JPH0255097B2 - - Google Patents

Info

Publication number
JPH0255097B2
JPH0255097B2 JP59180114A JP18011484A JPH0255097B2 JP H0255097 B2 JPH0255097 B2 JP H0255097B2 JP 59180114 A JP59180114 A JP 59180114A JP 18011484 A JP18011484 A JP 18011484A JP H0255097 B2 JPH0255097 B2 JP H0255097B2
Authority
JP
Japan
Prior art keywords
partition wall
synthetic resin
annular member
fluid
separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59180114A
Other languages
Japanese (ja)
Other versions
JPS6157207A (en
Inventor
Sadahiko Maeda
Shinjiro Yokota
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP18011484A priority Critical patent/JPS6157207A/en
Publication of JPS6157207A publication Critical patent/JPS6157207A/en
Publication of JPH0255097B2 publication Critical patent/JPH0255097B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は浸透性薄膜状物を用い、原料流体中の
成分の透過率の差異を利用して原料流体から特定
成分を分離する流体の分離装置に関するものであ
る。
Detailed Description of the Invention [Industrial Application Field] The present invention is a fluid separation method that uses a permeable thin film to separate specific components from a raw material fluid by utilizing differences in permeability of components in the raw material fluid. It is related to the device.

[従来の技術] 従来より、浸透性薄膜状物を用い浸透あるいは
限外濾過の原理を利用して流体混合物からの特定
成分の分離、濃縮等の処理を行なう装置が種々提
案されている。
[Prior Art] Various devices have been proposed in the past that use permeable thin film-like materials and utilize the principles of osmosis or ultrafiltration to perform treatments such as separation and concentration of specific components from a fluid mixture.

なお、本発明において浸透性薄膜状物とは、浸
透性の薄膜フイルムで形成した袋又は中空糸をい
う。
In the present invention, the permeable thin film-like material refers to a bag or hollow fiber formed of a permeable thin film.

第2〜4図は従来の流体の分離装置の構成の一
例を示す断面図であつて、この分離装置は筒状の
容器本体12と蓋体20とからなる筒状の分離装
置容器10を有している。容器本体12はその一
端12aが封じられた形状であり、この一端12
aには原料流体の排出口14が設けられ、容器本
体12の他端側には原料流体導入口16が設けら
れている。前記蓋体20はこの容器本体12に冠
着されており、分離流体取出し口18を有してい
る。
2 to 4 are cross-sectional views showing an example of the configuration of a conventional fluid separation device, and this separation device has a cylindrical separation device container 10 consisting of a cylindrical container body 12 and a lid 20. are doing. The container body 12 has a sealed shape at one end 12a;
A is provided with a raw material fluid discharge port 14, and a raw material fluid inlet 16 is provided on the other end side of the container body 12. The lid 20 is attached to the container body 12 and has a separation fluid outlet 18 .

図中、22は筒状容器10内を原料流体通過室
24と分離流体室26とに区画する隔壁であつ
て、浸透性薄膜状物(この例では中空糸)28の
一端側が埋設され固定されている。なお、中空糸
28は分離流体室26と連通するように隔壁22
に固定されており、中空糸28の他端は合成樹脂
板29に埋め込まれて封じられている。
In the figure, 22 is a partition wall that partitions the inside of the cylindrical container 10 into a raw material fluid passage chamber 24 and a separation fluid chamber 26, in which one end side of a permeable thin film-like material (hollow fiber in this example) 28 is embedded and fixed. ing. Note that the hollow fiber 28 is connected to the partition wall 22 so as to communicate with the separation fluid chamber 26.
The other end of the hollow fiber 28 is embedded and sealed in a synthetic resin plate 29.

この第2〜4図の従来装置において、原料流体
A(例えば水素とメタンの混合ガス)は導入口1
6から通過室24に導入され、その中に含まれて
いる特定の成分(本例では水素)は中空糸28の
内部に浸透して行き分離流体室26に入り取出口
18から取り出される。中空糸を透過しない成分
(本例ではメタン)は排出口14から容器外に排
出される。
In the conventional apparatus shown in FIGS. 2 to 4, the raw material fluid A (for example, a mixed gas of hydrogen and methane)
6 into the passage chamber 24, a specific component (hydrogen in this example) contained therein permeates inside the hollow fiber 28, enters the separation fluid chamber 26, and is taken out from the outlet 18. Components that do not pass through the hollow fibers (methane in this example) are discharged from the outlet 14 to the outside of the container.

ところで、このような流体の分離装置において
は、隔壁は浸透性薄膜状物を埋設状態で保持する
ところから、一般に流し込み成型の可能なエポキ
シ樹脂等の合成樹脂製とされている。なお、容器
それ自体は高圧の流体に耐えるために、例えば炭
素鋼などの金属製とされている。
Incidentally, in such a fluid separation device, the partition wall is generally made of synthetic resin such as epoxy resin that can be cast and molded because it holds the permeable thin film-like material in an embedded state. Note that the container itself is made of metal, such as carbon steel, in order to withstand high-pressure fluid.

[発明が解決しようとする問題点] 前記の如く合成樹脂製の隔壁を有する従来の流
体の分離装置によると、流体の分離量及び分離効
率を高めるために原料流体を高圧とした場合、隔
壁が原料流体の高圧により分離流体室側に撓み、
容器本体との間のシール性を損ねたり、隔壁寿命
を短かくするおそれがあつた。このため原料流体
の圧力を下げて運転せざるを得ない場合があり、
分離効率の向上が妨げられたり、あるいは高圧下
の分離が望まれる各種流体の分離には適用できな
いなどの不都合があつた。
[Problems to be Solved by the Invention] As described above, in the conventional fluid separation device having a partition wall made of synthetic resin, when the raw material fluid is made to have a high pressure in order to increase the separation amount and separation efficiency of the fluid, the partition wall Due to the high pressure of the raw material fluid, it is bent toward the separation fluid chamber,
There was a risk that the sealing performance with the container body would be impaired and the life of the partition wall would be shortened. For this reason, it may be necessary to operate with lower pressure of the raw material fluid.
There have been disadvantages such as impeding improvement in separation efficiency or inapplicability to the separation of various fluids that require separation under high pressure.

なお、前記したような隔壁の撓み、変形などを
防止するためには、隔壁自体を大きくして強度を
上げるようにすることが考えられるが、エポキシ
樹脂などの合成樹脂製の隔壁は一般的に、成形性
が悪く、隔壁を大きくすればする程、樹脂に割れ
がより多く発生するなどして、耐圧強度が低下し
てしまうという不都合もあつた。
In order to prevent the above-mentioned bending and deformation of the partition wall, it is possible to increase the strength of the partition wall itself by increasing its size, but partition walls made of synthetic resin such as epoxy resin are generally However, the moldability was poor, and the larger the partition wall, the more cracks would occur in the resin, resulting in a decrease in pressure resistance.

また、合成樹脂製隔壁と金属製容器との熱膨張
差により両者の間の封隔性が低下するおそれがあ
る。
Furthermore, the difference in thermal expansion between the synthetic resin partition wall and the metal container may reduce the sealing performance between the two.

さらに、単に合成樹脂製隔壁を金属製環状部材
で取り巻いたのでは、同様に熱膨張差により両者
の間の封隔性が低下するおそれがある。
Furthermore, if the synthetic resin partition wall is simply surrounded by a metal annular member, there is a risk that the sealing performance between the two may be similarly reduced due to the difference in thermal expansion.

[問題点を解決するための手段] 本発明の流体の分離装置は金属製の筒状の分離
装置容器内が、筒の軸方向と交差して設けられた
合成樹脂製の隔壁によつて原料流体通過室と分離
流体室とに隔離されており、該隔壁には浸透性薄
膜状物がその中空部が分離流体室に連通するよう
に埋設固定されてなる流体の分離装置において、
前記合成樹脂製の隔壁を、分離流体室側から通気
性を有する押え部材によつて押圧支持してなり、
該押え部材は、浸透性薄膜状物の延長軸線方向に
沿う多数の孔が穿設された押え部材本体と、該押
え部材本体と隔壁との間に介在する多孔質層とか
らなり、該合成樹脂製隔壁を金属製環状部材によ
つて取巻き、該金属製環状部材の内周面及び隔壁
の外周面にそれぞれ分離流体室に向つて小径とな
る段部又はテーパ面を形成し、該段部又はテーパ
面を係合させて、合成樹脂製隔壁を金属製環状部
材に係止し、該金属製環状部材を容器に係止した
ことを特徴とする。
[Means for Solving the Problems] In the fluid separation device of the present invention, the interior of the metal cylindrical separator container is separated from raw materials by a synthetic resin partition wall provided intersecting the axial direction of the cylinder. A fluid separation device that is separated into a fluid passage chamber and a separation fluid chamber, and in which a permeable thin film-like material is embedded and fixed in the partition wall so that its hollow part communicates with the separation fluid chamber,
The synthetic resin partition wall is pressed and supported from the separation fluid chamber side by a presser member having air permeability,
The holding member consists of a holding member main body in which a large number of holes are formed along the extension axis of a permeable thin film, and a porous layer interposed between the holding member main body and a partition wall. A resin partition wall is surrounded by a metal annular member, and a stepped portion or a tapered surface that becomes smaller in diameter toward the separation fluid chamber is formed on the inner circumferential surface of the metal annular member and the outer circumferential surface of the partition wall, respectively, and the stepped portion Alternatively, the synthetic resin partition wall is engaged with the metal annular member by engaging the tapered surfaces, and the metal annular member is engaged with the container.

また、本発明の流体の分離装置はさらに、前記
段部同志又はテーパ面同志を接着剤により接着し
たものである。
Furthermore, in the fluid separation device of the present invention, the stepped portions or tapered surfaces are bonded together using an adhesive.

[作用] 本発明によれば、隔壁が流体加圧面の反対側か
ら押え部材によつてバツクアツプされるので、そ
の隔壁が加圧方向と反対側から補強され、合成樹
脂製であつても高圧流体による変形が確実に防止
される。しかも押え部材は通気性を有するもので
あるから分離流体が隔壁を介して分離流体室側へ
流通する作用が何ら阻害されない。
[Function] According to the present invention, since the partition wall is backed up by the pressing member from the side opposite to the fluid pressurizing surface, the partition wall is reinforced from the side opposite to the pressurizing direction, and even if it is made of synthetic resin, high pressure fluid Deformation caused by this is reliably prevented. Moreover, since the holding member has air permeability, the flow of the separation fluid to the separation fluid chamber side through the partition wall is not inhibited in any way.

本発明では、この押え部材を多数の孔が穿設さ
れた本体と、該本体と隔壁との間に介在する多孔
質層とから構成したので、合成樹脂製隔壁の端面
に露出する極めて多数の微細な中空糸(浸透性薄
膜状物)の開口端がすべて確実に該本体の孔と連
通する。即ち、押え部材本体の孔と中空糸の開口
端面とが不一致であつても、多孔質層内の気孔部
を介して両者が確実に連通する。この結果、中空
糸の内部に分離抽出された流体が分離流体室内へ
極めて円滑に流入する。
In the present invention, this holding member is composed of a main body having a large number of holes and a porous layer interposed between the main body and the partition wall, so that a very large number of holes are exposed at the end face of the synthetic resin partition wall. All the open ends of the fine hollow fibers (permeable thin film-like material) are ensured to communicate with the pores of the main body. That is, even if the holes in the holding member main body and the open end surfaces of the hollow fibers do not match, the two are reliably communicated through the pores in the porous layer. As a result, the fluid separated and extracted inside the hollow fiber flows extremely smoothly into the separated fluid chamber.

本発明では合成樹脂製隔壁を金属製環状部材に
よつて取巻き、該金属製環状部材を容器に係止し
たので、この金属製環状部材と金属製容器との熱
膨張差が無いか又は極めて小さく、従つて分離流
体室と原料流体室とが常時確実に隔絶される。
In the present invention, the synthetic resin partition wall is surrounded by a metal annular member, and the metal annular member is fixed to the container, so there is no or very small difference in thermal expansion between the metal annular member and the metal container. Therefore, the separation fluid chamber and the raw material fluid chamber are always reliably isolated.

本発明では、該金属製環状部材の内周面及び合
成樹脂製隔壁の外周面にそれぞれ分離流体室に向
つて小径となる段部又はテーパ面を形成し、該段
部又はテーパ面を係合させて、合成樹脂製隔壁を
金属製環状部材に係止したから、合成樹脂製隔壁
が金属製環状部材に強固に係止される。そして、
合成樹脂製隔壁と金属製環状部材との間に熱膨張
差があつても、分離流体室と原料流体室とは確実
に封隔される。
In the present invention, a stepped portion or a tapered surface that becomes smaller in diameter toward the separation fluid chamber is formed on the inner circumferential surface of the metal annular member and the outer circumferential surface of the synthetic resin partition, respectively, and the stepped portion or tapered surface is engaged. Since the synthetic resin partition wall is then locked to the metal annular member, the synthetic resin partition wall is firmly locked to the metal annular member. and,
Even if there is a difference in thermal expansion between the synthetic resin partition wall and the metal annular member, the separation fluid chamber and the raw material fluid chamber are reliably sealed.

さらに、本発明では、この段部同志又はテーパ
面同志を接着剤により接着することができる。こ
のようにすると、段部同志又はテーパ面同志の接
触面が密にシールされる。
Furthermore, in the present invention, the stepped portions or tapered surfaces can be bonded together using an adhesive. In this way, the contact surfaces between the step portions or the tapered surfaces are tightly sealed.

[実施例] 以下に図面に示す実施例を参照しながら本発明
を更に詳細に説明する。
[Examples] The present invention will be described in further detail below with reference to examples shown in the drawings.

第1図は本発明の一実施例に係る流体の分離装
置の隔壁と容器内壁面との係合部を示す拡大断面
図である。
FIG. 1 is an enlarged sectional view showing an engaging portion between a partition wall and an inner wall surface of a container in a fluid separation device according to an embodiment of the present invention.

第1図において、12,20はそれぞれ前述の
通り容器本体、蓋体であり、22は隔壁である。
そして、容器本体12、蓋体20は、共に、例え
ば炭素鋼からなる金属製である。隔壁22は、例
えば、直径が200〜500μmのようにポリイミド樹
脂からなる多数の中空糸28が埋設固定された、
例えばエポキシ樹脂から構成されている。この隔
壁22は、例えば炭素鋼からなる。金属製の環状
部材22bによつて取巻かれている。なお、中空
糸28は前述のように分離流体室26に連通する
よう、隔壁22の上端面にまで達するように埋設
されている。
In FIG. 1, 12 and 20 are the container body and the lid, respectively, as described above, and 22 is a partition wall.
Both the container body 12 and the lid 20 are made of metal, such as carbon steel. The partition wall 22 has, for example, a large number of hollow fibers 28 made of polyimide resin embedded and fixed therein, each having a diameter of 200 to 500 μm.
For example, it is made of epoxy resin. This partition wall 22 is made of carbon steel, for example. It is surrounded by a metal annular member 22b. Note that the hollow fibers 28 are buried so as to reach the upper end surface of the partition wall 22 so as to communicate with the separation fluid chamber 26 as described above.

しかして、この合成樹脂製の隔壁22の上側の
端縁部は断面L字形に切り欠かれて段部30が形
成されており、一方、金属製の環状部材22bの
内周面の中間部にはこの段部30に係合する形状
の突部32が突設されており、隔壁22と環状部
材22bとは段部30と突部32とが係止するよ
うに嵌め合され、かつ第5図に拡大して示すよう
に、接着剤31によつてその係止部分が装着され
ている。接着剤としては、例えば、エポキシ系接
着剤が用いられる。このように段部同志を係合さ
せたから、隔壁22の係止強度が高く、また、接
着剤31にて接着したから隔壁22と環状部材2
2dとの接触面が密にシールされる。
The upper end edge of this synthetic resin partition wall 22 is cut out to have an L-shaped cross section to form a step 30, while the middle part of the inner circumferential surface of the metal annular member 22b is cut out. A protrusion 32 having a shape that engages with this step 30 is provided protrudingly, and the partition wall 22 and the annular member 22b are fitted together so that the step 30 and the protrusion 32 are engaged with each other. As shown enlarged in the figure, the locking portion is attached with adhesive 31. As the adhesive, for example, an epoxy adhesive is used. Since the stepped portions are engaged with each other in this way, the locking strength of the partition wall 22 is high, and since the partition wall 22 and the annular member 2 are bonded together with the adhesive 31, the partition wall 22 and the annular member 2
The contact surface with 2d is tightly sealed.

上記環状部材22bは突部32の上側部内周面
を大径とされて、隔壁22よりも上方に突出す
る、大なる内径の筒部22aを有している。この
筒部22a内に通気性を有する押え部材34が嵌
合され、隔壁22を分離流体室26の側から押圧
支持するようにしている。即ち、押え部材34は
中空糸28の延長軸線方向に沿う多数の孔36が
穿設された金属製の押え部材本体34aと、この
押え部材本体34aと隔壁22との間に介在する
多孔質のステンレスなどの焼結金属又はセラミツ
クス等からなる多孔質層34bとによつて構成さ
れている。そして、環状部材22bの下面と隔壁
22の下面とが面一に合致した状態で容器本体1
2に形成した段部12aに共に載置され、また、
環状部材22bの上面と押え部材本体34aの上
面とが面一に合致した状態で蓋体20の内面に共
に当接され、その蓋体20が容器本体12にボル
ト等の締付具38で締付けられている。これによ
り、隔壁22は押え部材34により通気可能な状
態で分離流体室26側からバツクアツプされてい
る。
The annular member 22b has a large inner peripheral surface on the upper side of the protrusion 32, and has a cylindrical portion 22a with a large inner diameter that protrudes above the partition wall 22. A presser member 34 having air permeability is fitted into the cylindrical portion 22a to press and support the partition wall 22 from the separation fluid chamber 26 side. That is, the holding member 34 includes a holding member main body 34a made of metal in which a large number of holes 36 are bored along the direction of the extension axis of the hollow fibers 28, and a porous metal holding member main body 34a interposed between the holding member main body 34a and the partition wall 22. The porous layer 34b is made of sintered metal such as stainless steel, ceramics, or the like. Then, the container body 1 is placed in a state where the lower surface of the annular member 22b and the lower surface of the partition wall 22 are flush with each other.
2 are placed together on the stepped portion 12a formed in 2, and
The upper surface of the annular member 22b and the upper surface of the holding member main body 34a are brought into contact with the inner surface of the lid body 20 in a state where they are flush with each other, and the lid body 20 is tightened to the container body 12 with a fastener 38 such as a bolt. It is being As a result, the partition wall 22 is backed up from the separation fluid chamber 26 side by the holding member 34 in a ventilable state.

なお、第1図中、押え部材本体34aの孔36
は明確化のため拡大して示しているが、実際は第
6図に示すように格子配置で多数穿設されてい
る。
In addition, in FIG. 1, the hole 36 of the presser member main body 34a
Although shown enlarged for clarity, in reality, a large number of holes are drilled in a lattice arrangement as shown in FIG.

また、環状部材22bの上下面と蓋体20及び
容器本体段部12aとの接合部には夫々Oリング
などのシールリング40が設けられ、それらの接
合部の気密性が保持されている。
Furthermore, seal rings 40 such as O-rings are provided at the joints between the upper and lower surfaces of the annular member 22b, the lid 20, and the container body stepped portion 12a, respectively, to maintain the airtightness of these joints.

このように、形成された流体の分離装置におい
ては、合成樹脂製の隔壁22が押え部材34によ
つて分離流体室26の側から押圧支持されている
ので、流体通過室24に供給される流体が高圧で
あつても上方への撓みが確実に防止される。そし
て、押え部材34は多数の孔36が穿設された押
え部材本体34aと多孔質層34bとから構成さ
れているので、第7図に矢印で示すように、中空
糸28で分離抽出された流体は分離流体室26側
へ円滑に流通する。即ち、押え部材本体34aの
孔36と中空糸28の上端開口部分とが不一致で
あつても、多孔質層34b内のポーラス部を介し
て両者が確実に連通し、流体が円滑に流通するも
のである。
In the fluid separation device formed in this manner, the synthetic resin partition wall 22 is pressed and supported from the separation fluid chamber 26 side by the presser member 34, so that the fluid supplied to the fluid passage chamber 24 is Even if the pressure is high, upward deflection is reliably prevented. Since the holding member 34 is composed of a holding member main body 34a having a large number of holes 36 and a porous layer 34b, as shown by the arrow in FIG. The fluid flows smoothly to the separation fluid chamber 26 side. That is, even if the holes 36 of the holding member main body 34a and the upper end openings of the hollow fibers 28 do not match, the two are reliably communicated through the porous portions in the porous layer 34b, allowing fluid to flow smoothly. It is.

なお、隔壁22の外周部は金属製の環状部材2
2bで取巻かれているので温度の昇降があつて
も、その環状部材22bと容器本体12との熱膨
張差が無いか又は極めて小さく、したがつて隔壁
22と容器本体12内周面とのシールが環状部材
22bによつて完全なものとなる。
Note that the outer peripheral part of the partition wall 22 is a metal annular member 2.
2b, even if the temperature rises or falls, there is no or very small difference in thermal expansion between the annular member 22b and the container body 12, and therefore the difference between the partition wall 22 and the inner peripheral surface of the container body 12 is The seal is completed by annular member 22b.

第8図は本発明の異なる実施例に係る流体の分
離装置の上部の断面図、第9図はその平面図であ
る。
FIG. 8 is a sectional view of the upper part of a fluid separation device according to a different embodiment of the present invention, and FIG. 9 is a plan view thereof.

この実施例においても、中空糸28が埋設固定
された合成樹脂製の隔壁22は金属製の環状部材
22dで取巻かれており、隔壁22と環状部材2
2dとは接着剤により接着されている。そして、
隔壁22は前記実施例と同様に押え部材34によ
つてバツクアツプされている。また、金属製環状
部材22dと蓋体20及び容器本体12との間に
シール部材54,55が配設され、蓋体と容器内
壁面(この場合は蓋体20内壁面)との間のシー
ルを行なつており、前記実施例と同様の作用効果
を有する。
In this embodiment as well, the synthetic resin partition wall 22 in which the hollow fibers 28 are embedded and fixed is surrounded by a metal annular member 22d, and the partition wall 22 and the annular member 22d are surrounded by a metal annular member 22d.
It is bonded to 2d with an adhesive. and,
The partition wall 22 is backed up by a presser member 34 as in the previous embodiment. Further, seal members 54 and 55 are disposed between the metal annular member 22d, the lid 20, and the container body 12, and provide a seal between the lid and the inner wall surface of the container (in this case, the inner wall surface of the lid 20). This embodiment has the same effect as the embodiment described above.

なお、この第8図の実施例においても第1図の
実施例と同様に隔壁22の外周面及び環状部材2
2dの内周面にはそれぞれ、段部及びそれと係合
する突部が形成されている。また、この実施例で
は蓋体20は、半割り形のフレーム部材56,5
8によつて容器本体12に結合されている。即
ち、蓋体20の外周面は傾斜面20aとなつてお
り、容器本体12の上端部には傾斜面60aを有
するフランジ部60が設けられている。そして、
フレーム部材56,58の内周面側にはこれらの
傾斜面20a,60aと係合する傾斜面56a,
58aが形成されている。
In the embodiment shown in FIG. 8, the outer circumferential surface of the partition wall 22 and the annular member 2 are similar to the embodiment shown in FIG.
A stepped portion and a protrusion that engages with the stepped portion are formed on the inner circumferential surface of each of the portions 2d. Further, in this embodiment, the lid body 20 includes half-split frame members 56, 5.
8 to the container body 12. That is, the outer peripheral surface of the lid 20 is an inclined surface 20a, and the upper end of the container body 12 is provided with a flange portion 60 having an inclined surface 60a. and,
The frame members 56, 58 have an inclined surface 56a, which engages with the inclined surfaces 20a, 60a, on the inner peripheral surface side thereof.
58a is formed.

そのため、第9図に示すように半割り形のフレ
ーム部材56,58を連結するボルト62,64
を締め込むことによりフレーム部材56,58が
接近方向に付勢され、この接近方向への力が斜面
20a,60aによつて蓋体20とフランジ部6
0との合せ面と垂直方向の力に分力され蓋体20
をフランジ部60に押し付ける。図中66は蓋体
20とフランジ部60との合せ面に配設されたシ
ール部材である。
Therefore, as shown in FIG. 9, bolts 62 and 64 connecting the half-split frame members 56 and 58 are
By tightening the frame members 56 and 58, the frame members 56 and 58 are urged in the approaching direction, and this force in the approaching direction is applied to the lid body 20 and the flange portion 6 by the slopes 20a and 60a.
The force in the direction perpendicular to the mating surface with 0 is applied to the lid body 20.
is pressed against the flange portion 60. In the figure, 66 is a sealing member disposed on the mating surface of the lid body 20 and the flange portion 60.

この第8図の実施例においては、第9図のよう
な半割り状のフレーム部材56,58のかわり
に、第10図に示すように傾斜面20a,60a
と係合するクランプ67a〜dを蓋体20及びフ
ランジ部60の周部に噛み込ませ、このクランプ
67a〜d同志をコネクテイングロツド68a,
68bで連結し半径方向に付勢することによつ
て、蓋体20をフランジ部60に押き付けるよう
にしても良い。
In the embodiment shown in FIG. 8, instead of the half-split frame members 56 and 58 as shown in FIG. 9, inclined surfaces 20a and 60a are used as shown in FIG.
Clamps 67a to 67d that engage with the connecting rods 68a and 67d are engaged with the circumferential portions of the lid body 20 and the flange portion 60, and the clamps 67a to d are connected to the connecting rods 68a and 68a.
The lid body 20 may be pressed against the flange portion 60 by connecting at 68b and applying force in the radial direction.

また、この第8図の実施例においては、第11
図に示すように、ボルト69a,69bによつて
蓋体20を容器本体12のフランジ部60に取り
付けるようにしても良い。
In addition, in the embodiment shown in FIG.
As shown in the figure, the lid 20 may be attached to the flange portion 60 of the container body 12 with bolts 69a and 69b.

第12図は本発明の更に異なる実施例に係る流
体の分離装置の隔壁の断面図である。この隔壁に
おいては合成樹脂製の隔壁22と金属製の環状部
材22hとの接着面はテーパ面とされており、接
着剤による隔壁と環状部材との接着効果の他に、
流体通過室から受ける流体の圧力によつて隔壁2
2の外周面が金属製環状部材22hの内周面に押
し付けられる効果により隔壁22と環状部材22
hとの接合強度が高められるようになつている。
この第12図の隔壁においても隔壁22が押え部
材34によつてバツクアツプされ、流体圧による
変形防止が図られている。また、金属製環状部材
22hと容器本体12あるいは蓋体との間にシー
ル用パツキンが配設され、環状部材22hと容器
本体12あるいは蓋体20との間のシールが行な
われる。
FIG. 12 is a sectional view of a partition wall of a fluid separation device according to still another embodiment of the present invention. In this partition wall, the adhesive surface between the synthetic resin partition wall 22 and the metal annular member 22h is a tapered surface, and in addition to the adhesive effect between the partition wall and the annular member due to the adhesive,
Due to the pressure of the fluid received from the fluid passage chamber, the partition wall 2
Due to the effect that the outer peripheral surface of the metal annular member 22h is pressed against the inner peripheral surface of the metal annular member 22h, the partition wall 22 and the annular member
The strength of the bond with h is increased.
In the partition wall shown in FIG. 12, the partition wall 22 is also backed up by a pressing member 34 to prevent deformation due to fluid pressure. Further, a sealing gasket is disposed between the metal annular member 22h and the container body 12 or the lid, and sealing between the annular member 22h and the container body 12 or the lid 20 is performed.

このように各実施例装置において、隔壁と容器
内壁面とのシールは金属製環状部材22b,22
d,22f,22hと金属製の容器内壁面(容器
本体12の内壁面又は蓋体20の内面)との間で
行なわれており、両者が共に金属製であるところ
から温度の昇降があつて熱膨張差が無いか又は極
めて小さく従つて常時良好なシールが行なわれ
る。
In this manner, in each of the embodiments, the seal between the partition wall and the inner wall surface of the container is achieved by using the metal annular members 22b, 22.
d, 22f, 22h and the inner wall surface of the metal container (the inner wall surface of the container body 12 or the inner surface of the lid 20), and since both are made of metal, the temperature rises and falls. There is no or very small difference in thermal expansion, so a good seal is always achieved.

[発明の効果] 以上の通り、本発明の流体の分離装置は、合成
樹脂製の隔壁を流体圧の作用面の反対側である分
離流体室の側から通気性を有する押え部材によつ
て押圧支持し、隔壁の流体圧による変形を防止で
きるようにしたので、分離流体を高圧供給するこ
とによる分離効率の向上が図れるとともに、分離
に高加圧を要する各種流体の適用も可能となり用
途の拡大が図れる。また、隔壁の機械的強度に対
する信頼性が向上するとともに、耐用寿命も長期
化する等の効果も奏される。
[Effects of the Invention] As described above, the fluid separation device of the present invention presses the synthetic resin partition wall from the separation fluid chamber side, which is the side opposite to the fluid pressure acting surface, with the presser member having air permeability. By supporting the partition wall and preventing it from deforming due to fluid pressure, it is possible to improve separation efficiency by supplying separation fluid at high pressure, and it is also possible to use various fluids that require high pressure for separation, expanding the range of applications. can be achieved. Further, the reliability of the mechanical strength of the partition wall is improved, and the useful life is also extended.

なお、合成樹脂製の隔壁には強度をもたせる必
要がないため、隔壁自体は小型のものでよいの
で、隔壁を構成する樹脂の成形性が良く、割れ等
が発生せず、良好で信頼性の高い隔壁とすること
ができる。
In addition, there is no need for synthetic resin partition walls to have strength, so the partition walls themselves can be small, so the resin that makes up the partition walls has good moldability, does not cause cracks, and is good and reliable. It can be a high bulkhead.

本発明では、押え部材の多孔質層が合成樹脂製
隔壁に当接しており、中空糸等の浸透性薄膜状物
の内部が確実に分離流体室に連通する。この結
果、分離効率が高まる。
In the present invention, the porous layer of the holding member is in contact with the synthetic resin partition wall, and the inside of the permeable thin film-like material such as the hollow fiber is reliably communicated with the separation fluid chamber. As a result, separation efficiency increases.

本発明では合成樹脂製隔壁を金属製環状部材で
取巻き金属製環状部材を容器に係止しており、合
成樹脂製隔壁と金属製容器との熱膨張差があつて
も分離流体室と原料流体室との封隔性が良い。
In the present invention, the synthetic resin partition wall is surrounded by a metal annular member and the metal annular member is fixed to the container, so that even if there is a difference in thermal expansion between the synthetic resin partition wall and the metal container, the separating fluid chamber and the raw material fluid Good sealing with the room.

本発明では、合成樹脂製隔壁と金属製環状部材
との間に、分離流体室側に向つて小径となる段部
又はテーパ面を設けてあるので、合成樹脂製隔壁
と金属製環状部材とに熱膨張差があつても、原料
流体室と分離流体室とは確実に封隔される。
In the present invention, a stepped portion or a tapered surface that becomes smaller in diameter toward the separation fluid chamber is provided between the synthetic resin partition wall and the metal annular member. Even if there is a difference in thermal expansion, the raw material fluid chamber and the separation fluid chamber are reliably sealed.

本発明では、この段部又はテーパ面に接着剤を
介在させることにより、上記の封隔がより確実な
ものとなる。
In the present invention, the above-mentioned sealing can be made more reliable by interposing an adhesive on this stepped portion or tapered surface.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本考案の実施例に係る流体の分離装置
の要部断面図、第2図は従来の流体の分離装置の
断面図、第3図は第2図の部拡大図、第4図は
第2図の部拡大斜視図、第5図は第1図に示す
隔壁の係止部分の拡大断面図、第6図は押え部材
本体の平面図、第7図は第1図の作用説明図、第
8図は本発明の異なる実施例に係る流体の分離装
置の要部断面図、第9図は第8図に示す実施例装
置の平面図、第10図は第9図に相当する他の実
施例を示す平面図である。また第11図と第12
図はそれぞれ本発明のさらに異なる実施例装置を
示す要部断面図である。 12……容器本体、20……蓋体、22……隔
壁、24……流体通過室、26……分離流体室、
28……中空糸、22b,22d,22f,22
h……環状部材、34……押え部材、34a……
押え部材本体、34b……多孔質層。
Fig. 1 is a sectional view of a main part of a fluid separation device according to an embodiment of the present invention, Fig. 2 is a sectional view of a conventional fluid separation device, Fig. 3 is an enlarged view of a part of Fig. 2, and Fig. 4 2 is an enlarged perspective view of the portion shown in FIG. 2, FIG. 5 is an enlarged sectional view of the locking portion of the partition wall shown in FIG. 1, FIG. 6 is a plan view of the holding member body, and FIG. 7 is an explanation of the function of FIG. 8 is a sectional view of a main part of a fluid separation device according to a different embodiment of the present invention, FIG. 9 is a plan view of the embodiment device shown in FIG. 8, and FIG. 10 corresponds to FIG. 9. FIG. 7 is a plan view showing another embodiment. Also, Figures 11 and 12
Each figure is a sectional view of a main part showing further different embodiments of the present invention. 12... Container body, 20... Lid, 22... Partition wall, 24... Fluid passage chamber, 26... Separation fluid chamber,
28...Hollow fiber, 22b, 22d, 22f, 22
h... Annular member, 34... Pressing member, 34a...
Holding member main body, 34b... porous layer.

Claims (1)

【特許請求の範囲】 1 金属製の筒状の分離装置容器内が、筒の軸方
向と交差して設けられた合成樹脂製の隔壁によつ
て原料流体通過室と分離流体室とに隔離されてお
り、該隔壁には浸透性薄膜状物がその中空部が分
離流体室に連通するように埋設固定されてなる流
体の分離装置において、 前記合成樹脂製の隔壁を、分離流体室側から通
気性を有する押え部材によつて押圧支持してな
り、 該押え部材は、浸透性薄膜状物の延長軸線方向
に沿う多数の孔が穿設された押え部材本体と、該
押え部材本体と隔壁との間に介在する多孔質層と
からなり、 該合成樹脂製隔壁を金属製環状部材によつて取
巻き、 該金属製環状部材の内周面及び合成樹脂製隔壁
の外周面にそれぞれ分離流体室に向つて小径とな
る段部又はテーパ面を形成し、該段部又はテーパ
面を係合させて、合成樹脂製隔壁を金属製環状部
材に係止し、 該金属製環状部材を容器に係止したことを特徴
とする流体の分離装置。 2 金属製の筒状の分離装置容器内が、筒の軸方
向と交差して設けられた合成樹脂製の隔壁によつ
て原料流体通過室と分離流体室とに隔離されてお
り、該隔壁には浸透性薄膜状物がその中空部が分
離流体室に連通するように埋設固定されてなる流
体の分離装置において、 前記合成樹脂製の隔壁を、分離流体室側から通
気性を有する押え部材によつて押圧支持してな
り、 該押え部材は、浸透性薄膜状物の延長軸線方向
に沿う多数の孔が穿設された押え部材本体と、該
押え部材本体と隔壁との間に介在する多孔質層と
からなり、 該合成樹脂製隔壁を金属製環状部材によつて取
巻き、 該金属製環状部材の内周面及び合成樹脂製隔壁
の外周面にそれぞれ分離流体室に向つて小径とな
る段部又はテーパ面を形成し、該段部又はテーパ
面を係合させて、合成樹脂製隔壁を金属製環状部
材に係止し、 該金属製環状部材を容器に係止し、 前記段部同志又はテーパ面同志を接着剤により
接着したことを特徴とする流体の分離装置。
[Claims] 1. The interior of a metal cylindrical separation device container is separated into a raw material fluid passage chamber and a separation fluid chamber by a synthetic resin partition wall provided intersecting the axial direction of the cylinder. In a fluid separation device in which a permeable thin film-like material is embedded and fixed in the partition wall so that its hollow part communicates with the separation fluid chamber, the synthetic resin partition wall is ventilated from the separation fluid chamber side. The holding member has a holding member body having a plurality of holes along the extension axis of the permeable thin film, and the holding member body and the partition wall. The synthetic resin partition wall is surrounded by a metal annular member, and separation fluid chambers are provided on the inner circumferential surface of the metal annular member and the outer circumferential surface of the synthetic resin partition wall, respectively. Forming a step or tapered surface that becomes smaller in diameter toward the other end, engaging the step or tapered surface to lock the synthetic resin partition wall to the metal annular member, and locking the metal annular member to the container. A fluid separation device characterized by: 2 The interior of the metal cylindrical separator container is separated into a raw material fluid passage chamber and a separation fluid chamber by a synthetic resin partition wall provided intersecting the axial direction of the cylinder, and the partition wall In a fluid separation device in which a permeable thin film-like material is embedded and fixed so that its hollow part communicates with a separation fluid chamber, the synthetic resin partition wall is attached to a presser member having air permeability from the separation fluid chamber side. Therefore, the presser member is supported under pressure, and the presser member includes a presser member main body in which a large number of holes are formed along the extension axis of the permeable thin film, and a porous hole interposed between the presser member main body and the partition wall. The synthetic resin partition wall is surrounded by a metal annular member, and steps are provided on the inner circumferential surface of the metal annular member and on the outer circumferential surface of the synthetic resin partition wall, each of which becomes smaller in diameter toward the separation fluid chamber. forming a section or a tapered surface, engaging the step section or tapered surface to lock the synthetic resin partition wall to the metal annular member, and locking the metal annular member to the container; Alternatively, a fluid separation device characterized in that tapered surfaces are bonded together with an adhesive.
JP18011484A 1984-08-29 1984-08-29 Fluid separation apparatus Granted JPS6157207A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18011484A JPS6157207A (en) 1984-08-29 1984-08-29 Fluid separation apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18011484A JPS6157207A (en) 1984-08-29 1984-08-29 Fluid separation apparatus

Publications (2)

Publication Number Publication Date
JPS6157207A JPS6157207A (en) 1986-03-24
JPH0255097B2 true JPH0255097B2 (en) 1990-11-26

Family

ID=16077661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18011484A Granted JPS6157207A (en) 1984-08-29 1984-08-29 Fluid separation apparatus

Country Status (1)

Country Link
JP (1) JPS6157207A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE523122C2 (en) * 1999-03-05 2004-03-30 Gambro Dialysatoren Filters with hollow fiber membrane
WO2008081877A1 (en) * 2006-12-29 2008-07-10 Ube Industries, Ltd. Shell feed type gas separation membrane module
JP5701473B2 (en) * 2006-12-29 2015-04-15 宇部興産株式会社 Shell feed type gas separation membrane module
JP6051687B2 (en) * 2012-08-29 2016-12-27 宇部興産株式会社 Gas separation membrane module
CN114026720A (en) * 2019-06-25 2022-02-08 可隆工业株式会社 Humidifier for fuel cell and method of manufacturing the same
DE102021207424A1 (en) * 2021-07-13 2023-01-19 Mahle International Gmbh humidifier

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50160176A (en) * 1974-06-06 1975-12-25

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50160176A (en) * 1974-06-06 1975-12-25

Also Published As

Publication number Publication date
JPS6157207A (en) 1986-03-24

Similar Documents

Publication Publication Date Title
US5536405A (en) Stacked membrane disk assemblies for fluid separations
US7264725B2 (en) Hollow fiber membrane contactor and method of making same
US4576715A (en) Membrane pack and method of making
JPS6463613A (en) Seal-assembly
JPH0255097B2 (en)
US4371438A (en) Fluid treatment apparatus, a casing for enclosing and compressing a stack of flat elements therein, and a process for making such an apparatus
JPH0441931Y2 (en)
US3767502A (en) Process for producing a supported semipermeable membrane which does not require end sealing
US5108599A (en) Low pressure liquid filter cartridge and method of making
US5373620A (en) Method of forming PTFE membrane/gasket assembly
JPS6260923B2 (en)
US4427200A (en) Seal structure of end part of liquid separation tube
JPH0242529B2 (en)
JP3105660B2 (en) Solid polymer electrolyte fuel cell stack
JPH01288303A (en) Fluid separation element
JPH09117642A (en) Hollow fiber membrane module
JPS63224714A (en) Gas separator
KR800000567Y1 (en) Separation device for fluid
JPS6135883B2 (en)
JP2603508Y2 (en) Hollow fiber membrane cartridge filter
US11691108B1 (en) Gas separation membrane module with hollow fiber carbon molecular sieve membranes
KR820002372Y1 (en) Device for separation of fluid
JPS62132518A (en) Porous filter having sealed end part
JPS6174624A (en) Fluid separator
JPS6335282B2 (en)