JPH0539985A - Condenser provided with deaerator - Google Patents

Condenser provided with deaerator

Info

Publication number
JPH0539985A
JPH0539985A JP3195222A JP19522291A JPH0539985A JP H0539985 A JPH0539985 A JP H0539985A JP 3195222 A JP3195222 A JP 3195222A JP 19522291 A JP19522291 A JP 19522291A JP H0539985 A JPH0539985 A JP H0539985A
Authority
JP
Japan
Prior art keywords
condensate
condenser
deaeration
degassing
sectional area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3195222A
Other languages
Japanese (ja)
Inventor
Tokunori Matsushima
徳紀 松嶋
Koji Ishibashi
光司 石橋
Shozo Nakamura
昭三 中村
Katsumoto Otake
克基 大嶽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3195222A priority Critical patent/JPH0539985A/en
Publication of JPH0539985A publication Critical patent/JPH0539985A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To deaerate condensate retained in a condenser in a short time period by a method wherein two-stage pressure reducing type deaerator nozzles are furnished under tube bundles of the condenser to stimulate deaeration of condensate using the effect of agitating condensate with steam generated by flashing of the heated condensate, and baffle plates are provided above the liquid outlet constrictions of the deaeration nozzles. CONSTITUTION:A condensate heater 7 is installed midway on a condensate circulation circuit 11, and two-stage pressure reducing type deaerator nozzles 6 are provided under tube bundles 5 of a condenser 2. Thereby, the effect of agitating condensate with steam generated by flashing of the treated condensate is stimulated. In addition, baffle plates 8 are provided above fluid outlet constrictions of the deaerator nozzles 6. Therefore, the condensate is atomized through the deaerator nozzles 6, resulting in an improvement in deaeration performance. That is, the installation of the two-stage pressure reducing type deaeration nozzles 6 can cause an improvement in deaeration performance under any vacuum condition due to an effective rise in liquid temperature and bubbling effect, leading to a considerable reduction in deaeration time period.

Description

【発明の詳細な説明】Detailed Description of the Invention

【産業上の利用分野】本発明は蒸気タービン用復水器に
係り、特に、コンバインド発電プラントの起動時に廃熱
回収ボイラへ給水を供給するために、復水器内で、ホッ
トウエルに貯溜する復水を迅速、且つ、効果的に脱気す
る機構を具備した復水器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a steam turbine condenser, and more particularly, to a hot well in a condenser for supplying water to a waste heat recovery boiler when a combined power generation plant is started. The present invention relates to a condenser equipped with a mechanism for degassing condensed water quickly and effectively.

【従来の技術】ガスタービンと蒸気タービンを組み合わ
せたコンバインド発電プラントにおいて、ガスタービン
が起動する前に排熱回収ボイラへ脱気水を予め供給しな
ければならない。これまで、脱気水は排熱回収ボイラの
手前の系統中に設けられる脱気器によって得られていた
が、系統が繁雑なこと、及び、省力化の観点から、従来
の脱気器を省略して、比較的高真空状態となる復水器で
脱気処理して排熱回収ボイラへ脱気水を供給することが
要求されている。しかし、このプラントの起動時には、
ガスタービン側が蒸気タービンに先行して運転されるた
め復水器内にタービン排気が流入することはなく、排気
との接触による脱気作用を期待できない厳しい条件下で
脱気せねばならない。しかも、年間を通じて起動・停止
を頻繁に繰り返すこのプラントでは、ボイラ水管の腐食
を避けるために、起動前のホットウエルに貯溜する大気
圧下、常温で保持される比較的高い溶存酸素濃度(80
00ppb前後)から、一般のボイラ給水の規定濃度(7pp
b)近くまで脱気すること、及び、プラント運転の経済
性から脱気所要時間を短縮することが要求される。従
来、脱気機能を持った復水器は、ホットウエルの復水温
度を高め、脱気を促進するために、補助蒸気等を導いて
付加的手段を講じることが知られている。例えば、特開
昭53−72903 号公報に示されるように、器内に散水棚,
オーバフロー管等順次設け、オーバフロー管に補助蒸気
を噴射して、その発生蒸気によって散水棚を流下する復
水と接触させ、段階的に加熱する装置を内装することが
示されている。これは、液温を高めるには効果的である
が、幾重にも設けられる散水棚前後に圧力差が生じ、補
助蒸気との接触によって放出された酸素が、その圧力上
昇を伴う雰囲気中を拘束されて通過することにより、散
水棚における脱気作用を阻害する恐れがある。さらに、
復水器のホットウエル内に、棚段等の構造部材を設置す
ることは、益々狭くなり、作業性を阻害し、あるいは、
高さが増して大型化する原因になり兼ねない。また、特
願昭59−102593号明細書に示されるように、復水器のホ
ットウエル内に、補助蒸気噴射管を設け、さらに、管巣
下部に脱気ノズルを配設して、このホットウエル内の復
水を再循環することにより脱気時間の短縮を図ることが
示されている。これは、復水器内の真空立ち上げの段階
から補助蒸気を導入する場合には効果的であるが、ある
程度真空が立ち上って補助蒸気を導入する場合には、液
温を高める効果が悪化して脱気時間の短縮を図ることが
難しい場合がある。これに対して、特願昭58−152507号
明細書に示されるように、復水循環系の途中に復水加熱
手段を設けた場合は、真空立ち上げと共に液温を高める
効果が悪化する欠点は解消されるが、復水器のホットウ
エル内に補助蒸気を導入することによるバブリングの効
果が阻害され脱気時間の短縮を図ることが難しい場合が
ある。これらの原因は、管巣下部に配設した脱気ノズル
の構造と機能を十分考慮してないことが考えられる。
2. Description of the Related Art In a combined power generation plant combining a gas turbine and a steam turbine, degassed water must be supplied in advance to an exhaust heat recovery boiler before the gas turbine is started. Until now, deaerated water was obtained by a deaerator installed in the system in front of the exhaust heat recovery boiler, but the conventional deaerator was omitted from the viewpoint of system complexity and labor saving. Then, it is required to perform deaeration with a condenser that is in a relatively high vacuum state and supply deaerated water to the exhaust heat recovery boiler. But at the start of this plant,
Since the gas turbine side is operated prior to the steam turbine, the turbine exhaust does not flow into the condenser and must be degassed under severe conditions where degassing action due to contact with the exhaust cannot be expected. Moreover, in this plant where start-up and shut-down are repeated frequently throughout the year, in order to avoid corrosion of the boiler water pipe, a relatively high dissolved oxygen concentration (80
From around 00 ppb) to the specified concentration (7 pp
b) It is required to degas close to the plant and to reduce the degassing time from the economical efficiency of plant operation. Conventionally, it is known that a condenser having a deaeration function raises the condensate temperature of a hot well and takes additional measures by introducing auxiliary steam or the like in order to accelerate deaeration. For example, as shown in Japanese Patent Laid-Open No. 53-72903, a watering rack in the container,
It is shown that an overflow pipe and the like are sequentially provided, and an auxiliary steam is injected into the overflow pipe, the generated steam is brought into contact with condensate flowing down a sprinkler shelf, and a device for heating stepwise is installed. This is effective for raising the liquid temperature, but a pressure difference occurs before and after the water sprinkling racks that are provided in multiple layers, and the oxygen released by contact with the auxiliary steam restrains the atmosphere accompanied by the pressure increase. If the water is passed therethrough, it may hinder the deaerating action in the water sprinkler. further,
Installing structural members such as shelves in the hot well of the condenser becomes narrower, hindering workability, or
This may increase the height and increase the size. In addition, as shown in Japanese Patent Application No. 59-102593, an auxiliary steam injection pipe is provided in the hot well of the condenser, and a deaeration nozzle is arranged at the bottom of the tube nest. It has been shown that the degassing time can be shortened by recirculating the condensate in the well. This is effective when the auxiliary steam is introduced from the stage of starting the vacuum in the condenser, but when the vacuum rises to some extent and the auxiliary steam is introduced, the effect of increasing the liquid temperature deteriorates. It may be difficult to reduce the degassing time. On the other hand, as shown in Japanese Patent Application No. 58-152507, when a condensate heating means is provided in the middle of the condensate circulation system, there is a drawback that the effect of raising the temperature of the liquid with vacuum activation becomes worse. However, it may be difficult to reduce the degassing time because the effect of bubbling by introducing the auxiliary steam into the hot well of the condenser is hindered. It is conceivable that these causes do not take into consideration the structure and function of the degassing nozzle arranged in the lower part of the tube nest.

【発明が解決しようとする課題】上記従来技術は、補助
蒸気を導入して生じるホットウエル液温上昇とバブリン
グとによる脱気効果をいかなる真空状態でも発揮させる
点については、十分な考慮がなされておらず、大幅な脱
気時間の短縮を図ることが難しいという問題があった。
本発明の目的は、プラント起動時、復水器に貯溜する復
水を短時間で脱気し得る脱気手段と復水器構造、およ
び、補助蒸気導入による有効な液温上昇とバブリングと
による脱気性能向上の手段と脱気ノズルの構造を提供す
ることにある。
The above-mentioned prior art has been sufficiently considered in that the deaeration effect by the hot well liquid temperature rise and bubbling caused by the introduction of the auxiliary steam can be exerted in any vacuum condition. Therefore, there is a problem that it is difficult to significantly reduce the deaeration time.
The object of the present invention is to provide a degassing means and a condenser structure capable of degassing condensed water stored in a condenser in a short time at the time of plant startup, and effective liquid temperature rise and bubbling by introducing auxiliary steam. It is to provide means for improving degassing performance and the structure of the degassing nozzle.

【課題を解決するための手段】本発明はこの目的を達成
するために、蒸気タービンの排気を冷却して凝縮させる
復水器と、前記復水器中の凝縮水をポンプによってボイ
ラに供給する復水系と、前記復水系から分岐させた復水
再循環系を介して前記復水器の内部に前記復水器中の凝
縮水を再循環して脱気を行うものにおいて、前記復水再
循環系の途中に復水加熱手段を設けるとともに、復水器
の管巣の下部に加熱された復水からのフラッシュ蒸気に
よる復水撹拌効果を利用し復水の脱気を促進させる二段
減圧式脱気ノズルと、前記二段減圧式脱気ノズルの流体
出口絞り部の上部にバッフル板とを設けたことを特徴と
する。また、本発明の二段減圧式脱気ノズルは、流体入
口絞り部流路断面積に比べ、流体出口絞り部流路断面積
が同等、若しくは大きく、かつ、前記流体入口絞り部か
ら前記流体出口絞り部へ流体を導く流路断面積が入口絞
り部断面積に比べ二〜四倍である条件を満たす脱気ノズ
ル構造であることを特徴とする。さらに、本発明は上記
復水器の管巣の下部に、加熱蒸気による復水撹拌効果を
利用して復水の脱気を促進させために、復水を導入する
部分と加熱蒸気を導入する部分とを多孔板で仕切り、か
つ、加熱蒸気を導入する部分を復水を導入する部分の下
部に設けた構造から成る加熱減圧式脱気ノズルを設けた
ことを特徴とする。
To achieve this object, the present invention provides a condenser for cooling and condensing exhaust gas of a steam turbine, and condensed water in the condenser is supplied to a boiler by a pump. In a system in which condensed water in the condenser is recirculated through the condensate system and a condensate recirculation system branched from the condensate system to deaerate the condensed water, Condensate heating means is installed in the middle of the circulation system, and two-stage depressurization that promotes degassing of condensate by utilizing the condensate agitation effect of flash steam from the condensate heated at the bottom of the condenser tube nest. Type deaeration nozzle and a baffle plate above the fluid outlet throttle of the two-stage decompression type deaeration nozzle. Further, the two-stage decompression type degassing nozzle of the present invention has a fluid outlet throttle section flow passage cross-sectional area equal to or larger than the fluid inlet throttle passage cross-sectional area, and from the fluid inlet throttle portion to the fluid outlet. The degassing nozzle structure is characterized in that the cross-sectional area of the flow path for guiding the fluid to the throttle portion is 2 to 4 times larger than the cross-sectional area of the inlet throttle portion. Furthermore, the present invention introduces a portion for introducing condensate and heating steam into the lower part of the tube nest of the condenser in order to accelerate degassing of the condensate by utilizing the condensate stirring effect of the heating steam. It is characterized in that a heating decompression type deaeration nozzle having a structure in which a part is separated from a part by a perforated plate, and a part for introducing heating steam is provided under a part for introducing condensate.

【作用】本発明の復水脱気システムは、復水再循環系の
途中に復水加熱手段を設けるとともに、復水器の管巣の
下部に二段減圧式脱気ノズルを設けてあるので、加熱さ
れた復水からのフラッシュ蒸気による復水撹拌効果が促
進され、しかも、流体出口絞り部の上部にバッフル板を
設けてあるので、脱気ノズルからの流出復水が微粒化
し、更に、脱気性能を向上させる作用がある。つまり、
二段減圧式脱気ノズルの設置により、有効な液温上昇と
バブリングとによる脱気性能向上がどんな真空状態でも
期待でき、大幅な脱気時間の短縮につながる。また、こ
の二段減圧式脱気ノズルは、流体入口絞り部流路断面積
に比べ、流体出口絞り部流路断面積が同等、若しくは大
きく、かつ、前記流体入口絞り部から前記流体出口絞り
部へ流体を導く流路断面積が入口絞り部断面積に比べ二
〜四倍である条件を満たす脱気ノズル構造となっている
ので、この脱気ノズル内で復水が撹拌効果の強い二相流
状態となり、更に脱気性能を良くする作用がある。さら
に、本発明の復水脱気システムは、復水を導入する部分
と加熱蒸気を導入する部分とを多孔板で仕切り、かつ、
加熱蒸気を導入する部分を復水を導入する部分の下部に
設けた構造から成る加熱減圧式脱気ノズルを設けること
により、加熱蒸気導入による復水撹拌効果および有効な
液温上昇を図り復水の脱気を促進させる作用の他に、復
水再循環系の途中に復水加熱手段を設けなくてもよいの
で、機器構成が簡単となり、コスト低減につながる。
In the condensate deaeration system of the present invention, the condensate heating means is provided in the middle of the condensate recirculation system, and the two-stage decompression type deaeration nozzle is provided below the tube nest of the condenser. , The condensate stirring effect by the flash steam from the heated condensate is promoted, and since the baffle plate is provided on the upper part of the fluid outlet throttle part, the condensate flowing out from the degassing nozzle is atomized, and further, It has the effect of improving degassing performance. That is,
By installing a two-stage depressurization type degassing nozzle, it is possible to expect effective liquid temperature rise and improved degassing performance by bubbling in any vacuum condition, leading to a significant reduction in degassing time. Further, this two-stage decompression type degassing nozzle has a fluid outlet throttle section flow passage cross-sectional area that is equal to or larger than the fluid inlet throttle section flow passage area, and is from the fluid inlet throttle section to the fluid outlet throttle section. The degassing nozzle structure satisfies the condition that the cross-sectional area of the flow path that guides the fluid to the inlet is 2 to 4 times the cross-sectional area of the inlet throttle. It has the effect of improving the degassing performance by creating a flowing state. Further, the condensate degassing system of the present invention, the part for introducing the condensate and the part for introducing the heating steam are partitioned by a perforated plate, and
By providing a heating decompression type deaeration nozzle with a structure in which the part for introducing heating steam is provided under the part for introducing condensate, the effect of stirring condensate by introducing heating steam and effective rise of liquid temperature are achieved. In addition to the function of accelerating the degassing, the condensate heating means does not have to be provided in the middle of the condensate recirculation system, which simplifies the equipment configuration and leads to cost reduction.

【実施例】以下、本発明の実施例を図1ないし図3によ
り説明する。図1において、蒸気タービンの排気1を冷
却して凝縮せしめる復水器2内の凝縮水を復水出口3か
ら復水ポンプ4によって引出し、ボイラへ供給する復水
系10から分岐した復水再循環系11及び循環弁15を
介して復水器2の内部に該復水器中の凝縮水を再循環し
て脱気を行う。このとき、復水再循環系11の途中に復
水加熱装置7を設けるとともに、復水器2の管巣5の下
部に、復水加熱装置7により加熱された復水をみちびき
復水器1の内部に散布する二段減圧式脱気ノズル6と、
二段減圧式脱気ノズル6の流体出口絞り部の上部にバッ
フル板8とを設ける。13は加熱用の熱媒体、例えば、
加熱蒸気であり、12は制御弁である。復水加熱装置7
は、復水を直接的に加熱する構造であっても良く、また
復水を間接的に加熱する構造であっても良い。即ち、酸
素成分の多い高温ガスを熱媒体として用いる場合は間接
加熱を行うための熱交換器によって復水加熱装置7を構
成する。また、酸素成分の少ない水蒸気を熱媒体として
用いる場合は、この水蒸気を復水と直接的に接触させて
加熱する。本発明の復水脱気システムは、復水再循環系
11の途中に復水加熱装置7を設け、復水器2の管巣5
の下部に二段減圧式脱気ノズル6を設けてあるので、加
熱された復水からのフラッシュ蒸気による復水撹拌効果
が促進され、しかも、流体出口絞り部の上部にバッフル
板8を設けてあるので、脱気ノズルからの流出復水が微
粒化し、更に、脱気性能を向上させる作用がある。つま
り、二段減圧式脱気ノズル6の設置により、有効な液温
上昇とバブリングとによる脱気性能向上がいかなる真空
状態でも期待でき、大幅な脱気時間の短縮につながる。
また、本発明の二段減圧式脱気ノズル6は、図2に示す
ように、流体入口絞り部21と流体出口絞り部22とを
もち、流体入口絞り部21の流路断面積A1 に比べ、流
体出口絞り部22の流路断面積A2 が同等、若しくは大
きく、かつ、流体入口絞り部21から流体出口絞り部2
2へ流体を導くノズルフラッシュ部23の流路断面積A
3 が入口絞り部21の流路断面積に比べて二〜四倍であ
る条件を満たす脱気ノズル構造のものとなっているの
で、この脱気ノズル内で復水が撹拌効果の強い二相流状
態となり、更に脱気性能を良くする作用がある。さら
に、本発明は、二段減圧式脱気ノズル6の代わりに、図
3に示すように、復水器2の管巣2の下部に、復水を導
入する部分31と加熱蒸気を導入する部分32とを多孔
板33で仕切り、かつ、加熱蒸気を導入する部分32を
復水を導入する部分31の下部に設けた構造からなる加
熱減圧式脱気ノズル30を設けても、加熱蒸気導入によ
る復水撹拌効果および有効な液温上昇を図り復水の脱気
を促進させる効果は二段減圧式脱気ノズル6を設けた場
合とほぼ同じである。特に、この場合、復水再循環系1
1の途中に復水加熱装置7を設けなくてもよいので、機
器構成が簡単となり信頼性が向上し、コスト低減につな
がる。加熱減圧式脱気ノズル30は、二段減圧式脱気ノ
ズル6と同様に流体入口絞り部34と流体出口絞り部3
5とをもち、流体入口絞り部34の流路断面積B1 に比
べ、流体出口絞り部35の流路断面積B2 が同等、若し
くは大きく、かつ、流体入口絞り部34から流体出口絞
り部35へ流体を導くノズルフラッシュ部31の流路断
面積B3 が入口絞り部34の流路断面積に比べ二〜四倍
である条件を満たす脱気ノズル構造のものとなってい
る。
Embodiments of the present invention will be described below with reference to FIGS. In FIG. 1, the condensed water in the condenser 2 that cools and condenses the exhaust gas 1 of the steam turbine is drawn out from the condensate outlet 3 by the condensate pump 4, and is condensed from the condensate system 10 that is supplied to the boiler. The condensed water in the condenser is recirculated into the condenser 2 via the system 11 and the circulation valve 15 to degas. At this time, the condensate heating device 7 is provided in the middle of the condensate recirculation system 11, and the condensate heated by the condensate heating device 7 is provided below the tube nest 5 of the condenser 2. Two-stage decompression type deaeration nozzle 6 which is sprayed inside
A baffle plate 8 is provided above the fluid outlet throttle portion of the two-stage depressurization type deaeration nozzle 6. 13 is a heating medium for heating, for example,
Reference numeral 12 is a control valve which is heated steam. Condensate heating device 7
May have a structure for directly heating the condensate, or may have a structure for indirectly heating the condensate. That is, when a high temperature gas containing a large amount of oxygen is used as the heat medium, the condensate heating device 7 is configured by a heat exchanger for performing indirect heating. Further, when water vapor having a small oxygen component is used as the heat medium, the water vapor is directly contacted with the condensate and heated. In the condensate degassing system of the present invention, a condensate heating device 7 is provided in the middle of the condensate recirculation system 11, and a tube nest 5 of the condenser 2 is provided.
Since the two-stage decompression type deaeration nozzle 6 is provided in the lower part of the, the condensate stirring effect by the flash steam from the heated condensate is promoted, and the baffle plate 8 is provided above the fluid outlet throttle part. Therefore, the condensate flowing out from the degassing nozzle is atomized to further improve the degassing performance. That is, by installing the two-stage depressurization type deaeration nozzle 6, it is possible to expect an effective increase in liquid temperature and an improvement in deaeration performance by bubbling in any vacuum state, which leads to a significant reduction in deaeration time.
As shown in FIG. 2, the two-stage decompression type deaeration nozzle 6 of the present invention has a fluid inlet throttle portion 21 and a fluid outlet throttle portion 22, and has a flow passage cross-sectional area A 1 of the fluid inlet throttle portion 21. In comparison, the flow passage cross-sectional area A 2 of the fluid outlet throttle portion 22 is equal to or larger than that of the fluid outlet throttle portion 21 and the fluid outlet throttle portion 2
2 is a flow passage cross-sectional area of the nozzle flash portion 23 that guides the fluid to
Since 3 has a degassing nozzle structure that satisfies the condition that it is 2 to 4 times as large as the flow passage cross-sectional area of the inlet throttle portion 21, the condensate in the degassing nozzle is a two-phase with a strong stirring effect. It has the effect of improving the degassing performance by creating a flowing state. Further, in the present invention, instead of the two-stage decompression type deaeration nozzle 6, as shown in FIG. 3, a portion 31 for introducing condensed water and heating steam are introduced to the lower part of the tube nest 2 of the condenser 2. Even if the heating decompression type deaeration nozzle 30 having a structure in which the portion 32 is separated from the porous plate 33 and the portion 32 for introducing the heating steam is provided under the portion 31 for introducing the condensate, The effect of condensing the condensate and the effect of promoting effective degassing of the condensate by increasing the effective liquid temperature are almost the same as the case where the two-stage decompression type degassing nozzle 6 is provided. Especially in this case, the condensate recirculation system 1
Since the condensate heating device 7 does not have to be provided in the middle of step 1, the device configuration is simplified, the reliability is improved, and the cost is reduced. The heating decompression type deaeration nozzle 30 is similar to the two-stage decompression type deaeration nozzle 6 in that the fluid inlet throttle portion 34 and the fluid outlet throttle portion 3 are connected.
Has a 5, compared to the flow path cross-sectional area B 1 of the fluid inlet aperture 34, equal flow path cross-sectional area B 2 of the fluid outlet aperture portion 35, or greater, and the fluid outlet throttle portion from the fluid inlet aperture 34 The degassing nozzle structure has a condition that the flow passage cross-sectional area B 3 of the nozzle flash portion 31 that guides the fluid to the flow passage 35 is 2 to 4 times the flow passage cross-sectional area of the inlet throttle portion 34.

【発明の効果】本発明によれば、復水器の管巣の下部に
設けた減圧式脱気ノズルにより、加熱された復水からの
フラッシュ蒸気による復水撹拌脱気効果が促進され、し
かも、流体出口絞り部の上部に設けたバッフル板によ
り、脱気ノズルからの流出復水の微粒化が促進されるの
で、復水の有効な液温上昇とバブリングとによる脱気性
能向上がいかなる真空状態でも期待でき、大幅に脱気時
間を短縮することができる。
According to the present invention, the decompression type deaeration nozzle provided in the lower part of the tube nest of the condenser promotes the condensate stirring deaeration effect by the flash steam from the heated condensate, and , The baffle plate provided on the upper part of the fluid outlet throttle portion promotes atomization of the condensate flowing out from the degassing nozzle, so the effective liquid temperature rise of the condensate and the improvement of the degassing performance by bubbling can be achieved in any vacuum. It can be expected even in the state, and the degassing time can be greatly shortened.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の脱気機構を具備した復水器
の系統図。
FIG. 1 is a system diagram of a condenser equipped with a deaeration mechanism according to an embodiment of the present invention.

【図2】二段減圧式脱気ノズルの断面図。FIG. 2 is a cross-sectional view of a two-stage decompression type degassing nozzle.

【図3】加熱減圧式脱気ノズルの断面図。FIG. 3 is a cross-sectional view of a heating decompression type deaeration nozzle.

【符号の説明】[Explanation of symbols]

1…蒸気タービンの排気、2…復水器、3…復水出口、
4…復水ポンプ、5…管巣、6…二段減圧式脱気ノズ
ル、7…復水加熱装置、8…バッフル板、10…復水
系、11…復水再循環系、12…制御弁、13…加熱用
の熱媒体、15…循環弁。
1 ... Exhaust of steam turbine, 2 ... Condenser, 3 ... Condensate outlet,
4 ... Condensate pump, 5 ... Tube nest, 6 ... Two-stage decompression type deaeration nozzle, 7 ... Condensate heating device, 8 ... Baffle plate, 10 ... Condensate system, 11 ... Condensate recirculation system, 12 ... Control valve , 13 ... Heat medium for heating, 15 ... Circulation valve.

フロントページの続き (72)発明者 大嶽 克基 茨城県日立市幸町三丁目1番1号 株式会 社日立製作所日立工場内Front Page Continuation (72) Inventor Katsuki Otaki 3-1-1, Saiwaicho, Hitachi-shi, Ibaraki Hitachi Ltd. Hitachi factory

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】蒸気タービンの排気を冷却して凝縮させる
復水器と、前記復水器中の凝縮水をポンプによってボイ
ラに供給する復水系と、前記復水系から分岐させた復水
再循環系を介して前記復水器の内部に前記復水器中の凝
縮水を再循環して脱気を行うものにおいて、前記復水再
循環系の途中に復水加熱手段を設け、前記復水器の管巣
の下部に加熱された復水からのフラッシュ蒸気による復
水撹拌効果を利用し復水の脱気を促進させる二段減圧式
脱気ノズルと、前記二段減圧式脱気ノズルの流体出口絞
り部の上部にバッフル板とを設けたことを特徴とする脱
気機構を具備した復水器。
1. A condenser for cooling and condensing exhaust gas of a steam turbine, a condenser system for supplying condensed water in the condenser to a boiler by a pump, and a condensate recirculation branched from the condenser system. In a system for deaeration by recirculating condensed water in the condenser through the system into the condenser, a condensate heating means is provided in the middle of the condensate recirculation system, Of the two-stage decompression type degassing nozzle that promotes degassing of the condensate by utilizing the condensate stirring effect of the flash steam from the condensate heated at the bottom of the tube nest of the vessel A condenser equipped with a deaeration mechanism, characterized in that a baffle plate is provided above the fluid outlet throttle portion.
【請求項2】請求項1において、前記二段減圧式脱気ノ
ズルは、流体入口絞り部流路断面積に比べ、流体出口絞
り部流路断面積が同等、若しくは大きく、かつ、前記流
体入口絞り部から前記流体出口絞り部へ流体を導く流路
断面積が入口絞り部断面積に比べ二〜四倍である条件を
満たす脱気機構を具備した復水器。
2. The two-stage decompression type degassing nozzle according to claim 1, wherein a fluid outlet throttle section flow passage cross sectional area is equal to or larger than a fluid inlet throttle passage cross section area, and A condenser equipped with a degassing mechanism that satisfies a condition that a flow passage cross-sectional area for guiding a fluid from a throttle portion to the fluid outlet throttle portion is 2 to 4 times larger than an inlet throttle portion cross-sectional area.
【請求項3】蒸気タービンの排気を冷却して凝縮させる
復水器と、前記復水器中の凝縮水をポンプによってボイ
ラに供給する復水系と、前記復水系から分岐させた復水
再循環系を介して前記復水器の内部に前記復水器中の凝
縮水を再循環して脱気を行うものにおいて、前記復水器
の管巣の下部に、加熱蒸気による復水撹拌効果を利用し
復水の脱気を促進させる加熱減圧式脱気ノズルと、前記
加熱減圧式脱気ノズルの流体出口絞り部の上部にバッフ
ル板とを設けたことを特徴とする脱気機構を具備した復
水器。
3. A condenser for cooling and condensing exhaust gas of a steam turbine, a condensate system for supplying condensed water in the condenser to a boiler by a pump, and a condensate recirculation branched from the condensate system. In the case of degassing by recirculating the condensed water in the condenser through the system to the inside of the condenser, in the lower part of the tube nest of the condenser, condensing water condensing effect by heating steam is provided. A heating decompression type deaeration nozzle that accelerates deaeration of condensate by utilizing the degassing mechanism, and a baffle plate provided above the fluid outlet narrowing portion of the heating decompression type deaeration nozzle. Condenser.
【請求項4】請求項3において、前記加熱減圧式脱気ノ
ズルは、復水を導入する部分と加熱蒸気を導入する部分
とを多孔板で仕切り、かつ、加熱蒸気を導入する部分が
復水を導入する部分の下部に設けられた構造である脱気
機構を具備した復水器。
4. The heated decompression type deaeration nozzle according to claim 3, wherein a portion for introducing condensed water and a portion for introducing heated steam are partitioned by a perforated plate, and a portion for introducing heated steam is condensed water. A condenser equipped with a deaeration mechanism, which is a structure provided below the portion where the air is introduced.
【請求項5】請求項3において、前記加熱減圧式脱気ノ
ズルは、復水流体入口絞り部流路断面積に比べ、流体出
口絞り部流路断面積が同等、若しくは大きく、かつ、前
記流体入口絞り部から前記流体出口絞り部へ流体を導く
流路断面積が入口絞り部断面積に比べ二〜四倍である条
件を満たす脱気機構を具備した復水器。
5. The heating decompression type deaeration nozzle according to claim 3, wherein the fluid outlet throttle section flow passage cross sectional area is equal to or larger than the condensate fluid inlet throttle passage cross sectional area, and A condenser equipped with a degassing mechanism that satisfies a condition that a flow passage cross-sectional area for guiding a fluid from an inlet throttle portion to the fluid outlet throttle portion is 2 to 4 times larger than an inlet throttle portion sectional area.
JP3195222A 1991-08-05 1991-08-05 Condenser provided with deaerator Pending JPH0539985A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3195222A JPH0539985A (en) 1991-08-05 1991-08-05 Condenser provided with deaerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3195222A JPH0539985A (en) 1991-08-05 1991-08-05 Condenser provided with deaerator

Publications (1)

Publication Number Publication Date
JPH0539985A true JPH0539985A (en) 1993-02-19

Family

ID=16337500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3195222A Pending JPH0539985A (en) 1991-08-05 1991-08-05 Condenser provided with deaerator

Country Status (1)

Country Link
JP (1) JPH0539985A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009041872A (en) * 2007-08-10 2009-02-26 Tlv Co Ltd Heat exchanging device
JP2009041873A (en) * 2007-08-10 2009-02-26 Tlv Co Ltd Heat exchanging device
JP5197602B2 (en) * 2007-12-10 2013-05-15 株式会社東芝 Condenser
CN106052414A (en) * 2016-06-28 2016-10-26 中广核工程有限公司 Condenser vacuum-pumping system and method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009041872A (en) * 2007-08-10 2009-02-26 Tlv Co Ltd Heat exchanging device
JP2009041873A (en) * 2007-08-10 2009-02-26 Tlv Co Ltd Heat exchanging device
JP5197602B2 (en) * 2007-12-10 2013-05-15 株式会社東芝 Condenser
CN106052414A (en) * 2016-06-28 2016-10-26 中广核工程有限公司 Condenser vacuum-pumping system and method

Similar Documents

Publication Publication Date Title
CA2060094C (en) Method and apparatus for maintaining a required temperature differential in vacuum deaerators
JPS6038506A (en) Method of purifying and deaerating condensed water/feedwaterin circulation system of generating plant
US4776170A (en) Device for degassing the condensate in the cycle of an electricity generating plant
JPH0633959B2 (en) Condenser in the water / steam circuit of the prime mover
JPH0539985A (en) Condenser provided with deaerator
JPS5852681B2 (en) Think Udatsuki Souchi
JPH0472156B2 (en)
JP2849083B2 (en) Integrated deaerator for heat pipe steam condenser
JPH08334290A (en) Condenser with built-in deaerator
JPS61168787A (en) Condenser having deaerating function
JPS60248994A (en) Condenser equipped with deaerating mechanism
JP3592745B2 (en) Condenser with deaerator
JPH06126270A (en) Feed water deaerator
JP2576316B2 (en) Condenser
JPS6159187A (en) Deaerating type condenser
JPH07139887A (en) Condenser
JPS6057191A (en) Condenser having deaerating means
JP2002098306A (en) Boiler equipment, and its operation method
US1540179A (en) Apparatus for the deaeration of boiler-feed water
JP3697280B2 (en) Condenser with built-in deaerator and method for restarting the same
WO2023180588A2 (en) Deaerator systems and methods of servicing of deaerator
JP5349220B2 (en) Apparatus and method for suppressing thermal deformation of deaerator
JPH06257963A (en) Deaerating method and condenser
JPH06182108A (en) Deaerator
JP3720856B2 (en) Condenser