JPS6057191A - Condenser having deaerating means - Google Patents

Condenser having deaerating means

Info

Publication number
JPS6057191A
JPS6057191A JP16314483A JP16314483A JPS6057191A JP S6057191 A JPS6057191 A JP S6057191A JP 16314483 A JP16314483 A JP 16314483A JP 16314483 A JP16314483 A JP 16314483A JP S6057191 A JPS6057191 A JP S6057191A
Authority
JP
Japan
Prior art keywords
condensate
condenser
water
deaerated
ceiling plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16314483A
Other languages
Japanese (ja)
Inventor
Isao Okochi
大河内 功
Kenkichi Izumi
健吉 和泉
Yasuaki Mukai
康晃 向井
Katsumoto Otake
大嶽 克基
Yoshikuni Oshima
大島 義邦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP16314483A priority Critical patent/JPS6057191A/en
Publication of JPS6057191A publication Critical patent/JPS6057191A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B9/00Auxiliary systems, arrangements, or devices
    • F28B9/10Auxiliary systems, arrangements, or devices for extracting, cooling, and removing non-condensable gases

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To shorten the deaerating time at the time of a startup so as to improve the economy of a power generating plant that frequently repeats the startup and shutdown by an arrangement in which the condensate in a condenser is recirculated, and the interior of a hot well is divided to enhance the fluidity with the heating steam pipe suitably disposed in the water flow. CONSTITUTION:As the interior of a condensor 1 is maintained in a vacuum condition, the sprinkled condensate is deaerated in the vacuum and is gathered in a passage 50a as it drops from pipe nests 15 to a ceiling plate 42. The condensate in a hot well, when violently contacted by the steam which is inducted from an auxiliary boiler etc. and is jetted out of a heating steam pipe 40a, is boiled to separatee gaseous components in it. The deaerated condensate does not mix with the high-concentration condensate that is flowing down the ceiling plate 42, and the condensate with the lowest concentration drips into a passage 50b. The condensate that flows in the downstream without being deaerated is prevented from mixing with the condensate that has been deaerated as it is separated by a separator 41, whereby, by recirculating the condensate the deaerating time can be shortened.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は蒸気タービン用復水器に係り、特にプランド起
動時に復水器内において復水を脱気処理し、ボイラ等へ
低溶存酸素量の給水を供給するに好適な脱気手段を備え
た復水器に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a condenser for a steam turbine, and in particular, deaerates condensate in the condenser at plant start-up, and supplies a low amount of dissolved oxygen to a boiler, etc. The present invention relates to a condenser equipped with a degassing means suitable for supplying water.

〔発明の背景〕[Background of the invention]

蒸気タービン用復水器はタービン背圧を下げて効率を高
めるために相当高度な真空状態で運転されるから、復水
中の溶存酸素の除去作用を持っている。そして、プラン
ト運転中には復水器内にタービン排気が流入し、凝縮し
た復水と大量の蒸気との接触がなされ不凝縮ガスとして
空気抽出装置で系外に取出されるため復水中の溶存酸素
濃度は充分に低く抑制される。また、比較的に高濃度の
補給水を供給してもプラント運転中に上記によp脱気さ
れることは周知の通9である。
Since steam turbine condensers are operated in a fairly high vacuum state to reduce turbine back pressure and increase efficiency, they have the ability to remove dissolved oxygen from condensate. During plant operation, turbine exhaust gas flows into the condenser, and the condensed water comes into contact with a large amount of steam and is taken out of the system as non-condensable gas by an air extraction device, so that dissolved water in the condensate Oxygen concentration is suppressed to a sufficiently low level. Furthermore, it is well known that even if relatively high concentration make-up water is supplied, it is degassed as described above during plant operation.

しかしながら、プラント起動時においては、当初、復水
器ホットウェル内に貯溜している復水け、大気圧下、常
温で保有され、溶存酸素濃度が5oooppb前後と高
いので、真接にボイラ給水として供給するには、ボイラ
水管に点食が発生して事故を誘発する恐れが有り使用で
きない5、また、発電プラントでは、電力漸狭に応じて
頻繁に起動、停止を繰返すものが多く、上記した蒸気タ
ービン排気が介在しない状態において再起動しなければ
ならず、ボイラ水管の腐食防止及び起動時の損失を削減
するためにも迅速に且つ、一般のボイラ給水の溶存酸素
規定値7 ppb 近くまで脱気することが要求される
However, at the time of plant start-up, the condensate stored in the condenser hotwell is initially stored under atmospheric pressure and room temperature, and the dissolved oxygen concentration is high at around 5ooopppb, so it is directly used as boiler feed water. In order to supply boiler water, pitting may occur in the boiler water pipes, causing an accident, making it unusable5.In addition, many power plants start and stop frequently in response to the gradual reduction in power, and as mentioned above, The steam turbine must be restarted without the presence of exhaust gas, and in order to prevent corrosion of the boiler water pipes and reduce losses during startup, the dissolved oxygen in the boiler feed water must be quickly removed to near the standard value of 7 ppb. You are required to care.

従来、脱気作用を備えた復水器の例は、第1図に示すよ
うに、復水器1のホットウェル17に貯溜する復水を該
ホットウェル下部の復水出口3゜からポンプ4にて引出
し、復水配管6と復水再循環配管5を連結(図示省略)
して、スプレィ装置14に供給し、器内に散水して管巣
15を流下し再びホットウェル17に戻す。そして、真
空ポンプ11を作動し器内を真空状態に保持して上記を
繰返す間に液界面から放出した酸素を空気抽出管16を
介して系外へ排出する。しかしながら、これは単に液界
面からの気相側への移動によるもので、器内の圧力及び
液温度による影響を受け易く、必要な脱気された復水を
得るに数時間を要したシ、復水の溶存酸素を低めるに到
らない等不安定な欠点を有する。このために、復水器下
部へ加熱蒸気を導入して、付加的手段を講することも考
えられている。例えば、復水器内に散布された復水をト
レイ等で受け落下液と加熱蒸気との接触を図るものでち
る。しか1−復水器のように真空中に加熱蒸気を導入し
た場合に、蒸気の急激な減衰を伴い、器内圧力に相当す
る温度になってしまうので充分に加熱できす脱気効果を
奏さない。か\る場合には、多段にトレイを設置して流
動抵抗をつけて器内で真空状態の異なる雰囲気と気液接
触時間を長くする等複雑な構造部材を狭い器内に設置せ
ねばならず、脱気効率は悪く犬屋化する欠点がある。
Conventionally, in an example of a condenser equipped with a deaeration function, as shown in FIG. Connect the condensate pipe 6 and condensate recirculation pipe 5 (not shown).
Then, the water is supplied to the spray device 14 and water is sprinkled into the container, flowing down the tube nest 15 and returning to the hot well 17 again. Then, the vacuum pump 11 is operated to maintain the inside of the vessel in a vacuum state, and while the above steps are repeated, the oxygen released from the liquid interface is discharged to the outside of the system via the air extraction pipe 16. However, this is simply due to movement from the liquid interface to the gas phase side, and is easily affected by the pressure and liquid temperature inside the vessel, and it takes several hours to obtain the necessary degassed condensate. It has the disadvantage of being unstable, such as not being able to lower the dissolved oxygen in the condensate. For this purpose, it has been considered to take additional measures by introducing heated steam into the lower part of the condenser. For example, a tray or the like is used to receive the condensate sprinkled in the condenser and to bring the falling liquid into contact with the heated steam. However, 1 - When heated steam is introduced into a vacuum, such as in a condenser, the steam rapidly attenuates and reaches a temperature equivalent to the pressure inside the vessel, so it cannot be heated sufficiently and the degassing effect cannot be achieved. do not have. In such cases, complex structural members must be installed in the narrow vessel, such as installing trays in multiple tiers to provide flow resistance and prolonging the gas-liquid contact time with different vacuum conditions within the vessel. , the deaeration efficiency is poor and the disadvantage is that it becomes a dog house.

また、単に復水中に加熱蒸気を吹込む方法も考えられて
いる。例えば、特開昭53−72903公報から抜粋し
た第2図において、脱気機能をホットウェル17と隔絶
した底板18を設け、その間に順次に散水だな25およ
び26、オーバフロー管27、肢管27に設けた加熱蒸
気噴射管20で構造した脱気装置24で行うことが示さ
れている。
A method of simply blowing heated steam into the condensate has also been considered. For example, in FIG. 2 extracted from Japanese Patent Application Laid-open No. 53-72903, a bottom plate 18 is provided which isolates the degassing function from the hot well 17, and between them, water sprinklers 25 and 26, an overflow pipe 27, and a limb pipe 27 are provided. This is shown to be carried out using a degassing device 24 constructed of a heated steam injection pipe 20 provided at the top.

しかしながら、回脱気装置−24では散水だな25゜2
6により圧力差が生じ、さらに仁1.復水中の蒸気噴射
によって放出された酸素が丙び圧力上昇を伴ツタ雰囲気
中を通ることによること、オーバフロー管で蒸気噴射に
よシ脱気された復水が該散水だなシ洛下すゐ脱気されな
い復水と混合してホットウェル内に流入することおよび
その脱気された復水がプラント起動前のホットウェル内
に貯溜する復水と混合すること等により、第1図で示し
たものよシ有効とはいえ、プラント起動時における脱気
時間を短縮できない。さらに、蒸気タービン排気が介在
しない状態でのプラント起動時にはか\る圧力差あるい
は圧力上昇を伴う部材を器内に設置することはかえって
脱気時間を増長する欠点を生ずる。
However, in the re-deaerator-24, water is sprayed at 25°2.
A pressure difference is created by 6, and further 1. Oxygen released by steam injection in the condensate passes through the ivy atmosphere with a rise in pressure. By mixing with the unaerated condensate and flowing into the hot well, and by mixing the degassed condensate with the condensate stored in the hot well before the plant starts up, the result shown in Figure 1 is generated. Although it is effective, it cannot shorten the deaeration time at plant start-up. Furthermore, when the plant is started up without the presence of steam turbine exhaust, installing a member in the vessel that causes such a pressure difference or pressure increase has the disadvantage of prolonging the deaeration time.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、従来技術の欠点を完服し、プラント起
動時の復水器内に貯溜する復水を短時間で脱気し、発電
プラントの起動時間を短縮し得る脱気手段を備えた復水
器構造を提供することである。
An object of the present invention is to completely overcome the drawbacks of the prior art, and to provide a deaeration means capable of quickly deaeration of condensate stored in a condenser at the time of plant start-up, thereby shortening the power plant start-up time. The purpose of the present invention is to provide a condenser structure that has the following characteristics.

〔発明の概要〕[Summary of the invention]

本発明は、液中に直接蒸気を吹込むことにより液中の溶
存酸素を除去できること及びその脱気作用が復水器構造
、蒸気導入手段に大きく異なることに顧みて、復水器ホ
ットウェル内に貯溜する復水をホットウェル内を仕切る
ことにより貯溜する復水を画一的に流動させ、その循環
水流の一部に蒸気噴射部を形成して蒸気の熱交換と水流
の攪拌を増長させ、脱気される前の復水あるいは、ホッ
トウェル内に貯溜する高酸素濃度の復水と脱気された低
酸素濃度の復水との混合を抑制してプラント起動時のタ
ービン排気の介在しない状態にある復水器内の復水を迅
速に脱気するものである。
The present invention has been developed in the hot well of the condenser, taking into account that dissolved oxygen in the liquid can be removed by blowing steam directly into the liquid, and that the deaeration effect differs greatly depending on the condenser structure and steam introduction means. By partitioning the condensate stored in the hot well, the stored condensate flows uniformly, and a steam injection part is formed in a part of the circulating water flow to increase steam heat exchange and water flow agitation. By suppressing the mixing of condensate before being degassed or condensate with high oxygen concentration stored in the hot well and degassed condensate with low oxygen concentration, there is no need for turbine exhaust at the time of plant startup. This is to quickly degas the condensate in the condenser.

以下、本発明の実施例を図面に従い説明する。Embodiments of the present invention will be described below with reference to the drawings.

第3図において、復水器1の下部にあるホットウェル1
7の内部に、仕切板41、天井板42を構成し、該仕切
板41は、ホットウェル底部を第3図に示す如くに復水
出口30に向けて連続した復水流路50a、50bを形
成して分割し、ホットウェル底面に垂直に設置する。そ
して、該仕切板41の上部を該天井板42で覆い、復水
器1130と反対位置に該天井板を開放する復水流路5
0aを形成する。さらに開孔された加熱蒸気管40aを
上記の復水流路50a内で且つ、ホットウェル水位よシ
下方位置に設置し、その一端を天井板42で覆れる復水
流路50b内で、その流路入口部に向って構成する。
In Figure 3, the hot well 1 located at the bottom of the condenser 1
A partition plate 41 and a ceiling plate 42 are configured inside the hot well 7, and the partition plate 41 forms continuous condensate flow paths 50a and 50b with the bottom of the hot well facing the condensate outlet 30 as shown in FIG. split it and install it vertically on the bottom of the hotwell. The upper part of the partition plate 41 is covered with the ceiling plate 42, and the condensate channel 5 opens the ceiling plate at a position opposite to the condenser 1130.
Form 0a. Further, the opened heating steam pipe 40a is installed in the condensate flow path 50a and below the hot well water level, and the flow path is installed in the condensate flow path 50b whose one end is covered with the ceiling plate 42. Constructed toward the entrance.

次に動作と脱気作用を説明する。プラント起動時に、ホ
ットウェル17内の復水をポンプ4により引出し、復水
配管6から復水阿循配管5に導入してスプレィ装置14
で器内に散水される。この時、真空ポンプ11は作動し
ておシ、復水器l内の空気は系外に排除され減圧して真
空状態に保持されるから、散布した復水は、減圧脱気さ
れ、管巣15から天井板42に落下し、その上面を流下
して、該流路50aに集まる。そして、ホットウェル内
の復水は、まず、蒸気管21aから補助ボイ2あるいは
他のプラントで得られる蒸気を導入し、該加熱蒸気管4
0aから復水中に吹出す蒸気と激しく接触して熱伝達さ
れ、沸騰状態となって、復水中のガス成分を分離し、一
部の蒸気と共に復水水面から復水器内に拡散し、最終的
に該空気抽出管16を介して系外に排出する。そして、
脱気された復水は、直ちに天井板42で流下するよp高
濃度な復水と混入することなく、最も低濃度な復水が、
覆われた流路50b内に順次に流下する。
Next, the operation and deaeration effect will be explained. When starting up the plant, the condensate in the hot well 17 is drawn out by the pump 4 and introduced from the condensate piping 6 into the condensate circulation piping 5, where it is sprayed into the spray device 14.
Water is sprinkled into the container. At this time, the vacuum pump 11 is activated, and the air inside the condenser L is expelled from the system, reduced in pressure, and maintained in a vacuum state. 15 onto the ceiling plate 42, flows down the upper surface thereof, and collects in the flow path 50a. Then, the condensate in the hot well is produced by first introducing steam obtained from the auxiliary boiler 2 or another plant from the steam pipe 21a, and then
Heat is transferred through intense contact with the steam blown into the condensate from 0a, resulting in a boiling state, separating the gas components in the condensate, and diffusing with some steam from the condensate water surface into the condenser. The air is then discharged out of the system through the air extraction pipe 16. and,
The degassed condensate immediately flows down on the ceiling plate 42, so that the condensate with the lowest concentration is
It sequentially flows down into the covered channel 50b.

すなわち、流路内は、常に復水出口30に向った水流を
呈し、その流れの途中に、該蒸気噴射管40aが設置さ
れているから蒸気噴射による復水の攪拌を促進し、熱効
率の高い領域を必ず復水が通過することによって成好に
脱気できる。さらに、この領域を過ぎた後流側では表層
から多少脱気されるも末だ脱気されていない復水が仕切
板41によって分割されているから、脱気された復水が
順次に復水出口30側に混合することなく押しやるため
、復水を再循環することに相俟って短時間で脱気される
。従って、これを繰返し実施し、復水の溶存酸素が充分
に低下した時点で、復水配管をボイラ側に切換えて給水
を開始すればよい。
That is, the inside of the flow path always presents a water flow toward the condensate outlet 30, and since the steam injection pipe 40a is installed in the middle of the flow, stirring of the condensate by steam injection is promoted, resulting in high thermal efficiency. Successful deaeration can be achieved by ensuring that condensate passes through the area. Furthermore, on the downstream side after passing this area, the condensate that has been slightly degassed from the surface layer but has not yet been degassed is divided by the partition plate 41, so that the degassed condensate is sequentially condensed. Since the water is forced to the outlet 30 side without being mixed, the condensate is recirculated and degassed in a short time. Therefore, it is sufficient to repeat this process and, when the dissolved oxygen in the condensate has sufficiently decreased, switch the condensate piping to the boiler side and start water supply.

第5図及び第6図は、本発明の特徴を有する他の実施例
を示す。該仕切板41と天井板42に囲まれる復水流路
50bの復水々面下に加熱蒸気管40bを構成し、蒸気
管21bから導入した蒸気を復水の水流中に吹込み、前
記したごとく脱気作用を行うものでオリ、その領域で発
生する水蒸気と脱出したガス成分は水面と天井板42に
よって形成される空間部のガス成分を置換する付加的作
用を持ち、復水が低濃度に進行する程、その自浄作用に
よって該空間のガスを追い出し、酸素の再溶解を抑制で
きる。また、流路入口側に設ける加熱蒸気噴射管408
とを適度に配設することによって付加的に脱気時間を短
縮できる。
5 and 6 show other embodiments having features of the invention. A heating steam pipe 40b is constructed below the condensate water surface of the condensate flow path 50b surrounded by the partition plate 41 and the ceiling plate 42, and the steam introduced from the steam pipe 21b is blown into the condensate water flow, as described above. The water vapor generated in that area and the gas components that escaped have the additional effect of displacing the gas components in the space formed by the water surface and the ceiling plate 42, reducing the concentration of condensate to a low concentration. As the process progresses, its self-cleaning action will drive out the gas in the space and suppress the re-dissolution of oxygen. In addition, a heated steam injection pipe 408 provided on the flow path inlet side
By arranging these appropriately, the deaeration time can be additionally shortened.

以上のように、本発明によれば、復水器内の復水を再循
環に、さらにホットウェル内を分割して流動化させ、そ
の水流中に加熱蒸気管を適当に配置することによってプ
ラント起動時における脱気時間を短縮できる。また、タ
ービン排気が流入する前すなわち、ボイラの水sb過程
において復水器内に供給される補給水についても、復水
器内の(9) 水位を保持して、徐々に器内の復水□及び補給水ともに
脱気できるからプラント起動時に一貫して連続してボイ
ラに給水可能となシ起動時間を短縮できる。従って、頻
繁に起動・停止を繰す発電プラントにあって経済性を高
める上で好適である。
As described above, according to the present invention, the condensate in the condenser is recirculated, the inside of the hot well is divided and fluidized, and the heating steam pipe is appropriately placed in the water flow. Degassing time at startup can be shortened. In addition, before the turbine exhaust gas flows in, that is, during the water sb process of the boiler, make-up water is supplied into the condenser by maintaining the water level (9) in the condenser and gradually increasing the condensation water into the condenser. Since both water and make-up water can be degassed, water can be consistently and continuously supplied to the boiler at plant start-up, reducing start-up time. Therefore, it is suitable for improving economic efficiency in power generation plants that are frequently started and stopped.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来技術の脱気機能を備える復水器系統図、
第2図は従来公報されている脱気装置を内装した復水器
構造図を示し、第3図は本発明の一実施例を構成した復
水器内構造図、第4図はその第3図A−A断面視図でお
る。また、第5図は本発明の他の実施例を構造した復水
器内構造図であシ、第6図はその第5図のB−B断面視
図である。 1・・・復水器、4・・・ポンプ、5・・・復水再循環
配管、6・・・復水配管、11・・・真空ポンプ、14
・・・スプレィ装置、15・・・管巣、16・・・空気
抽出管、17・・・ホットウェル、21a、21b・・
・蒸気配管、40a 。 40b・・・加熱蒸気噴射管、41・・・仕切板、42
・・・天井板、50a、50b・・・復水流路。 代理人 弁理士 高橋明夫 b匁 つ 2 りrフッL乙J 隼4−ロ 笛S図 箋6図 第1頁の続き 0発 明 者 大 島 義 邦 日立市幸町3丁目1番
1号 株式会社日立製作所日立工場−ζすζ−
Figure 1 is a condenser system diagram with a conventional degassing function;
Fig. 2 shows a structural diagram of a condenser equipped with a conventionally published deaeration device, Fig. 3 shows an internal structural diagram of a condenser constituting an embodiment of the present invention, and Fig. This is a sectional view taken along the line A-A. Further, FIG. 5 is a diagram showing the internal structure of a condenser constructed in another embodiment of the present invention, and FIG. 6 is a sectional view taken along the line BB in FIG. 5. DESCRIPTION OF SYMBOLS 1... Condenser, 4... Pump, 5... Condensate recirculation piping, 6... Condensate piping, 11... Vacuum pump, 14
... Spray device, 15... Tube nest, 16... Air extraction tube, 17... Hot well, 21a, 21b...
・Steam piping, 40a. 40b... Heating steam injection pipe, 41... Partition plate, 42
...Ceiling board, 50a, 50b...Condensate channel. Agent Akio Takahashi Patent Attorney B Momme Tsu 2 Ri R Fu L Otsu J Hayabusa 4 - Ro Fue S Notebook 6 Figure 1 Page 1 Continued 0 Inventor Yoshikuni Oshima 3-1-1 Saiwaimachi, Hitachi City Stock Company Hitachi Ltd. Hitachi Factory -ζsuζ-

Claims (1)

【特許請求の範囲】 1、蒸気タービン用復水器において、該復水器のボット
ウェル内部に、該ホットウェル底面から垂直上部に延設
する仕切板を復水出口を末端とする連続した復水流路を
形成して分割配設し、該復水流路上部の大部分を天井板
で覆い、該天井板上を流下する復水を開放せる一方の復
水流路に導入し、該復水流路内に保持される水面下で、
しかも前記の天井板で覆われる復水流路入口部の水流中
に蒸気噴射管を設けてなることを特徴どする脱気手段を
備えた復水器。 2、特許請求の範囲第1項におい−C1該蒸気噴射管が
天井板で覆われた復水流路の復水々mt中に設けてなる
ことを特徴とする脱気手段を備えた復水器。
[Claims] 1. In a condenser for a steam turbine, a partition plate is provided inside the botwell of the condenser and extends vertically upward from the bottom of the hotwell to form a continuous condensate condensate outlet. The condensate flow path is formed and divided and arranged, most of the upper part of the condensate flow path is covered with a ceiling plate, and the condensate flowing down on the ceiling plate is introduced into one of the condensate flow paths to be released, and the condensate flow path is Under the surface of the water held within,
Moreover, a condenser equipped with a degassing means is characterized in that a steam injection pipe is provided in the water flow at the entrance of the condensate flow path covered by the ceiling plate. 2. Claim 1 - C1 A condenser equipped with a degassing means, characterized in that the steam injection pipe is provided in the condensate mt of a condensate flow path covered with a ceiling plate. .
JP16314483A 1983-09-07 1983-09-07 Condenser having deaerating means Pending JPS6057191A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16314483A JPS6057191A (en) 1983-09-07 1983-09-07 Condenser having deaerating means

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16314483A JPS6057191A (en) 1983-09-07 1983-09-07 Condenser having deaerating means

Publications (1)

Publication Number Publication Date
JPS6057191A true JPS6057191A (en) 1985-04-02

Family

ID=15768049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16314483A Pending JPS6057191A (en) 1983-09-07 1983-09-07 Condenser having deaerating means

Country Status (1)

Country Link
JP (1) JPS6057191A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5509466A (en) * 1994-11-10 1996-04-23 York International Corporation Condenser with drainage member for reducing the volume of liquid in the reservoir

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5244963A (en) * 1975-10-03 1977-04-08 Nippon Kokan Kk <Nkk> Method and apparaus for removing accumulated material on hopper surfac e

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5244963A (en) * 1975-10-03 1977-04-08 Nippon Kokan Kk <Nkk> Method and apparaus for removing accumulated material on hopper surfac e

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5509466A (en) * 1994-11-10 1996-04-23 York International Corporation Condenser with drainage member for reducing the volume of liquid in the reservoir

Similar Documents

Publication Publication Date Title
US5165237A (en) Method and apparatus for maintaining a required temperature differential in vacuum deaerators
JPH0555761B2 (en)
KR101899600B1 (en) Apparatus for treating carbon dioxide
JPS6057191A (en) Condenser having deaerating means
US6217711B1 (en) Method of treating condensates
US2308719A (en) Feed water heater
US2315481A (en) Method and apparatus for degasifying liquids
JPH0539985A (en) Condenser provided with deaerator
CN208482035U (en) Esterification separation device of trioctyl trimellitate
JPS6159187A (en) Deaerating type condenser
JPS60248994A (en) Condenser equipped with deaerating mechanism
JPS61168787A (en) Condenser having deaerating function
JPH07139887A (en) Condenser
CN217367809U (en) Effluent water sump non-pressure exhaust gas processing apparatus
JPS60193579A (en) Method for obtaining limpid condensate from steam containing volatile substance
JPH06126270A (en) Feed water deaerator
RU2060939C1 (en) Method for concentration of solutions which contain sodium sulfate
JPS60147093A (en) Condenser
SU716983A1 (en) Vacuum thermal dearator
US3250087A (en) Absorption refrigeration
SU1557541A1 (en) Vacuum deaerator
JPH07305973A (en) Condenser
CN108392848A (en) Esterification separation device of trioctyl trimellitate
JPS5662516A (en) Foaming preventing method of gas absorption process
SU1186232A1 (en) Apparatus for evaporating foaming solutions