21によつて分割されているから、脱気され、高
温となつた復水が、順次、復水出口8側に混合す
ることなく押しやり、次いで、脱気ノズル28か
ら、再び、蒸気噴射されている領域の上流に戻つ
て脱気を繰返す。そして、昇温された復水はこの
領域を過ぎた後流側でも表層から多少脱気され、
水面と天井板22によつて形成されるガス成分を
発生蒸気で置換する付加的作用を持ち、さらに、
脱気ノズル28に戻る昇温された復水は、器内減
圧が進んでいることから脱気ノズル28からの散
水も、また、自己蒸発を誘発して付加的に脱気速
度を高める。すなわち、第3図で、まず、器内圧
力は曲線aによつて降下し、その過程で補助蒸
気を導入して復水温度を上げる。この復水温度c
は、曲線aの圧力に相当する飽和温度より僅かに
上位となるようにすれば、その飽和温度曲線bに
達した時点から、前述のように、ホツトウエル内
の流路表層、続いて脱気ノズル28で器内圧力の
降下に相俟つて自己蒸発を誘発し、脱気作用を促
進する。この時、での補助蒸気の導入は、第1
図に示すように、器内圧力Pを検知して、制御部
33により弁24の開放時期を設定して曲線cの
ように復水温度の頂点を抑え、ひいては、器内の
過激な温度上昇を抑えた方がよい。あるいは、予
じめ、器内の圧力降下が得られる場合は弁24の
開放時期をタイマー等で設定してもよい。そし
て、季節による水温の変化によつて設定を変え、
その頂点を一定に調節することもできる。この頂
点を越えると脱気が急速に進行し、やがて、器内
圧力が一定になるにつれて、その圧力に平衡な温
度に至り、復水の溶存酸素濃度を短時間で低くで
きる。次いで、低濃度となつた復水を復水系11
の弁12を開けてボイラ側への給水を開始すれば
よい。そして、この給水時に引続いて、器内に新
たな補給水を導入する場合には、循環系27へ系
41から供給し、脱気ノズル28で器内に散布
し、圧力降下に伴う脱気作用と、その後流に置か
れた補助蒸気噴射管23の領域での脱気作用とに
よつて復水濃度の上昇を抑制する。この状態を持
続させ、蒸気タービン排気が器内に安定して流入
してから弁42と14を切換えて従来のスプレイ
装置から補給水を導入して復水器出口の溶存酸素
を維持する。 Next, the operation and deaeration effect will be explained. When starting up the plant, the condensate in the condenser is drawn out by the pump 7 and transferred from the circulation system 26 to a plurality of deaeration nozzles 28.
The condensate is introduced into the vessel, returns to the vessel, passes through the flow path formed by the ceiling plate 22 and the partition plate 21, and is recirculated again through the above-mentioned path from the condensate outlet 30. Then, when the air extraction device 4 operates, the air in the condenser 1 is removed by the system 10 through the extraction port 3 provided in the tube bundle 2, and the pressure is gradually reduced to maintain a vacuum state. During this depressurization process, auxiliary steam is introduced into the injection pipe 23 to increase the condensate temperature in the hot well, and at the same time, the steam injection promotes stirring of the condensate to promote good deaeration. Since the downstream side after passing through is divided by the partition plate 21, the degassed and high temperature condensate is successively pushed to the condensate outlet 8 side without mixing, and then degassed. The nozzle 28 returns to the upstream region of the area where the steam is being injected and the deaeration is repeated. Then, the heated condensate is degassed to some extent from the surface layer on the downstream side after passing this area.
It has the additional effect of replacing the gas component formed by the water surface and the ceiling plate 22 with the generated steam, and further,
Since the heated condensate returning to the degassing nozzle 28 has been depressurized in the vessel, the water sprinkling from the degassing nozzle 28 also induces self-evaporation and additionally increases the degassing rate. That is, in FIG. 3, the internal pressure first decreases according to curve a, and in the process, auxiliary steam is introduced to raise the condensate temperature. This condensate temperature c
If it is made to be slightly higher than the saturation temperature corresponding to the pressure of curve a, from the point when the saturation temperature curve b is reached, as mentioned above, the flow path surface layer in the hot well, then the degassing nozzle At 28, self-evaporation is induced in conjunction with a drop in the pressure inside the vessel, promoting the deaeration effect. At this time, the introduction of auxiliary steam at
As shown in the figure, the pressure P inside the vessel is detected, and the control unit 33 sets the opening timing of the valve 24 to suppress the peak of the condensate temperature as shown by curve c, which in turn prevents a drastic temperature rise inside the vessel. It is better to suppress Alternatively, if a pressure drop within the vessel can be obtained, the opening timing of the valve 24 may be set in advance using a timer or the like. Then, the settings are changed according to seasonal changes in water temperature.
The apex can also be adjusted to a constant value. Once this peak is exceeded, deaeration progresses rapidly, and eventually, as the internal pressure becomes constant, the temperature reaches equilibrium with that pressure, and the dissolved oxygen concentration of the condensate can be lowered in a short time. Next, the condensate with a low concentration is transferred to the condensate system 11.
All you have to do is open the valve 12 and start supplying water to the boiler. When new make-up water is introduced into the vessel following this water supply, it is supplied from the system 41 to the circulation system 27, sprayed into the vessel by the deaeration nozzle 28, and deaerated as the pressure drops. This action and the degassing action in the region of the auxiliary steam injection pipe 23 located downstream thereof suppress the increase in the condensate concentration. This condition is maintained until the steam turbine exhaust has steadily flowed into the vessel, and then valves 42 and 14 are switched to introduce make-up water from a conventional spray system to maintain dissolved oxygen at the condenser outlet.
第4図は、本発明の他の実施例を示し、循環系
27に加熱器50を設け、補助蒸気等を弁52を
開放することで循環系27の復水、あるいは、系
41から供給される補給水の温度を高める。そし
て、器内圧力に相当する飽和温度、あるいは、そ
れより数度高めるように器内圧力Pを検知し制御
部34により加熱量を調節して液温Tを一定にす
る。これにより、第一にプラント起動時の脱気性
能を変えることなく、脱気ノズル28の脱気作用
を促進し、その分だけ、噴射管23の負担を軽減
してもよい。さらに、新たな補給水が低温度であ
つても、良好な脱気作用を維持でき、補給水導入
時の濃度変化を充分に抑制できる。ここで、循環
系27での加熱手段が蒸気との接触によつてもそ
の効果は同じである。 FIG. 4 shows another embodiment of the present invention, in which a heater 50 is provided in the circulation system 27, and auxiliary steam etc. can be supplied from the condensate of the circulation system 27 or from the system 41 by opening the valve 52. Increase the temperature of the make-up water. Then, the pressure P in the container is detected so as to be at the saturation temperature corresponding to the pressure in the container or several degrees higher than that, and the amount of heating is adjusted by the control section 34 to keep the liquid temperature T constant. As a result, firstly, the degassing action of the degassing nozzle 28 is promoted without changing the degassing performance at the time of plant startup, and the load on the injection pipe 23 may be reduced accordingly. Furthermore, even if the new make-up water is at a low temperature, a good deaeration effect can be maintained, and changes in concentration when the make-up water is introduced can be sufficiently suppressed. Here, the effect is the same even if the heating means in the circulation system 27 is brought into contact with steam.
本発明によれば、液相から気相への溶存酸素の
放出を促進させることになり、迅速に、低濃度の
復水の脱気ができる。次いで、比較的高濃度の補
給水が導入されても、復水の濃度を高めることな
く蒸気タービンが作動し、器内にその排気が流入
する状態までボイラへの給水濃度を抑制し、定常
運転に速やかに移行できる。
According to the present invention, the release of dissolved oxygen from the liquid phase to the gas phase is promoted, and low concentration condensate can be rapidly degassed. Next, even if makeup water with a relatively high concentration is introduced, the steam turbine operates without increasing the concentration of condensate, and the concentration of water fed to the boiler is suppressed to the point where the exhaust gas flows into the boiler, allowing steady operation. can be quickly transitioned to
第1図は、本発明の一実施例の発電プラント用
復水器構成とその脱気系統図、第2図は、第1図
におけるホツトウエル低部の構成図、第3図は本
発明による器内の状態変化の一例を示す説明図、
第4図は、本発明の他の実施例の復水器構成とそ
の脱気系統図である。
5……ホツトウエル、21……仕切板、22…
…天井板、23……補助蒸気噴射管。
FIG. 1 is a configuration diagram of a condenser for a power plant according to an embodiment of the present invention and its deaeration system, FIG. 2 is a configuration diagram of the lower part of the hot well in FIG. 1, and FIG. An explanatory diagram showing an example of a state change in
FIG. 4 is a condenser configuration and its deaeration system diagram according to another embodiment of the present invention. 5...hotwell, 21...partition plate, 22...
...Ceiling board, 23...Auxiliary steam injection pipe.
Claims (1)
つてボイラに供給する復水系と、この復水系から
分岐させた復水を前記復水器に戻す復水循環系
と、該復水循環系内の復水を前記復水器内にて噴
出して脱気する脱気ノズルとを具備したものにお
いて、 前記復水器のホツトウエル内に、仕切板と天井
板で前記復水の出口を末端とする連続した流路を
備え、該流路の上流側水流中に補助蒸気噴射管を
設け、前記復水器の管巣下部であつて、かつ前記
天井板より上部の空間に前記脱気ノズルを備えた
ことを特徴とする脱気機構をもつ復水器。 2 特許請求の範囲第1項において、 前記脱気ノズルに至る前記復水の循環系に補給
水系を連結し、その後流に加熱器を設けたことを
特徴とする脱気機構をもつ復水器。 3 特許請求の範囲第1項または第2項におい
て、前記復水器の圧力変化に応じて、該復水器の
ホツトウエル内の前記流路中に位置する前記補助
蒸気噴射管に供給する蒸気量を制御する制御手段
を設けたことを特徴とする脱気機構をもつ復水
器。[Claims] 1. A condenser, a condensate system that supplies condensate in this condenser to a boiler by a pump, and a condenser that returns condensate branched from this condensate system to the condenser. A system comprising a water circulation system and a deaeration nozzle for ejecting condensate in the condensate circulation system to degas the condensate, wherein a partition plate and a ceiling plate are provided in a hot well of the condenser. a continuous flow path ending at the outlet of the condensate; an auxiliary steam injection pipe is provided in the water flow on the upstream side of the flow path; A condenser with a degassing mechanism, characterized in that the degassing nozzle is provided in an upper space. 2. A condenser with a degassing mechanism according to claim 1, characterized in that a make-up water system is connected to the condensate circulation system leading to the degassing nozzle, and a heater is provided downstream thereof. . 3. In claim 1 or 2, the amount of steam supplied to the auxiliary steam injection pipe located in the flow path in the hotwell of the condenser in response to pressure changes in the condenser. A condenser with a degassing mechanism, characterized in that it is provided with a control means for controlling.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10259384A JPS60248994A (en) | 1984-05-23 | 1984-05-23 | Condenser equipped with deaerating mechanism |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10259384A JPS60248994A (en) | 1984-05-23 | 1984-05-23 | Condenser equipped with deaerating mechanism |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60248994A JPS60248994A (en) | 1985-12-09 |
JPH0255715B2 true JPH0255715B2 (en) | 1990-11-28 |
Family
ID=14331532
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10259384A Granted JPS60248994A (en) | 1984-05-23 | 1984-05-23 | Condenser equipped with deaerating mechanism |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60248994A (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3717521A1 (en) * | 1987-05-04 | 1988-11-17 | Siemens Ag | CONDENSER FOR THE WATER-VAPOR CIRCUIT OF A POWER PLANT, IN PARTICULAR NUCLEAR POWER PLANT |
JP2576316B2 (en) * | 1991-09-20 | 1997-01-29 | 株式会社日立製作所 | Condenser |
GB2598291B (en) * | 2020-07-27 | 2022-09-28 | Aspen Pumps Ltd | Condensate pump arrangement |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS568278A (en) * | 1979-06-30 | 1981-01-28 | Nec Corp | Printer capable of adjusting printing pressure according to thickness of printing medium |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57178973U (en) * | 1981-04-30 | 1982-11-12 | ||
JPS58189401U (en) * | 1982-06-10 | 1983-12-16 | 三菱重工業株式会社 | Condensate heating deaeration system |
-
1984
- 1984-05-23 JP JP10259384A patent/JPS60248994A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS568278A (en) * | 1979-06-30 | 1981-01-28 | Nec Corp | Printer capable of adjusting printing pressure according to thickness of printing medium |
Also Published As
Publication number | Publication date |
---|---|
JPS60248994A (en) | 1985-12-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2060094C (en) | Method and apparatus for maintaining a required temperature differential in vacuum deaerators | |
JPH0472156B2 (en) | ||
JPH0255715B2 (en) | ||
EA030592B1 (en) | Deaerator (variants) | |
JP2934848B2 (en) | Water spray type high temperature exhaust cooler | |
US5201366A (en) | Process and equipment for the preheating and multi-stage degassing of water | |
JPS5922121B2 (en) | Thermal power plant water tank | |
JPH0539985A (en) | Condenser provided with deaerator | |
JPS61168787A (en) | Condenser having deaerating function | |
CA1120798A (en) | Method and apparatus for feeding condensate to a high pressure vapor generator | |
JP3684192B2 (en) | Deaerator | |
JPH06126270A (en) | Feed water deaerator | |
JPS6159187A (en) | Deaerating type condenser | |
JPS5814909A (en) | Degassing apparatus | |
JPS6319686Y2 (en) | ||
JPH0788470A (en) | Deaerator | |
JP3720856B2 (en) | Condenser | |
JPH06269768A (en) | Deaerator | |
JPS638829B2 (en) | ||
JP2002098306A (en) | Boiler equipment, and its operation method | |
JP3874523B2 (en) | Deaerator | |
JP4119737B2 (en) | Deaeration system | |
JPH0688604A (en) | Deaerator | |
JP3592745B2 (en) | Condenser with deaerator | |
JPH06241409A (en) | Dearator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |