JP3684192B2 - Deaerator - Google Patents
Deaerator Download PDFInfo
- Publication number
- JP3684192B2 JP3684192B2 JP2001363740A JP2001363740A JP3684192B2 JP 3684192 B2 JP3684192 B2 JP 3684192B2 JP 2001363740 A JP2001363740 A JP 2001363740A JP 2001363740 A JP2001363740 A JP 2001363740A JP 3684192 B2 JP3684192 B2 JP 3684192B2
- Authority
- JP
- Japan
- Prior art keywords
- water
- feed water
- storage tank
- dissolved oxygen
- feed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Degasification And Air Bubble Elimination (AREA)
- Physical Water Treatments (AREA)
Description
【0001】
【産業上の利用分野】
本発明は、火力発電プラントや原子力発電プラント等において、ボイラ給水中に含まれる溶存酸素等を脱気するのに好適する脱気装置に関する。
【0002】
【従来の技術】
火力発電プラントや原子力発電プラント等において、給水中に溶存酸素が多く含まれていると、プラント構成機器が電気化学的反応などにより腐食される。したがって、給水中の溶存酸素濃度はできるだけ低い値に管理する必要があり、そのため脱気装置が使用されている。この脱気装置としては、給水中の溶存酸素を、加熱用の低酸素濃度の蒸気と直接接触させることにより、溶解度非平衡反応で脱気する方式のものが多用されている。
【0003】
上記脱気方式において、溶解度非平衡反応を効率よく行わせるためには、給水の熱力学的状態を飽和状態にできるだけ近づけることが必要である。しかしながら、この状態はあまり安定な状態ではなく、圧力が下がっても、貯水の温度はすぐには下がらないため、過熱水状態になりやすい。この過熱水状態はさらに不安定な状態で、何らかの外乱によりエネルギーを放出(沸騰・蒸発)して安定な状態に戻ろうとする。
【0004】
発電プラント等では、負荷の低下時に脱気装置部分での圧力低下が生じるが、この圧力低下が急激で著しいと、給水のエネルギー放出が間に合わず、貯水は過熱水の状態となる。この貯水が過熱水のまま給水ポンプに持ち込まれると、給水ポンプでキャビテーションを発生する。こうなると発電プラントの運転に支障が生じるので、このような事態を防止するための手段が種々考えられている。
【0005】
例えば、特開昭55−41349号の発明においては、脱気装置の貯水タンク内に冷却管を内蔵させて貯水の温度を飽和温度以下に下げるようにしている。また、特開昭56−68703号の発明においては、冷却器をプラント系統内の別の位置に設置し、負荷低下時に給水の一部をこの冷却器に分岐させて冷却し、これを貯水タンクに戻すことにより貯水の温度を下げるようにしている。またさらに、特開昭61−49906号の発明においては、負荷低下時に復水器からの復水を貯水タンク内に導入し、貯水タンク水の温度を下げるようにしている。
【0006】
最近の大容量の発電プラントにおいては、ボイラ給水中の溶存酸素濃度の許容値は、通常、7ppb以下に設定されているが、このような厳しい溶存酸素濃度の管理基準を達成するため、発電プラントの脱気装置に関して、多くの研究開発が行われてきた。従来の脱気装置において、給水中から溶存酸素を脱気する基本原理は、濃度非平衡によって誘起される物質拡散である。この場合、非平衡度が大きいほど物質移動速度が速く、また拡散による移動距離が短いほど物質移動速度は速くなる。そこで従来の脱気装置では、スプレーにより給水を微粒化するか、トレイなどを用いて給水を流下・分断・攪拌することにより給水の表面積を拡大する方法や、加熱蒸気を貯水タンク水中に吹き込み、溶存酸素の給水中での拡散および脱気を促進する方法が採用されている。
【0007】
一例として、従来のスプレー・バブリング型脱気装置の概略構成を図2に示す。この脱気装置では、貯水タンク1のシェル内に、水面上に開口するように給水スプレー2を設け、その周囲にじゃま板3を設けると共に、水面下に位置するように蒸気分配管4と、そこから分岐する多数の吹込み管5を設けてある。
【0008】
給水Wは給水配管6を通って貯水タンク1のシェル内に入り、給水スプレー2から噴射される。噴射された給水は、じゃま板3に接触して攪拌・微粒化され、多数の水滴となって貯水タンク水面に落下し、貯水タンク水となる。この貯水タンク水は、最終的には給水出口7を通して貯水タンク外へ導かれ、再び給水ポンプ(図示せず)で加圧されて、ボイラや熱交換器等(図示せず)に導かれる。
【0009】
一方、加熱蒸気管8に導入された蒸気Sは、吹込み管5から貯水タンク水中に噴射され、気泡となって給水中を上昇しながら給水と直接接触し、給水中の溶存酸素を脱気していく。貯水表面に達した加熱蒸気は、貯水タンクの蒸気部分を流過するが、給水スプレー2の近傍を通過する際、そこから噴射された給水と接触し、大部分が給水中に凝縮して給水を加熱すると共に、溶存酸素を一部脱気する。その結果残ったごく一部の蒸気は、脱気された酸素と共に、加熱蒸気ベント口9から大気中または復水器(図示せず)へ排出される。なお、図2中の実線矢印は給水の流れ方向を示し、破線矢印は加熱蒸気の流れ方向を示している。
【0010】
【発明が解決しようとする課題】
しかしながら、上述した従来の脱気装置には、次に示すような不都合な点があった。すなわち、給水を脱気せずに貯水部に導入すると溶存酸素濃度の著しい上昇を招き、プラント機器の腐食が促進される。冷却管や冷却器を介して給水を冷却すると流動抵抗が増え、しかも余分な機器や材料が必要となる。温度の低い給水を導入すると、貯水タンク構成部材に局所的な温度分布が生じて熱応力が発生し、疲労破壊の原因となる。
【0011】
また、図2に示す脱気装置では、加熱のための水蒸気が不十分な場合、水蒸気が貯水に凝縮して体積を減じてしまい、脱気が不完全になり易く、また貯水タンク内の貯水が飽和温度にあるため、発電プラントの負荷低下時の圧力低下で、フラッシユ蒸発による貯水タンクの水位変動や、給水ポンプにおけるキャビテーションなどが発生しやすく運転安定性に欠けるという欠点がある。
【0012】
そこで本発明は、脱気により給水の溶存酸素濃度を効率よく低減させプラント機器の腐食を防止し、貯水タンク内でのフラッシュ蒸発及び供給ポンプにおけるキャビテーションの発生を抑制し、貯水タンク構成部材において局所的な温度分布によって生じる熱応力を防止することができ、脱気性能に優れ、負荷低下時にも運転安定性に優れ、プラント機器の安全性が高い脱気装置を提供することを目的とする。
【0013】
【課題を解決するための手段】
本発明の脱気装置は、給水を加圧して送給する給水ポンプと、給水を加熱する給水加熱器とを有する系統中に設置され、給水中の溶存酸素等を脱気する脱気装置において、給水加熱器の下流側に設けられ、その下流側の給水圧力を低下させる調節弁と、調節弁の下流側に設けられ、溶存酸素を脱気する脱気セクションと、脱気セクションの下流側に設けられ、その下流側の給水圧力を上昇させるポンプと、ポンプの下流側に設けられた貯水タンクと、を有することを特徴とする。
【0014】
【作用】
上記の発明において、給水の圧力を低下させる調節弁は、その下流側における給水の温度と圧力の関係から決まる熱力学的状態を飽和状態または過熱水の状態とする。溶存酸素濃度の計測値は、給水圧力の低下を調整するための観測値とされ、溶存酸素濃度に応じて減圧の程度を変化させるように、制御装置では調節弁に制御信号を出力する。脱気セクションにおいて給水中の溶存酸素を脱気させた蒸気は下流側の給水加熱器に導かれてここで凝縮し、給水を加熱するのに用いられる。給水の貯水タンクヘの流入位置を水面下とし、水蒸気の貯水タンクへの流入位置を水面上とすることは、給水と水蒸気との接触界面を最小限とする。この最小限の接触界面で水蒸気が給水側に凝縮して、水面付近のみを飽和状態とする。貯水タンクの水面下に存在する大部分の給水は既に溶存酸素を脱気されており、しかも、圧縮水の状態を保ったまま給水出口から給水ポンプへと排出される。
【0015】
【実施例】
以下、本発明の実施例を図1を参照して説明する。なお、図2に示した従来例と共通の部分には同一の符号を付してある。
【0016】
図1は、本発明の脱気装置における系統構成の一例を示している。
【0017】
同図において、単一または複数の給水加熱器12によって給水の温度が飽和温度の近くまで上昇した系統中の位置に、給水圧力の減圧調節のため調節弁30を設置する。この調節弁30は、復水器31出口の給水系統中に設置された溶存酸素濃度計32からの信号を観測値として、自動的または手動に開度を制御される。なお、溶存酸素濃度計32の設置位置は、調節弁30の上流側であればどこでもよいが、給水温度の低い位置であれば冷却の必要がないので、この例では復水器31の出口としてある。調節弁30の下流側には、溶存酸素を脱気する脱気セクション33が設けられている。この脱気セクション33には、脱気のための蒸気を受け入れるためのノズル(図示せず)と、脱気後の蒸気を排出するためのノズル(図示せず)が設けられている。脱気セクション33には、残った水蒸気を給水加熱器12にて凝縮させるためのライン34が連結されている。また、脱気セクション33を出た給水は、ポンプ35により再び加圧され、貯水タンク1に送給される。
【0018】
貯水タンク1は、脱気セクション33からの給水を貯水タンク内の水面よりも下の位置で受入れるように設定されたノズル36と、熱交換器あるいは蒸気タービン(図示せず)からの蒸気を貯水タンク内の水面よりも上の位置で受入れるように設定されたノズル37を有している。給水加熱器12と貯水タンク1の間には、サブクール状態の給水を脱気セクション33をバイパスさせて貯水タンク1に流入させるライン38と、貯水タンク1内の余剰な蒸気を給水加熱器12に送るライン39が設けられている。40は蒸気出口を示す。また、貯水タンク1内の貯水は給水出口7から排出され、給水ポンプ(図示せず)によって再び加圧され、ボイラあるいは熱交換器(図示せず)に供給される。
【0019】
なお、脱気セクション33としては、スプレー、トレイ、気泡塔、充填層など、給水と水蒸気を混合して表面積を拡大できる構造物と、給水から水蒸気を分離する容積型セパレータ、サイクロンセパレータなどを組み合わせて使用することができる。
【0020】
上述のように構成した図1の脱気装置において、調節弁30は、給水の圧力を低下させ、給水の状態を飽和状態または過熱水の状態とする作用を有する。調節弁30により給水をこのような状態にした上で、給水を脱気セクション33に送って蒸気と混合すると、蒸気は給水に凝縮して体積を減ずることなく、給水と混合・接触し、最大の気液界面面積を保って脱気を効果的に行うことができる。
【0021】
調節弁30における給水圧力低下の程度は、給水中の溶存酸素の濃度に応じて調節される。すなわち、溶存酸素濃度が規定値を大幅に越える状態のときには、減圧の程度を大きくして給水を過熱水の状態とし、減圧部分における自己蒸発を促し、発生する気泡への溶存酸素の脱気をも併用して脱気セクション33における脱気効果を向上させる。反対に、溶存酸素濃度が脱気セクション33の上流側で既に規定値以下となっているときには、給水を全く減圧せずにそのまま通過させる。通常運転中で、給水中の溶存酸素濃度が規定値を少し越える程度の場合には、減圧の程度を中間状態で制御する。このように、調節弁30は給水の減圧程度を調節することによって脱気性能を変化させる作用を有する。
【0022】
脱気セクション33において給水中の溶存酸素を脱気させた蒸気は、ライン34を経て給水加熱器12に導かれ、ここで凝縮して、給水を加熱するのに用いられる。一方、脱気セクションで溶存酸素を脱気された給水は、ポンプ35で再度加圧され、圧縮水の状態で貯水タンク1内に流入する。この場合、給水はノズル36を通して貯水の水面下に流入し、表面を乱さないように、かつ圧縮水の状態を保ったまま給水出口7へと出ていく。一方、貯水タンク1の蒸気空間側にはノズル37を通して水蒸気が導入され、貯水の表面に凝縮して、水面付近のみを飽和状態とし、圧力を維持する。貯水タンクの蒸気側に導入された水蒸気の残りは、蒸気出口40からライン39を通り、給水加熱器12へ導かれる。
【0023】
このように、本発明においては、給水の溶存酸素濃度に応じて脱気性能を変化させることができるので、必要以上に給水の圧力を低下させる無駄がない。また、熱容量の大きい貯水タンクの水が圧縮水の状態を保っているので、発電プラントの負荷が低下して給水圧力が低下しても、貯水が減圧沸騰することがない。さらに、脱気セクションに送られた水蒸気は、脱気セクションでは凝縮せず、下流側の給水加熱器に送られて熱回収されるので、エネルギーの無駄がない。
【0024】
【発明の効果】
以上説明したように、本発明では、溶存酸素濃度が高い場合だけ給水圧力を減圧して減圧沸騰による脱気効果を相乗させることにより、高い脱気性能を得ることができる。一方、溶存酸素濃度が既に十分低いときには給水圧力を減圧しないので動力の無駄が低減する。また、減圧した給水を再度加圧して貯水タンクに導入し、貯水タンクにおける圧縮水の状態を保つことができるので、発電プラントの負荷低下に伴なう給水圧力低下時の貯水の減圧沸騰がなく、しかも給水ポンプにキャビテーションが生じにくく、安定な運転が確保できる。また、低温の給水や冷却水を急激に導入することがないので、貯水タンクの構成部材に局所的な温度分布による熱応力を発生させることはなく、貯水タンクの構造健全性が維持でき、安全性が向上する。
【0025】
したがって、本発明の脱気装置では、脱気性能に優れ、負荷低下時にも運転安定性に優れ、プラント機器の安全性が高いという優れた効果を奏する。
【図面の簡単な説明】
【図1】 本発明の実施例を示す系統構成図。
【図2】 従来のスプレー・バブリング型脱気装置の概略構成を示す説明図。
【符号の説明】
1…貯水タンク
2…給水スプレー
3…じゃま板
4…蒸気分配管
5…吹込み管
6…給水配管
7…給水出口
8…加熱蒸気
9…加熱蒸気ベント口
12…給水加熱器
30…調節弁
31…復水器
32…溶存酸素濃度計
33…脱気セクション
34、38、39…ライン
35…ポンプ
36、37…ノズル
40…蒸気出口[0001]
[Industrial application fields]
The present invention relates to a degassing apparatus suitable for degassing dissolved oxygen and the like contained in boiler feed water in a thermal power plant, a nuclear power plant, or the like.
[0002]
[Prior art]
In a thermal power plant, a nuclear power plant, or the like, if a large amount of dissolved oxygen is contained in the feed water, the plant components are corroded by an electrochemical reaction or the like. Therefore, it is necessary to manage the dissolved oxygen concentration in the feed water as low as possible, and therefore a deaeration device is used. As this deaeration device, a device that deaerates by a solubility non-equilibrium reaction by bringing dissolved oxygen in the feed water into direct contact with steam having a low oxygen concentration for heating is frequently used.
[0003]
In the degassing method, in order to efficiently perform the solubility non-equilibrium reaction, it is necessary to bring the thermodynamic state of the feed water as close as possible to the saturated state. However, this state is not so stable, and even if the pressure drops, the temperature of the stored water does not drop immediately, so it is likely to become a superheated water state. This superheated water state is a more unstable state and attempts to return to a stable state by releasing energy (boiling / evaporating) by some disturbance.
[0004]
In a power plant or the like, a pressure drop in the deaerator occurs when the load is reduced. If this pressure drop is rapid and significant, the energy release of the feed water will not be in time, and the stored water will be in a superheated water state. When this stored water is brought into the feed water pump with overheated water, cavitation is generated by the feed water pump. In this case, since the operation of the power plant is hindered, various means for preventing such a situation have been considered.
[0005]
For example, in the invention of Japanese Patent Laid-Open No. 55-41349, a cooling pipe is built in a water storage tank of a deaeration device so that the temperature of the water storage is lowered to a saturation temperature or less. Further, in the invention of Japanese Patent Laid-Open No. 56-68703, a cooler is installed at another position in the plant system, and when the load is reduced, a part of the water supply is diverted to the cooler and cooled. The temperature of the stored water is lowered by returning to. Furthermore, in the invention of Japanese Patent Laid-Open No. 61-49906, condensate from the condenser is introduced into the water storage tank when the load is reduced, so that the temperature of the water storage tank is lowered.
[0006]
In recent large-capacity power plants, the allowable value of dissolved oxygen concentration in boiler feed water is usually set to 7 ppb or less. However, in order to achieve such strict dissolved oxygen concentration management standards, A lot of research and development has been conducted on deaeration equipment. In the conventional degassing apparatus, the basic principle of degassing dissolved oxygen from the feed water is material diffusion induced by concentration non-equilibrium. In this case, the greater the degree of non-equilibrium, the faster the mass transfer rate, and the shorter the migration distance due to diffusion, the faster the mass transfer rate. Therefore, in conventional degassing devices, the water supply is atomized by spraying, or the surface area of the water supply is expanded by flowing down, dividing, and stirring using a tray or the like, or heating steam is blown into the water in the storage tank, A method for promoting diffusion and deaeration of dissolved oxygen in the feed water is adopted.
[0007]
As an example, FIG. 2 shows a schematic configuration of a conventional spray bubbling deaerator. In this deaeration device, a
[0008]
The water supply W enters the shell of the water storage tank 1 through the water supply pipe 6 and is sprayed from the
[0009]
On the other hand, the steam S introduced into the heating steam pipe 8 is jetted from the blowing pipe 5 into the water storage tank water, becomes bubbles and comes into direct contact with the water supply while ascending the water supply, thereby degassing dissolved oxygen in the water supply. I will do it. The heated steam that has reached the surface of the water storage flows through the steam portion of the water storage tank, but when passing through the vicinity of the
[0010]
[Problems to be solved by the invention]
However, the conventional deaeration device described above has the following disadvantages. That is, if the feed water is introduced into the water storage section without degassing, the dissolved oxygen concentration is significantly increased, and the corrosion of the plant equipment is promoted. Cooling the feed water through a cooling pipe or a cooler increases the flow resistance and requires extra equipment and materials. When water supply with a low temperature is introduced, a local temperature distribution is generated in the water tank constituting member, and thermal stress is generated, which causes fatigue failure.
[0011]
Further, in the deaeration device shown in FIG. 2, when the steam for heating is insufficient, the water vapor condenses into the stored water and the volume is reduced, and the deaeration tends to be incomplete. Is at the saturation temperature, the pressure drop when the load of the power plant is reduced, water level fluctuations in the water storage tank due to flash evaporation, cavitation in the water supply pump, etc. are likely to occur, resulting in lack of operational stability.
[0012]
Therefore, the present invention effectively reduces the dissolved oxygen concentration of feed water by deaeration, prevents corrosion of plant equipment, suppresses the occurrence of flash evaporation in the water tank and cavitation in the supply pump, and locally in the water tank components. An object of the present invention is to provide a deaeration device that can prevent thermal stress caused by a typical temperature distribution, has excellent deaeration performance, has excellent operational stability even when the load is reduced, and has high plant equipment safety.
[0013]
[Means for Solving the Problems]
The deaeration device of the present invention is installed in a system having a feed water pump that pressurizes and feeds feed water and a feed water heater that heats feed water, and deaeration device that deaerates dissolved oxygen and the like in the feed water A control valve provided downstream of the feed water heater to lower the feed water pressure downstream thereof, a degassing section provided downstream of the control valve for degassing dissolved oxygen, and a downstream side of the degassing section And a pump for increasing the water supply pressure on the downstream side thereof, and a water storage tank provided on the downstream side of the pump.
[0014]
[Action]
In the above invention, the control valve for reducing the pressure of the feed water sets the thermodynamic state determined from the relationship between the temperature and the pressure of the feed water on the downstream side to the saturated state or the superheated water state. The measured value of the dissolved oxygen concentration is an observed value for adjusting the decrease in the feed water pressure, and the control device outputs a control signal to the control valve so as to change the degree of decompression according to the dissolved oxygen concentration. Steam degassed dissolved oxygen in the feed water in the deaeration section is led to a downstream feed water heater where it is condensed and used to heat the feed water. Setting the inflow position of the water supply to the water storage tank below the water surface and the inflow position of the water vapor to the water storage tank above the water surface minimizes the contact interface between the water supply and the water vapor. Water vapor condenses on the water supply side at this minimum contact interface, and only the vicinity of the water surface is saturated. Most of the water supply existing below the surface of the water storage tank has already been degassed with dissolved oxygen, and is discharged from the water supply outlet to the water supply pump while maintaining the compressed water state.
[0015]
【Example】
An embodiment of the present invention will be described below with reference to FIG. In addition, the same code | symbol is attached | subjected to the part which is common in the prior art example shown in FIG.
[0016]
FIG. 1 shows an example of a system configuration in the deaeration device of the present invention.
[0017]
In the figure, a control valve 30 is installed at a position in the system where the temperature of the feed water has risen to near the saturation temperature by a single or a plurality of feed water heaters 12 in order to reduce the feed water pressure. This control valve 30 is automatically or manually controlled in opening degree by using a signal from a dissolved oxygen concentration meter 32 installed in the water supply system at the outlet of the condenser 31 as an observation value. Note that the position where the dissolved oxygen concentration meter 32 is installed may be anywhere as long as it is upstream of the control valve 30, but cooling is not necessary if the water supply temperature is low, so in this example as the outlet of the condenser 31. is there. A degassing section 33 for degassing dissolved oxygen is provided on the downstream side of the control valve 30. The degassing section 33 is provided with a nozzle (not shown) for receiving steam for degassing and a nozzle (not shown) for discharging the steam after degassing. The deaeration section 33 is connected to a line 34 for condensing the remaining water vapor in the feed water heater 12. Further, the water supplied from the deaeration section 33 is pressurized again by the pump 35 and supplied to the water storage tank 1.
[0018]
The water storage tank 1 stores the water supplied from the degassing section 33 at a position below the surface of the water in the water storage tank and steam from a heat exchanger or a steam turbine (not shown). It has a nozzle 37 set so as to be received at a position above the water surface in the tank. Between the feed water heater 12 and the water storage tank 1, a line 38 that allows the subcooled water supply to bypass the deaeration section 33 and flow into the water storage tank 1, and surplus steam in the water storage tank 1 is supplied to the water feed heater 12. A sending line 39 is provided. Reference numeral 40 denotes a steam outlet. Further, the water stored in the water storage tank 1 is discharged from the water supply outlet 7, is pressurized again by a water supply pump (not shown), and is supplied to a boiler or a heat exchanger (not shown).
[0019]
The deaeration section 33 is a combination of a structure that can increase the surface area by mixing water and water vapor, such as a spray, tray, bubble column, and packed bed, and a volumetric separator that separates water vapor from the water supply, a cyclone separator, etc. Can be used.
[0020]
In the deaeration device of FIG. 1 configured as described above, the control valve 30 has an action of lowering the pressure of the water supply to bring the state of the water supply into a saturated state or a state of superheated water. When the feed water is brought into such a state by the control valve 30 and the feed water is sent to the deaeration section 33 and mixed with the steam, the steam is condensed and mixed with the feed water without reducing the volume. It is possible to effectively perform deaeration while maintaining the gas-liquid interface area.
[0021]
The degree of the water supply pressure drop in the control valve 30 is adjusted according to the concentration of dissolved oxygen in the water supply. That is, when the dissolved oxygen concentration greatly exceeds the specified value, the degree of decompression is increased to make the feed water into a superheated water state, promoting self-evaporation in the decompressed part, and degassing dissolved oxygen to the generated bubbles. Is also used together to improve the deaeration effect in the deaeration section 33. On the other hand, when the dissolved oxygen concentration is already below the specified value on the upstream side of the degassing section 33, the feed water is allowed to pass through without being depressurized at all. During normal operation, when the dissolved oxygen concentration in the feed water is slightly over the specified value, the degree of decompression is controlled in an intermediate state. Thus, the control valve 30 has the effect | action which changes deaeration performance by adjusting the pressure reduction degree of water supply.
[0022]
Steam degassed dissolved oxygen in the feed water in the deaeration section 33 is led to the feed water heater 12 via a line 34 where it is condensed and used to heat the feed water. On the other hand, the feed water from which the dissolved oxygen is deaerated in the deaeration section is pressurized again by the pump 35 and flows into the water storage tank 1 in the state of compressed water. In this case, the feed water flows under the surface of the stored water through the nozzle 36 and goes out to the feed water outlet 7 without disturbing the surface and maintaining the compressed water state. On the other hand, water vapor is introduced through the nozzle 37 to the steam space side of the water storage tank 1 and condensed on the surface of the water storage, so that only the vicinity of the water surface is saturated and the pressure is maintained. The remainder of the steam introduced to the steam side of the water storage tank is led from the steam outlet 40 through the line 39 to the feed water heater 12.
[0023]
Thus, in this invention, since deaeration performance can be changed according to the dissolved oxygen concentration of feed water, there is no waste of reducing the pressure of feed water more than necessary. In addition, since the water in the water tank having a large heat capacity maintains the compressed water state, the water does not boil under reduced pressure even if the load on the power plant is reduced and the feed water pressure is reduced. Furthermore, the water vapor sent to the deaeration section is not condensed in the deaeration section, but is sent to the downstream feed water heater for heat recovery, so that energy is not wasted.
[0024]
【The invention's effect】
As described above, in the present invention, high deaeration performance can be obtained by reducing the feedwater pressure only when the dissolved oxygen concentration is high and synergizing the deaeration effect due to reduced-pressure boiling. On the other hand, when the dissolved oxygen concentration is already sufficiently low, power supply pressure is not reduced, so power waste is reduced. In addition, the decompressed feed water can be re-pressurized and introduced into the storage tank, and the state of the compressed water in the storage tank can be maintained, so there is no decompression boiling of the storage water when the feed water pressure decreases due to the load reduction of the power plant. Moreover, cavitation is unlikely to occur in the water supply pump, and stable operation can be ensured. In addition, since there is no sudden introduction of low-temperature water supply or cooling water, thermal stress due to local temperature distribution is not generated in the components of the water tank, and the structural soundness of the water tank can be maintained, which is safe. Improve.
[0025]
Therefore, the degassing apparatus of the present invention has excellent degassing performance, excellent operational stability even when the load is reduced, and excellent plant equipment safety.
[Brief description of the drawings]
FIG. 1 is a system configuration diagram showing an embodiment of the present invention.
FIG. 2 is an explanatory view showing a schematic configuration of a conventional spray bubbling type deaeration device.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ...
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001363740A JP3684192B2 (en) | 2001-11-29 | 2001-11-29 | Deaerator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001363740A JP3684192B2 (en) | 2001-11-29 | 2001-11-29 | Deaerator |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP33190193A Division JPH07190306A (en) | 1993-12-27 | 1993-12-27 | Deaerator |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002213709A JP2002213709A (en) | 2002-07-31 |
JP3684192B2 true JP3684192B2 (en) | 2005-08-17 |
Family
ID=19174036
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001363740A Expired - Lifetime JP3684192B2 (en) | 2001-11-29 | 2001-11-29 | Deaerator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3684192B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5645538B2 (en) * | 2010-08-10 | 2014-12-24 | 三菱重工業株式会社 | Deaerator |
-
2001
- 2001-11-29 JP JP2001363740A patent/JP3684192B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2002213709A (en) | 2002-07-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6254734B1 (en) | Barometric evaporation process and evaporator | |
US4686009A (en) | Distillation system | |
US5343705A (en) | Method and apparatus for maintaining a required temperature differential in vacuum deaerators | |
CN201458784U (en) | Built-in deaerization plant | |
KR880002362B1 (en) | Deaerator level control apparatus | |
JP3684192B2 (en) | Deaerator | |
KR20170039202A (en) | Deaerator (variants) | |
JP3451058B2 (en) | Combustion device with liquid-cooled grate element | |
JPH07190306A (en) | Deaerator | |
US5201366A (en) | Process and equipment for the preheating and multi-stage degassing of water | |
JPH11337009A (en) | Flash type deaerator | |
JP2867768B2 (en) | Deaerator | |
JPS5922121B2 (en) | Thermal power plant water tank | |
JPH04334507A (en) | Degassing device | |
KR100439250B1 (en) | System for deaerating | |
JP4371959B2 (en) | Heating deaerator for boiler | |
JP2023015624A (en) | Condensate deaerating device, deaerating condenser, and condensate deaerating method | |
RU2198346C2 (en) | Ultrahigh pressure mixing heat exchanger for preheating feed water at atomic power station | |
JPH0255715B2 (en) | ||
SU1645756A1 (en) | Deaerating heater | |
RU2002993C1 (en) | Degasification plant | |
JP5349220B2 (en) | Apparatus and method for suppressing thermal deformation of deaerator | |
RU2002992C1 (en) | Degasification plant | |
JPH09210301A (en) | Emergency protective apparatus for fluidized bed boiler | |
JPS625003A (en) | Drain tank |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050517 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050527 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090603 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090603 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100603 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100603 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110603 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120603 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120603 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130603 Year of fee payment: 8 |
|
EXPY | Cancellation because of completion of term |