JPH0788470A - Deaerator - Google Patents
DeaeratorInfo
- Publication number
- JPH0788470A JPH0788470A JP17512994A JP17512994A JPH0788470A JP H0788470 A JPH0788470 A JP H0788470A JP 17512994 A JP17512994 A JP 17512994A JP 17512994 A JP17512994 A JP 17512994A JP H0788470 A JPH0788470 A JP H0788470A
- Authority
- JP
- Japan
- Prior art keywords
- steam
- water
- feed water
- deaerator
- nozzle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Degasification And Air Bubble Elimination (AREA)
- Physical Water Treatments (AREA)
- Removal Of Specific Substances (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、例えば火力発電プラン
トなどのボイラ給水系統を流れる給水から溶存酸素を分
離除去するために使用される脱気装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a deaerator used for separating and removing dissolved oxygen from feedwater flowing through a boiler feedwater system such as a thermal power plant.
【0002】[0002]
【従来の技術】ボイラ給水中の溶存酸素量はボイラ内の
腐食現象に深く係わることから、大部分の火力発電プラ
ントの給水系統には給水中の溶存酸素を蒸気加熱によっ
て分離抽出する脱気装置を設けている。一般に、こうし
た脱気装置は単独の装置として構成することが多いが、
復水器に脱気装置を組み込むこともある。2. Description of the Related Art Since the amount of dissolved oxygen in boiler feedwater is deeply related to the corrosion phenomenon in the boiler, most of the power supply systems of thermal power plants have a deaerator for separating and extracting dissolved oxygen in the feedwater by steam heating. Is provided. Generally, such deaerators are often configured as a single unit,
A deaerator may be installed in the condenser.
【0003】この脱気の基本原理は濃度非平衡によって
誘起される物質拡散である。これは、非平衡度が大きい
程物質移動速度が速く、かつ拡散による移動距離が短い
程物質速度が速い。したがって、従来の脱気装置に使用
される構造の大部分は給水の攪拌および給水の微細化に
よる接触面積の拡大を図るようにしたものである。The basic principle of this degassing is mass diffusion induced by concentration disequilibrium. This is because the higher the nonequilibrium degree, the faster the mass transfer rate, and the shorter the migration distance due to diffusion, the faster the mass speed. Therefore, most of the structures used in the conventional deaerator are designed to increase the contact area by stirring the feed water and making the feed water finer.
【0004】図13は従来技術によるバブリング型脱気
装置の一例を示している。給水はシェル1の上部に設け
られた給水入口2から器内に入り、スプレー3から噴射
される。この給水はシェル1内の貯水部4に集まってバ
ブリングノズル5の外側を給水出口6の方向に流れ、こ
の間に加熱されて給水出口6から流出する。FIG. 13 shows an example of a conventional bubbling type deaerator. The water supply enters the vessel through a water supply inlet 2 provided at the top of the shell 1 and is sprayed from a spray 3. This water supply collects in the water storage section 4 in the shell 1 and flows outside the bubbling nozzle 5 toward the water supply outlet 6, and is heated during this time and flows out from the water supply outlet 6.
【0005】一方、蒸気は蒸気入口7からシェル1の長
手方向に延びる蒸気ヘッダ8に入り、それぞれ多数の透
孔を穿ったバブリングノズル5に分配される。この蒸気
はバブリングノズル5の透孔から貯水部4に噴出して給
水中を上昇しながら、給水と直接接触し、給水を加熱す
ると共に、溶存酸素を脱気する。蒸気は、さらに上昇し
て蒸気加熱部9に達し、スプレー3から噴出される給水
と直接接触してこれを加熱すると共に、脱気し、一部が
分離された酸素と共にベントロ10から器外へ流出す
る。On the other hand, the steam enters the steam header 8 extending from the steam inlet 7 in the longitudinal direction of the shell 1 and is distributed to the bubbling nozzles 5 each having a large number of through holes. This vapor is jetted from the through hole of the bubbling nozzle 5 to the water storage part 4 and ascends in the feed water, directly contacts the feed water, heats the feed water, and degasses dissolved oxygen. The steam further rises and reaches the steam heating unit 9, which directly contacts and heats the feed water ejected from the spray 3 and degass it, and degass it from the ventro 10 together with the separated oxygen to the outside of the device. leak.
【0006】[0006]
【発明が解決しようとする課題】上記したバブリング型
脱気装置では貯水部4における給水の流れは給水入口2
から給水出口6に向かう全体的な流れと、バブリングノ
ズル5から噴出する蒸気が給水を攪拌する乱れを伴う局
所的な流れとが混在しており、一定した流路は保たれて
いない。In the above-mentioned bubbling type deaerator, the flow of the water supply in the water storage section 4 is the water supply inlet 2
From the water supply outlet 6 to the water supply outlet 6 and the local flow accompanied by the turbulence that the steam ejected from the bubbling nozzle 5 stirs the water supply, and a constant flow path is not maintained.
【0007】脱気は複数のバブリングノズル5のそれぞ
れの部分で進み、大勢としては当初酸素濃度の濃い状態
にあった給水が給水出口6に達するまでには次第に脱気
されて濃度が低下していくが、常にバブリングノズル5
から噴出された蒸気により流れが乱されていることで、
例えば一旦低濃度になった給水が酸素濃度の高い給水入
口2側へ運ばれたり、また逆に高酸素濃度の給水が脱気
されずに給水出口6に運ばれてしまうことがしばしば起
こり得る。こうした流動経路の不確実性のために脱気装
置内における溶存酸素濃度分布を均一に保つ特別な操作
を強いられ、例えば溶存酸素濃度をボイラ側で要求する
決まった値(以下、要求濃度と称する)以下に低下させ
るまでに長時間を要してしまうなどの不都合がある。Degassing progresses in each of the plurality of bubbling nozzles 5, and the majority of the water supply, which was initially in a high oxygen concentration state, is gradually degassed and its concentration decreases until it reaches the water supply outlet 6. Go, but always bubbling nozzle 5
Because the flow is disturbed by the steam ejected from,
For example, feed water once having a low concentration may be carried to the feed water inlet 2 side having a high oxygen concentration, or conversely, feed water having a high oxygen concentration may be carried to the feed water outlet 6 without being deaerated. Due to such uncertainty of the flow path, a special operation is required to keep the dissolved oxygen concentration distribution in the deaerator uniform, and for example, a fixed value required by the boiler side for the dissolved oxygen concentration (hereinafter referred to as the required concentration) ) There is an inconvenience that it takes a long time to decrease the temperature to below.
【0008】また、給水中に混入した気泡が抽出されな
いで、その給水と共に給水系統の機器、例えば給水ポン
プ等に流れてしまい、機器に悪影響を及ぼす懸念があ
る。Further, the bubbles mixed in the water supply may not be extracted and may flow to the equipment of the water supply system, such as a water supply pump, together with the water supply, which may adversely affect the equipment.
【0009】そこで、本発明の目的は貯水部における給
水の流動が一定しないことに起因して生じる不都合をな
くし、給水を効率よく脱気できるようにした脱気装置を
提供することにある。Therefore, an object of the present invention is to provide a deaerator capable of efficiently deaerating the water supply by eliminating the inconvenience caused by the inconstant flow of the water supply in the water storage section.
【0010】[0010]
【課題を解決するための手段】上記目的を達成するため
に、本発明は、蒸気ヘッダと連通させた多数の透孔を有
する複数のノズルからなる噴出手段を備え、ノズルの各
透孔をシェル内の貯水部に臨ませて蒸気ヘッダからノズ
ルに導かれる加熱蒸気を透孔を通して給水中に噴出させ
るようにした脱気装置において、貯水部に送られた給水
が給水出口にかけて決められた経路に従いノズルの透孔
から吹き出す加熱蒸気と接触するように蛇行流路を形成
したことを特徴とするものである。In order to achieve the above-mentioned object, the present invention comprises a jetting means consisting of a plurality of nozzles having a large number of through holes communicating with a steam header, and each through hole of the nozzle is shelled. In the degassing device, in which the heated steam guided from the steam header to the nozzle is ejected into the water supply through the through hole, the water supplied to the water storage follows the route determined through the water supply outlet. It is characterized in that the meandering flow path is formed so as to come into contact with the heated steam blown out from the through hole of the nozzle.
【0011】[0011]
【作用】本発明は脱気装置の貯水部で流路経路の不確実
性から、例えば溶存酸素濃度の高い給水が加熱蒸気と充
分に接触しないまま給水出口に運ばれることなどに配慮
し、貯水部に定置流路を形成する。すなわち、貯水部に
送られた給水を給水出口にかけて決められた経路に従っ
てノズルから吹き出す加熱蒸気と接触させる蛇行流路を
形成する。通常、経路内に置かれるバブリングノズルか
ら吹き出した蒸気は気泡となって給水中を上昇して行く
が、この蒸気泡に対する給水の流動方向を対向流かある
いは平行流となるように流路構成部材を配置する。この
とき、給水はこの流路構成部材による流路を蛇行しつつ
流れ、給水出口に達するまでに効果的に加熱される。例
えば対向流となる流路を形成する場合、蒸気泡は下降流
となる給水の流れに逆らう形で上昇を遂げることから、
上昇速度が鈍り、給水中を通り抜ける迄に時間がかか
り、蒸気泡と給水との接触時間が長くなる。これによ
り、給水の温度上昇は格段に早くなり、脱気効率を大き
く向上することができる。したがって、加熱蒸気として
用いるプロセス蒸気を無駄に費やさず、給水を脱気する
ことができる。The present invention considers that, due to the uncertainty of the flow path in the water storage portion of the deaerator, for example, the feed water having a high dissolved oxygen concentration is carried to the feed water outlet without sufficiently contacting the heated steam. A stationary channel is formed in the part. That is, a meandering flow path is formed in which the feed water sent to the water reservoir is brought into contact with the heating steam blown out from the nozzle according to a route determined from the feed outlet. Normally, the steam blown out from the bubbling nozzle placed in the path rises up in the feed water as bubbles, but the flow path constituent member is such that the flow direction of the feed water to the steam bubbles is countercurrent or parallel flow. To place. At this time, the water supply flows while meandering through the flow path formed by the flow path constituent member, and is effectively heated before reaching the water supply outlet. For example, in the case of forming a flow path that is a counter flow, the vapor bubbles achieve an upward movement against the downward flow of the feed water,
The rising speed slows down, it takes time to pass through the water supply, and the contact time between the steam bubbles and the water supply becomes long. As a result, the temperature rise of the feed water is significantly quickened, and the degassing efficiency can be greatly improved. Therefore, the feed water can be degassed without wasting the process steam used as the heating steam.
【0012】また一方、給水は決められた経路に従って
流れ、溶存酸素濃度が加熱蒸気と接触するたびに低下し
てゆく。このため、従来の装置のように、溶存酸素濃度
の異なる給水が混ざり合うことがなく、短時間で要求濃
度に低下させることが可能になる。これは、例えばボイ
ラ起動時間を早めたいとき、要求に容易に応えられるな
どの利点をもたらす。On the other hand, the feed water flows according to a predetermined route, and the dissolved oxygen concentration decreases every time it comes into contact with the heated steam. For this reason, unlike the conventional device, it is possible to reduce the required concentration in a short time without the water supplies having different dissolved oxygen concentrations being mixed. This brings an advantage that the demand can be easily met, for example, when the boiler start-up time is desired to be shortened.
【0013】図2は本発明による溶存酸素濃度の推移を
従来技術によるものと対比して示したもので、本発明の
溶存酸素濃度分布を示す曲線aは従来技術による分布を
示す曲線bと比較して勾配が大きく、短時間のうちに要
求濃度に下げられることが判る。FIG. 2 shows the transition of the dissolved oxygen concentration according to the present invention in comparison with that according to the prior art. The curve a showing the dissolved oxygen concentration distribution of the present invention is compared with the curve b showing the distribution of the prior art. It can be seen that the gradient is large and the required concentration can be lowered in a short time.
【0014】[0014]
【実施例】以下、本発明の実施例を図面を参照して説明
する。図1(a)において、シェル1内の貯水部4に給
水出口6に向かって蛇行流路11を形成する多数のバッ
フルプレート12が設けられている。本実施例のバッフ
ルプレート12はシェル1の内側に固定された1枚およ
び蒸気ヘッダ8に固定された1枚を1組とし、これを複
数のバブリングノズル5(図1(b)参照)からなる噴
出手段と対応させて配置している。すなわち、1組のバ
ッフルプレート12のうち、蒸気ヘッダ8側のものはバ
ブリングノズル5の伸長方向に倣いほぼ同じ長さに伸ば
し、シェル1個のものも同様にバブリングノズル5の伸
長方向に倣って貯水部4上面近くに伸ばすようにしてい
る。Embodiments of the present invention will be described below with reference to the drawings. In FIG. 1 (a), a large number of baffle plates 12 that form a meandering flow path 11 toward a water supply outlet 6 are provided in a water storage section 4 in the shell 1. The baffle plate 12 of the present embodiment includes one set fixed to the inner side of the shell 1 and one set fixed to the steam header 8 as one set, and is composed of a plurality of bubbling nozzles 5 (see FIG. 1B). It is arranged corresponding to the ejection means. That is, of the set of baffle plates 12, the one on the steam header 8 side is extended in the extending direction of the bubbling nozzle 5 to have substantially the same length, and the one having one shell is also formed in the extending direction of the bubbling nozzle 5. It is designed to extend near the upper surface of the water storage section 4.
【0015】上記した点以外の給水系の主要な構成は基
本的に従来技術による構成と同じである。また、加熱蒸
気系の構成も従来技術と基本的に変わらない。The main constitution of the water supply system other than the above points is basically the same as the constitution according to the prior art. Moreover, the configuration of the heating steam system is basically the same as that of the conventional technique.
【0016】次に、上記構成からなる脱気装置の作用を
説明する。Next, the operation of the deaerator having the above structure will be described.
【0017】給水は給水入口2から器内に入り、スプレ
ー3により蒸気加熱部9に噴射される。このとき、給水
は微細化し、細かな水滴となって空間を満たしている蒸
気と接触して加熱されて温度が上昇し、一部が飽和温度
に達して溶存酸素が分離される。Water supply enters the vessel through the water supply inlet 2 and is sprayed onto the steam heating section 9 by the spray 3. At this time, the feed water becomes finer, becomes fine water droplets and is heated by contacting the steam filling the space, the temperature rises, and a part reaches the saturation temperature, and dissolved oxygen is separated.
【0018】また、蒸気は各々バブリングノズル5の透
孔から吹き出し、蒸気泡となって貯水部4を蛇行して流
れる給水中を上昇しながら給水を加熱する。この加熱に
より給水の温度は上昇し、飽和温度に達したところで溶
存酸素が脱気される。The steam is blown out from the through holes of the bubbling nozzle 5 to become steam bubbles, which meander through the water reservoir 4 to heat the water while rising. Due to this heating, the temperature of the feed water rises, and when the saturation temperature is reached, dissolved oxygen is degassed.
【0019】このとき、給水中を上昇する蒸気泡に対
し、バッフルプレート12に沿う給水の流れは下降流と
なっており、蒸気泡は対向する給水の流れに逆らって上
昇を遂げることから、速度が遅くなり、給水中を通り抜
けるまでに時間がかかる。このため、蒸気泡と給水との
接触時間が長くなって給水を効果的に加熱することがで
きる。この後、蒸気泡は貯水部4と蒸気加熱部9との境
界面を経て蒸気加熱部9に入り、その空間を満たす。At this time, the flow of the feed water along the baffle plate 12 is a downward flow with respect to the vapor bubbles rising in the feed water, and the vapor bubbles ascend against the flow of the opposing feed water. Becomes slow and it takes time to pass through the water supply. Therefore, the contact time between the steam bubbles and the water supply becomes longer, and the water supply can be effectively heated. Thereafter, the steam bubbles enter the steam heating section 9 through the boundary surface between the water storage section 4 and the steam heating section 9, and fill the space.
【0020】このように上記構成からなる脱気装置にお
いては給水が貯水部4を流動するとき、蛇行流路11の
各部で蒸気泡と対向して流れ、接触時間が長くなってそ
れぞれの部分で給水の温度上昇が早まり、脱気効率を大
きく向上させることができる。したがって、加熱に用い
るプロセス蒸気を無駄に消費することがない。また、給
水は決められた経路に従って加熱蒸気と接触し、そのた
びに溶存酸素濃度が低下して短時間のうちに溶存酸素濃
度を要求温度に下げることができる。また、蒸気泡を含
んだ給水を貯水部表面にかけて流動させるようにしたの
で、給水流動中に蒸気泡が蒸気加熱部と貯水部との境界
面に達すると直ちに給水から分離して蒸気加熱部に移
り、給水から抽出されず混入したまま脱気装置から排出
される可能性がない。As described above, in the deaerator having the above-described structure, when the feed water flows through the water storage section 4, it flows opposite to the vapor bubbles in each part of the meandering flow path 11, and the contact time becomes longer, so that the contact time becomes longer. The temperature rise of the feed water is accelerated, and the degassing efficiency can be greatly improved. Therefore, the process steam used for heating is not wasted. Further, the feed water comes into contact with the heating steam according to the determined route, and the dissolved oxygen concentration decreases each time, and the dissolved oxygen concentration can be lowered to the required temperature in a short time. Also, since the water supply containing steam bubbles is made to flow over the surface of the water storage part, as soon as the steam bubbles reach the boundary surface between the steam heating part and the water storage part during the water supply flow, they are separated from the water supply to the steam heating part. There is no possibility that it will be discharged from the deaerator as it is mixed and not extracted from the water supply.
【0021】さらに、本発明の他の実施例を図3を参照
して説明する。本実施例は給水が加熱蒸気と決められた
経路に従って接触する点は上記実施例のものも同様であ
るが、バブリングノズル5による噴出手段に対する一組
のバッフルプレート12は給水の上昇流に加熱蒸気の流
れを一致させるように設けている。本実施例において
は、バブリングノズル5の透孔から給水中に吹き出した
蒸気泡は給水と同じ方向、すなわち上昇流となって貯水
部4と蒸気加熱部9との境界面へと流れる。この給水と
の同一方向、つまり平行流で流れる蒸気泡は給水に対し
流動エネルギを与え、貯水部4における給水の流動を安
定に保つ働きがある。Further, another embodiment of the present invention will be described with reference to FIG. The present embodiment is similar to the above embodiment in that the feed water comes into contact with the heating steam according to the determined route, but the set of baffle plates 12 for the jetting means by the bubbling nozzle 5 uses the heating steam for the upward flow of the feed water. It is provided to match the flow of. In the present embodiment, the steam bubbles blown into the water supply through the through holes of the bubbling nozzle 5 flow in the same direction as the water supply, that is, as an upward flow, to the boundary surface between the water storage part 4 and the steam heating part 9. The vapor bubbles flowing in the same direction as the water supply, that is, in the parallel flow, give flow energy to the water supply and have a function of keeping the flow of the water supply in the water storage section 4 stable.
【0022】さらに、上記のものと異なる実施例を図4
を参照して説明する。本実施例は各列のバブリングノズ
ル5に一組のバッフルプレート12を配置するのに代え
て噴出手段(実施例では7段)に対応する最小数量のバ
ッフルプレート12(ただし、予備のバッフルプレート
1枚を除く)をもって蛇行流路11を形成したものであ
る。この少ない数のバッフルプレート12により形成さ
れる蛇行流路11は上記2つの実施例における給水と蒸
気泡とを対向流で流すものと、平行流で流すものとをミ
ックスさせたものとなる。本実施例では対向流部分と平
行流部分とを交互に形成している。Furthermore, an embodiment different from the above is shown in FIG.
Will be described with reference to. In this embodiment, instead of arranging a set of baffle plates 12 in each row of bubbling nozzles 5, a minimum number of baffle plates 12 corresponding to ejection means (7 steps in the embodiment) (however, the spare baffle plate 1 is used). (Excluding the number of sheets), the meandering flow path 11 is formed. The meandering flow passage 11 formed by the small number of baffle plates 12 is a mixture of the feed water and the steam bubbles in the above two embodiments that flow in the counter flow and the flow that flows in the parallel flow. In this embodiment, opposite flow portions and parallel flow portions are formed alternately.
【0023】これにより対向流の部分で良好な脱気効率
を保つ一方、平行流の部分で流動の安定化を果たすこと
が可能になる。As a result, it is possible to maintain good degassing efficiency in the counter flow portion while stabilizing the flow in the parallel flow portion.
【0024】さらに、他の実施例を図5を参照して説明
する。本実施例の蛇行流路11は上記した図4の実施例
と同様のものであるが、ここで蒸気ヘッダ8は貯水部4
の底部中央付近に設けられ、この蒸気ヘッダ8にシェル
1の内壁にかけて水平にそれぞれ伸びるバブリングノズ
ル5が設けられている。本実施例の働きは上記の図4の
ものとほぼ同様である。Further, another embodiment will be described with reference to FIG. The meandering flow path 11 of this embodiment is the same as that of the embodiment of FIG. 4 described above, but here the steam header 8 is the water reservoir 4
The steam header 8 is provided with bubbling nozzles 5 that extend horizontally toward the inner wall of the shell 1 near the center of the bottom of the shell. The operation of this embodiment is almost the same as that of FIG.
【0025】以上の各実施例は脱気装置の脱気性能の向
上に多大な効果をもたらすものであるが、さらに、別の
機能を付加する。Although each of the above-described embodiments has a great effect on the improvement of the deaeration performance of the deaeration device, another function is added.
【0026】図6に示すものは、起動時間の短縮ならび
にプロセス蒸気の使用量の削減を図るのに好適な実施例
である。蛇行流路11の各部に溶存酸素濃度を検出する
酸素濃度計13および給水温度を検出する温度計14が
それぞれ設けられ、その出力である酸素濃度信号および
温度信号が蒸気ヘッダ8に流れる加熱蒸気量を調節する
調節器15に入力されている。また、蒸気ヘッダ8に結
ばれる蒸気経路に調節弁16が介装されており、調節器
15から与えられる制御信号によりその開度が調節され
るようになっている。FIG. 6 shows a preferred embodiment for shortening the start-up time and reducing the amount of process steam used. An oxygen concentration meter 13 for detecting the dissolved oxygen concentration and a thermometer 14 for detecting the feed water temperature are respectively provided in the respective portions of the meandering flow path 11, and the output of the oxygen concentration signal and the temperature signal is the amount of heating steam flowing to the steam header 8. Is input to the adjuster 15 for adjusting. Further, a control valve 16 is provided in the steam path connected to the steam header 8, and its opening is adjusted by a control signal given from the controller 15.
【0027】効果的な脱気のためには給水を飽和温度に
素早く上昇させることが必要であり、温度分布を考慮し
て加熱蒸気を供給するのが好ましい。図7に示すよう
に、脱気装置内の給水温度分布は給水が導入される給水
入口側が低温域となっている。この温度分布に見合うよ
うに低温域には充分な量の加熱蒸気を供給し、他の区域
の給水には比較的少量の加熱蒸気を送るようにする。For effective degassing, it is necessary to quickly raise the feed water to the saturation temperature, and it is preferable to supply heated steam in consideration of the temperature distribution. As shown in FIG. 7, in the feed water temperature distribution in the deaerator, the feed water inlet side where the feed water is introduced has a low temperature region. In order to meet this temperature distribution, a sufficient amount of heated steam is supplied to the low temperature region, and a relatively small amount of heated steam is sent to the water supply in other areas.
【0028】具体的な実施例を図8を参照して説明す
る。シェル1内の溶存酸素濃度計13および温度計14
からの信号は、調節器15に取り込まれる。調節器15
は計測信号AD変換部、制御用計算機または汎用計算機
などの演算部および出力信号変換部から構成される。ま
た、調節器15にはシェル1内の圧力計測値または圧力
設定値が取り込まれており、その圧力に対する水の飽和
温度を計算する。ある領域において検出されたシェル1
内の給水温度は、飽和温度との差を演算される。給水温
度が飽和温度よりも所定の許容値以上に低い場合には、
最大の蒸気流量が流れるように調節弁16に開度信号を
送る。A concrete embodiment will be described with reference to FIG. Dissolved oxygen concentration meter 13 and thermometer 14 in the shell 1
The signal from is taken into the regulator 15. Adjuster 15
Is composed of a measurement signal AD converter, an arithmetic unit such as a control computer or a general-purpose computer, and an output signal converter. Moreover, the pressure measurement value or the pressure setting value in the shell 1 is taken into the controller 15, and the saturation temperature of water with respect to the pressure is calculated. Shell 1 detected in an area
The difference between the water temperature and the saturation temperature is calculated. If the water supply temperature is lower than the saturation temperature by more than the specified tolerance,
An opening signal is sent to the control valve 16 so that the maximum steam flow rate flows.
【0029】一方、ある領域における給水温度が許容値
以内で飽和温度と略等しいときは、その領域における蒸
気流量は、溶存酸素濃度の測定値によって操作量が決定
される。調節器15内に図9(a)に示すような溶存酸
素濃度の変化パターンを予め記憶させてあり、検出され
た溶存酸素濃度がどのレベル(図9(a)の(1)〜
(8)にあるかによって、吹き出す蒸気量が図9(b)
の(1)〜(8)または、図9(c)の(1)〜(8)
のように決まる。On the other hand, when the feed water temperature in a certain region is substantially equal to the saturation temperature within the allowable value, the manipulated variable of the steam flow rate in that region is determined by the measured value of the dissolved oxygen concentration. A change pattern of the dissolved oxygen concentration as shown in FIG. 9A is stored in advance in the controller 15, and the detected dissolved oxygen concentration is at any level ((1) to (1) in FIG. 9A).
Depending on whether it is in (8), the amount of steam blown out is shown in FIG. 9 (b).
(1) to (8) or (1) to (8) in FIG. 9C.
It is decided like.
【0030】図9(b)の蒸気流量パターンは、給水入
口2近傍において最大の蒸気流量を供給して速やかに給
水温度を飽和温度にまで上昇させることができるように
したものである。また、図9(c)の蒸気噴射量パター
ンは給水入口2における溶存酸素濃度がある一定値以上
のとき、各調節弁16に均等に蒸気を供給するものであ
る。いずれの場合においても、給水入口2において既に
溶存酸素濃度が一定値以下((6)〜(8)のパター
ン)のときには、蒸気吹き出し部の現象的安定性を保持
する(蒸気の凝縮による流動不安定現象の防止)ため
に、蒸気流量の下限値を維持し、最下流側から順に蒸気
供給を遮断していく。The steam flow rate pattern of FIG. 9 (b) is designed to supply the maximum steam flow rate in the vicinity of the feed water inlet 2 so that the feed water temperature can be quickly raised to the saturation temperature. Further, the steam injection amount pattern of FIG. 9C is for uniformly supplying steam to each control valve 16 when the dissolved oxygen concentration at the water supply inlet 2 is equal to or higher than a certain value. In any case, when the dissolved oxygen concentration at the feed water inlet 2 is already below a certain value ((6) to (8) pattern), the phenomenological stability of the steam blowing portion is maintained (flow failure due to vapor condensation). To prevent a stable phenomenon), keep the lower limit of steam flow rate and shut off the steam supply in order from the most downstream side.
【0031】このように、本発明の脱気装置の加熱蒸気
流量制御方法を用いれば、所定の溶存酸素濃度まで脱気
するに充分な蒸気流量しかないので、加熱蒸気の無駄な
消費を防止することができる。As described above, when the method for controlling the heating steam flow rate of the degassing apparatus of the present invention is used, since the steam flow rate is sufficient to degas to a predetermined dissolved oxygen concentration, wasteful consumption of heating steam is prevented. be able to.
【0032】図10に起動方法の一例を示す。これは脱
気装置の起動時、給水入口側で飽和温度を大きく下まわ
る給水を加熱するために多量のプロセス蒸気を送り、給
水出口側で比較的少量のプロセス蒸気を送る方法であ
る。FIG. 10 shows an example of the starting method. This is a method in which a large amount of process steam is sent at the feed water inlet side to heat the feed water that greatly falls below the saturation temperature when the deaerator is activated, and a relatively small amount of process steam is sent at the feed water outlet side.
【0033】脱気装置が一定時間運転された後は、溶存
酸素濃度および温度が安定した値を示すことから、定格
運転時、起動時よりも少ない量のプロセス蒸気で脱気で
きることが判る。これにより、給水出口側では給水の加
熱に必要なプロセス蒸気を大きく減少させることができ
る。After the deaerator has been operated for a certain period of time, the dissolved oxygen concentration and temperature show stable values, which means that degassing can be performed with a smaller amount of process vapor than during rated operation and during startup. As a result, the process steam required for heating the feed water can be greatly reduced on the feed water outlet side.
【0034】また、他の実施例を図11および図12を
参照して説明する。この2つの実施例は本発明に係る脱
気装置を発電プラントの復水器に適用したものである。Another embodiment will be described with reference to FIGS. 11 and 12. These two embodiments apply the deaerator according to the present invention to a condenser of a power plant.
【0035】図11においてはホットウェル17内の貯
水部4に流れた復水に加熱蒸気を供給して接触させるよ
うにバブリングノズル5が設けられる。蛇行流路11を
形成するバッフルプレート12はバブリングノズル5に
合わせて配置されている。In FIG. 11, a bubbling nozzle 5 is provided so as to supply the heated steam to the condensate that has flowed into the water storage section 4 in the hot well 17 to bring it into contact therewith. The baffle plate 12 forming the meandering flow path 11 is arranged so as to match the bubbling nozzle 5.
【0036】図12においては復水入口18および復水
出口19と同心状に配置される2個の円形バッフルプレ
ート21a、21bにより蛇行流路20が形成される。In FIG. 12, the meandering flow path 20 is formed by two circular baffle plates 21a and 21b arranged concentrically with the condensate inlet 18 and the condensate outlet 19.
【0037】[0037]
【発明の効果】以上説明したように本発明はシェル内の
貯水部に送られた給水が給水出口にかけて決められた経
路に従いノズルの透孔から吹き出す加熱蒸気と接触する
ように蛇行流路を形成しているので、給水の溶存酸素濃
度が流路の各部で順次低下し、短時間で確実に要求濃度
以下に下げることができる。As described above, according to the present invention, the meandering flow path is formed so that the feed water sent to the water storage portion in the shell comes into contact with the heating steam blown out from the through hole of the nozzle according to the route determined to the feed outlet. Therefore, the dissolved oxygen concentration of the feed water gradually decreases at each part of the flow path, and it can be reliably reduced to the required concentration or less in a short time.
【0038】したがって、本発明によれば、脱気性能を
良好に保って無駄にプロセス蒸気を使用せず、またボイ
ラ起動時間を大幅に短縮できるなどの優れた効果を奏す
る。Therefore, according to the present invention, there are excellent effects such that the deaeration performance is kept good, the process steam is not wastefully used, and the boiler start-up time can be greatly shortened.
【図1】本発明による脱気装置の一実施例を示す断面
図。FIG. 1 is a sectional view showing an embodiment of a deaerator according to the present invention.
【図2】給水の溶存酸素濃度分布を示す特性図。FIG. 2 is a characteristic diagram showing a dissolved oxygen concentration distribution of feed water.
【図3】本発明の他の実施例を示す断面図。FIG. 3 is a sectional view showing another embodiment of the present invention.
【図4】本発明の他の実施例を示す断面図。FIG. 4 is a sectional view showing another embodiment of the present invention.
【図5】本発明の他の実施例を示す断面図。FIG. 5 is a sectional view showing another embodiment of the present invention.
【図6】本発明の他の実施例を示す断面図。FIG. 6 is a sectional view showing another embodiment of the present invention.
【図7】給水温度分布を示す特性図。FIG. 7 is a characteristic diagram showing a water supply temperature distribution.
【図8】図6に示される調節器の詳細を示すブロック
図。FIG. 8 is a block diagram showing details of the regulator shown in FIG.
【図9】調節器に組込む蒸気噴射量パターンを示すグラ
フ。FIG. 9 is a graph showing a steam injection amount pattern incorporated in a regulator.
【図10】本発明の起動方法の一例を説明するための
図。FIG. 10 is a diagram for explaining an example of a starting method of the present invention.
【図11】本発明の他の実施例を示す断面図。FIG. 11 is a sectional view showing another embodiment of the present invention.
【図12】本発明の他の実施例を示す断面図。FIG. 12 is a sectional view showing another embodiment of the present invention.
【図13】従来の脱気装置を示す断面図。FIG. 13 is a sectional view showing a conventional deaerator.
1………シェル 3………スプレー 4………貯水部 5………バブリングノズル 11………蛇行流路 12………バッフルプレート 13………酸素濃度計 14………温度計 16………調節弁 17………ホットウェル 1 ………… Shell 3 ………… Sprayer 4 ………… Water storage part 5 ………… Bubbling nozzle 11 ………… Meandering flow path 12 ………… Baffle plate 13 ………… Oxygen concentration meter 14 ………… Thermometer 16… …… Control valve 17 ………… Hot well
───────────────────────────────────────────────────── フロントページの続き (72)発明者 大井 勝也 神奈川県横浜市鶴見区末広町2の4 株式 会社東芝京浜事業所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Katsuya Oi 4-4, 2 Suehiro-cho, Tsurumi-ku, Yokohama-shi, Kanagawa Toshiba Corporation Keihin Office
Claims (4)
する複数のノズルからなる噴出手段を備え、前記ノズル
の各透孔をシェル内の貯水部に臨ませて前記蒸気ヘッダ
から該ノズルに導かれる加熱蒸気を該透孔を通して給水
中に噴出させるようにした脱気装置において、前記貯水
部に送られた給水が給水出口にかけて決められた経路に
従い前記ノズルの透孔から吹き出す加熱蒸気と接触する
ように蛇行流路を形成したことを特徴とする脱気装置。1. A jetting means comprising a plurality of nozzles having a large number of through-holes communicating with a steam header, wherein each through-hole of the nozzle faces a water storage part in a shell so that the steam header is connected to the nozzle. In a deaerator configured to eject the heated steam to be injected into the feed water through the through hole, the feed water sent to the water reservoir comes into contact with the heated steam blown out through the through hole of the nozzle according to a route determined to the water supply outlet. A deaerator characterized in that a meandering flow path is formed as described above.
を用いて形成したことを特徴とする請求項1記載の脱気
装置。2. The deaerator according to claim 1, wherein the meandering flow path is formed by using a plurality of baffle plates.
熱蒸気の気泡と対向し、または平行して流れるように該
ノズルの伸長方向に倣って前記各バッフルプレートをそ
れぞれ配置したことを特徴とする請求項2記載の脱気装
置。3. The baffle plates are arranged along the extending direction of the nozzle so that the water supply flows in parallel with or in parallel to the bubbles of the heating steam blown out from the through hole of the nozzle. The deaerator according to claim 2.
度および温度を検出する酸素濃度計を設け、脱気中、そ
れぞれの領域で検出された給水温度と計算により求めた
シェル器内圧力における飽和温度との差が許容値内にあ
るとき、検出された溶存酸素濃度に従い前記噴出手段か
ら吹き出す加熱蒸気量を調節するようにしたことを特徴
とする請求項1記載の脱気装置。4. An oxygen concentration meter for detecting the dissolved oxygen concentration and temperature of the feed water is provided at each part of the meandering flow path, and during deaeration, the feed water temperature detected in each region and the shell device internal pressure obtained by calculation 2. The deaerator according to claim 1, wherein the amount of heating steam blown out from the jetting means is adjusted according to the detected dissolved oxygen concentration when the difference between the saturated temperature and the saturation temperature is within the allowable value.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17512994A JPH0788470A (en) | 1993-07-29 | 1994-07-27 | Deaerator |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18786793 | 1993-07-29 | ||
JP5-187867 | 1993-07-29 | ||
JP17512994A JPH0788470A (en) | 1993-07-29 | 1994-07-27 | Deaerator |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0788470A true JPH0788470A (en) | 1995-04-04 |
Family
ID=26496485
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17512994A Withdrawn JPH0788470A (en) | 1993-07-29 | 1994-07-27 | Deaerator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0788470A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006104241A1 (en) * | 2005-03-29 | 2006-10-05 | Fujifilm Corporation | Reaction method and apparatus and method and apparatus for manufacturing chemical substance using the same |
EP3153792A1 (en) * | 2015-09-01 | 2017-04-12 | Doosan Heavy Industries & Construction Co., Ltd. | Deaerator |
RU173406U1 (en) * | 2016-12-13 | 2017-08-31 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Казанский государственный энергетический университет" (ФГБОУ ВО "КГЭУ") | INSTALLATION FOR WATER DEAERATION |
RU197485U1 (en) * | 2018-03-07 | 2020-04-30 | Антон Иванович Ковалев | MASS TRANSFER |
-
1994
- 1994-07-27 JP JP17512994A patent/JPH0788470A/en not_active Withdrawn
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006104241A1 (en) * | 2005-03-29 | 2006-10-05 | Fujifilm Corporation | Reaction method and apparatus and method and apparatus for manufacturing chemical substance using the same |
EP3153792A1 (en) * | 2015-09-01 | 2017-04-12 | Doosan Heavy Industries & Construction Co., Ltd. | Deaerator |
US10605533B2 (en) | 2015-09-01 | 2020-03-31 | DOOSAN Heavy Industries Construction Co., LTD | Deaerator |
RU173406U1 (en) * | 2016-12-13 | 2017-08-31 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Казанский государственный энергетический университет" (ФГБОУ ВО "КГЭУ") | INSTALLATION FOR WATER DEAERATION |
RU197485U1 (en) * | 2018-03-07 | 2020-04-30 | Антон Иванович Ковалев | MASS TRANSFER |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5520858A (en) | Liquid vaporizing apparatus | |
US4353213A (en) | Side stream type condensing system and method of operating the same | |
JPH0788470A (en) | Deaerator | |
KR0142819B1 (en) | Deaerator | |
JPH0472156B2 (en) | ||
JPH09280510A (en) | Deaerator | |
US5201366A (en) | Process and equipment for the preheating and multi-stage degassing of water | |
KR20220136627A (en) | Humidifier for evaluating fuel cell stack and humidification system including same | |
JPH07190306A (en) | Deaerator | |
JP2012037175A (en) | Deaerator | |
US2605856A (en) | Deaerating system for water or steam condensate | |
SU1071580A1 (en) | Deaerator | |
JPS6159187A (en) | Deaerating type condenser | |
JPS6119283Y2 (en) | ||
JPH0255715B2 (en) | ||
SU1741844A1 (en) | Mass transfer plate | |
JPH06241409A (en) | Dearator | |
JPH0539985A (en) | Condenser provided with deaerator | |
JPH0688604A (en) | Deaerator | |
SU1058893A1 (en) | Dearation column | |
SU857003A1 (en) | Heat-mass-exchange apparatus | |
JPS5857208B2 (en) | deaerator | |
SU850594A1 (en) | Vacuum thermal deaerator | |
SU1645756A1 (en) | Deaerating heater | |
JPH06182108A (en) | Deaerator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20011002 |