JPH0254975A - Peltier element - Google Patents

Peltier element

Info

Publication number
JPH0254975A
JPH0254975A JP63204793A JP20479388A JPH0254975A JP H0254975 A JPH0254975 A JP H0254975A JP 63204793 A JP63204793 A JP 63204793A JP 20479388 A JP20479388 A JP 20479388A JP H0254975 A JPH0254975 A JP H0254975A
Authority
JP
Japan
Prior art keywords
heat
peltier element
spherical
cooling
heat dissipation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63204793A
Other languages
Japanese (ja)
Inventor
Hiroshi Nakada
宏 中田
Kazutoshi Nishimura
一敏 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP63204793A priority Critical patent/JPH0254975A/en
Publication of JPH0254975A publication Critical patent/JPH0254975A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable a relative position error with a heat-radiation fin, especially a large slope, to be absorbed by forming the junction surface with an electrical heating element or a cooling element in spherical or cylindrical surface. CONSTITUTION:A cooling surface 3 of a Peltier element 2 joined to an electrical heating element 1 consisting of for example a semiconductor laser is formed in projecting spherical surface shape and the cooling surface 3 is joined to a flexible structure heat transfer body 5 fixed to the rear surface of a cooling fin 4 and a junction surface 7 in vecessel spherical surface shape formed by an improved heat-conduction type flexible film 6. By making the cooling surface 3 and the junction surface 7 to be in spherical surface in this manner, a large degree of three-dimensional freedom is given to the posture of the cooling fin 4 and a relative slant of the junction surface is greatly allowed.

Description

【発明の詳細な説明】 〈産業上の利用公費〉 本発明は、電子部品の冷却などに用いられるペルチェ素
子に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Utilization Public Expenses> The present invention relates to a Peltier element used for cooling electronic components.

〈従来の技術〉 近年、光ヘツド用半導体レーザのマルチビー五化、高出
力化が検討されている。しかしこの場合、半導体レーザ
の発熱量が大きくなることによる波長変動や寿命低下の
問題が招来する。このような問題を解決する手段として
は、小形で吸熱性能の良いペルチェ素子による強制冷却
が極めて有効である。
<Prior Art> In recent years, multi-beam semiconductor lasers for optical heads and higher output have been studied. However, in this case, problems arise such as wavelength fluctuation and shortened lifespan due to the increase in the amount of heat generated by the semiconductor laser. As a means to solve such problems, forced cooling using a small Peltier element with good heat absorption performance is extremely effective.

ペルチェ素子は、電子冷却素子、サーモモジュールなど
の名でも呼ばれており、第4図に示すような外観を有し
ている。図面中、41゜42は電気絶縁性を有する平板
、43はこれら平板41.42の相対向する内側面に形
成された電極パタン、44は半導体柱又は導電体柱、4
5はリード線であり、電極パタン43に、異なった半導
体柱又は導電体柱44のカップルを複数個サンドイッチ
接合して直列回路を形成しておゆ、リード線45はそれ
ぞれの電極パタンに接続されている。そして、このリー
ド945から直流電流を流すと、ペルチェ効果によって
、一方の平板41と各半導体杜若しくは導電体柱44と
の接合部において熱の吸収が、また、同様に他方の平板
42と各半導体杜若しくは導電体柱44との接合部にお
いて熱の放出がおこる。即ち、一方の平板41から他方
の平板42に連続的に熱がポンピングされる。
The Peltier element is also called an electronic cooling element, a thermo module, etc., and has an appearance as shown in FIG. In the drawing, reference numerals 41 and 42 indicate electrically insulating flat plates, 43 electrode patterns formed on opposing inner surfaces of these flat plates 41 and 42, 44 semiconductor columns or conductor columns, and 4
5 is a lead wire, and a series circuit is formed by sandwich-bonding a plurality of couples of different semiconductor pillars or conductor pillars 44 to an electrode pattern 43, and a lead wire 45 is connected to each electrode pattern. ing. When a direct current is passed through this lead 945, due to the Peltier effect, heat is absorbed at the joint between one flat plate 41 and each semiconductor block or conductor pillar 44, and similarly, heat is absorbed at the joint between one flat plate 41 and each semiconductor block or conductive pillar 44, Heat is released at the junction with the forest or conductor pillar 44. That is, heat is continuously pumped from one flat plate 41 to the other flat plate 42.

例えば、光伝送用レーザにおいては、ヒートシンク兼用
のパッケージ内にペルチェ素子が搭載され、このペルチ
ェ素子上にレーザ素子が設けられている。この場合、レ
ーザの発熱量が比較的小さいためパッケージが自然空冷
されるので大形の放熱フィンを組付ける必要がなく、ま
た、レーザ光の取出しには可撓性の光ファイバを用いる
ためレーザ素子の位置精度が比較的粗(てよいなどの理
由により特に問題はない。
For example, in a laser for optical transmission, a Peltier element is mounted in a package that also serves as a heat sink, and a laser element is provided on the Peltier element. In this case, since the amount of heat generated by the laser is relatively small, the package is naturally air-cooled, so there is no need to assemble large heat dissipation fins, and since a flexible optical fiber is used to extract the laser beam, the laser element There is no particular problem because the positional accuracy is relatively poor.

しかし、光ヘツド用半導体レーザの冷却を行う場合、該
レーザは他の光学部品と共に高い相対位置精度で組付け
なければならない。
However, when cooling a semiconductor laser for an optical head, the laser must be assembled with other optical components with high relative positional accuracy.

そして、レーザに比べて大きな放熱フィンをペルチェ素
子と共にレーザに背負わせた構造では、レーザ組付は時
の位置調整が非常に難しく、また、組付けた後も位置変
動を生じる危険が大きい。特に、放熱フィンを自然空冷
する方式では、放熱フィンをより大形にする必要がある
ので上述したような問題はさらに重要となる。また、放
熱フィンを装置ケースの外側に固定する構造では、冷却
部と放熱フィンとの間の位置誤差によって機械的干渉が
生じ、上述した場合と同様にレーザの位置精度に悪影響
を及ぼす。したがって、このような問題を解決するため
には、ペルチェ素子と放熱フィンとの間に、位置誤差を
吸収できる柔軟構造を採用する必要がある。
In a structure in which a heat dissipation fin, which is larger than the laser, is placed on the back of the laser together with a Peltier element, it is very difficult to adjust the position when assembling the laser, and there is a great risk that the position will fluctuate even after assembly. In particular, in the case of a method in which the radiation fins are cooled by natural air, it is necessary to make the radiation fins larger, so the above-mentioned problems become even more important. Furthermore, in a structure in which the radiation fins are fixed to the outside of the device case, mechanical interference occurs due to positional errors between the cooling unit and the radiation fins, which adversely affects the positional accuracy of the laser, as in the case described above. Therefore, in order to solve such problems, it is necessary to employ a flexible structure that can absorb positional errors between the Peltier element and the heat radiation fin.

かかる問題を解消するものとしては、第5図(a)、(
b)に示すように、ペルチェ素子の放熱板側板51と放
熱フィン側板52と間を、柔軟な金属細線を平型又は元
型に編んだ編線53や金属細線を束にした束線54で連
結する方法が考えられる。また、第5図(C)に示すよ
うに、ペルチェ素子の放熱板側板51と放熱フィン側板
52との間に、2傭の金属ブロック55の対向平面隙間
に良熱伝導性の流体56を封入した構造の伝熱体57を
設けた構造も考えられる。
To solve this problem, Fig. 5(a), (
As shown in b), between the heat dissipation plate side plate 51 and the heat dissipation fin side plate 52 of the Peltier element, a knitted wire 53 made of flexible thin metal wires knitted in a flat or original shape or a bundled wire 54 made of a bundle of thin metal wires is used. A possible method is to connect them. In addition, as shown in FIG. 5(C), a fluid 56 with good thermal conductivity is sealed between the heat sink side plate 51 and the heat sink side plate 52 of the Peltier element in the gap between the opposing planes of two metal blocks 55. A structure in which a heat transfer body 57 having such a structure is provided is also conceivable.

〈発明が解決しようとする課題〉 しかしながら、編線53を用いる場合、この$1$53
の両端を各相手方の板51,52へ、かしめ、ねじ締め
若しくはハンダ付けにより接合して熱的導通を図らなけ
ればならないが、かしめやねじ締めでは接合部が線接触
などの部分的な接合になるので熱抵抗が大きい、又、ハ
ンダ付けではハンダ材の熱伝導率が低く且つその付近の
線材がハンダによって硬化してしまい柔軟性を失ってし
まうなどの問題がある。一方、束線54を用いた場合に
は、その接合光の板51.52が−様な平面でなかった
りWA糾していたりしてもその偏差を吸収して比較的均
一な機械的接合を行えるが、繻@SSと同様に接合部が
点接触となるので熱抵抗が大きいという問題がある。さ
らに、繻@53及び束線54の両者においては、熱伝導
する方向の長さが長く且つその断面積が小さいという理
由からも、熱抵抗が大きくなる。したがって、これらの
欠点をカバーするためには、さらに大きなスペースが必
要となる。
<Problem to be solved by the invention> However, when using the braided wire 53, this $1 $53
Both ends of the board must be joined to the mating plates 51 and 52 by caulking, screw tightening, or soldering to ensure thermal continuity; As a result, the thermal resistance is large, and in soldering, the thermal conductivity of the solder material is low, and the wire material in the vicinity is hardened by the solder and loses its flexibility. On the other hand, when the bundled wire 54 is used, even if the bonding light plates 51 and 52 are not flat or have a WA shape, the deviation can be absorbed and relatively uniform mechanical bonding can be achieved. However, the problem is that the thermal resistance is large because the joint is a point contact, similar to the case with Stainless Steel. Furthermore, both the sash 53 and the wire bundle 54 have a large thermal resistance because they are long in the direction of heat conduction and have small cross-sectional areas. Therefore, more space is required to cover these shortcomings.

また、伝熱体57の場合には両金属ブロック55間の隙
間の分だけ煩き(首振り)の自由度を有するが、充填さ
れる流体56、例えば液体金属の熱伝導率は一般の金属
より2桁程度小さいために隙間を0.4 nm以下と小
さくせざるを得ないので、自由度、即ち、吸収可能な位
置誤差が小さい。また、流体56を使用しているため、
漏れの問題や接合姿勢に制約がある。
In addition, in the case of the heat transfer body 57, there is a degree of freedom in swinging (oscillation) due to the gap between both metal blocks 55, but the thermal conductivity of the fluid 56 to be filled, for example, liquid metal, is lower than that of general metals. Since the gap is about two orders of magnitude smaller than that, the gap must be made as small as 0.4 nm or less, so the degree of freedom, that is, the positional error that can be absorbed is small. Also, since the fluid 56 is used,
There are problems with leakage and restrictions on the joining position.

そこで、本発明者らは、先に、比較的大きな三次元的自
由度を有する柔軟構造で且つコンパクトな伝熱体を先に
提案した。
Therefore, the present inventors previously proposed a compact heat transfer body with a flexible structure having a relatively large three-dimensional degree of freedom.

かかる伝熱体を具えた伝熱構造を第6図に示す。同図に
示すように、鋼などの高熱伝導材細線の集合体の周囲に
高熱伝導材粉末と良熱伝導性粘性体との混合物を充填し
てなる柔軟構造伝熱体61は、熱伝導性シリコンゴムな
どの良熱伝導性可撓膜62を介して放熱フィン63の背
面へ固着されている。一方、装置ケース64内の発熱体
取付は部65には、半導体レーザである発熱体66及び
この発熱体66に固着されてこれを強制冷却するペルチ
ェ素子67が断熱ねじ68及び断熱スペーサ69により
一体に組付けられている。そして、放熱フィン63を断
熱ねじ68及び断熱スペーサ69で装置ケース64へ組
付けることにより、柔軟構造伝熱体61は圧縮変形を伴
いつつ良熱伝導性可撓膜62を介してペルチェ素子67
の放熱面に押し付けられる。これにより、ペルチェ素子
67から放熱フィン63への熱的経路が剛接合と同等の
熱抵抗で形成されるが、この際、近接して配置された発
熱体66と放熱フィン63との相対位置誤差が、三次元
的自由度を有する柔軟構造伝熱体61により吸収される
A heat transfer structure including such a heat transfer body is shown in FIG. As shown in the figure, a flexible structure heat transfer body 61 is made by filling a mixture of a powder of a high heat conductive material and a viscous material with good heat conductivity around an aggregate of thin wires of a high heat conductive material such as steel. It is fixed to the back surface of the radiation fin 63 via a flexible membrane 62 with good thermal conductivity such as silicone rubber. On the other hand, a heating element 66 that is a semiconductor laser and a Peltier element 67 that is fixed to the heating element 66 and forcibly cools it are integrated into a heating element mounting part 65 in the device case 64 by a heat insulating screw 68 and a heat insulating spacer 69. It is assembled into. By assembling the heat dissipation fins 63 to the device case 64 using the heat insulating screws 68 and the heat insulating spacers 69, the flexible structure heat transfer body 61 is compressed and deformed, and the Peltier element 67
is pressed against the heat dissipation surface. As a result, a thermal path from the Peltier element 67 to the radiation fins 63 is formed with a thermal resistance equivalent to that of a rigid joint, but at this time, there is a relative position error between the heating element 66 and the radiation fins 63 which are arranged in close proximity. is absorbed by the flexible structure heat transfer body 61 having three-dimensional degrees of freedom.

しかし、この場合、柔軟構造伝熱体61の厚み方向の変
形を利用して近接した平面間を接合するから、両平面の
相対的傾きが許容される範囲が小さいという問題がある
。例えば、柔軟構造伝熱体61として接合面が201角
で厚さが5mのものを用いた場合には、その厚みが吸収
できる傾きの相対角度は約5度前後である。
However, in this case, since the deformation of the flexible structure heat transfer body 61 in the thickness direction is used to join adjacent planes, there is a problem that the range in which the relative inclination of the two planes is allowed is small. For example, when a flexible structural heat transfer body 61 with a joint surface of 201 squares and a thickness of 5 m is used, the relative angle of inclination that can be absorbed by the thickness is about 5 degrees.

本発明はこのような事情に鑑み、放熱フィンとの相対位
置誤差、特に大きな傾き、を吸収できるペルチェ素子を
提供することを目的とする。
In view of these circumstances, it is an object of the present invention to provide a Peltier element that can absorb relative positional errors, particularly large inclinations, with respect to heat radiation fins.

く課題を解決するための手段〉 前記目的を達成する本発明にかかるベルチェ素子は、発
熱対象との接合面の裏面に電極パタン面を形成してなる
吸熱部と、放熱体との接合面の裏面に電極パタン面を形
成してなる放熱部と、当該両電極パタン間に挟持・接合
された複数の半導体素子若しくは導電体素子とからなる
ペルチェ素子において、上記発熱対象と上記吸熱部との
間又は上記放熱体と上記放熱部との間の少なくとも一方
が球面又は円筒面を介して接合されてなることを特徴と
する。
Means for Solving the Problems〉 The Bertier element according to the present invention that achieves the above object has a heat absorbing part formed by forming an electrode pattern surface on the back side of the joint surface with the heat generating object, and a joint surface with the heat dissipating body. In a Peltier element consisting of a heat dissipation section formed with an electrode pattern surface formed on the back surface, and a plurality of semiconductor elements or conductive elements sandwiched and bonded between the two electrode patterns, there is a heat dissipation section between the heat generation target and the heat absorption section. Alternatively, at least one of the heat radiating body and the heat radiating portion may be joined via a spherical or cylindrical surface.

く作   用〉 発熱対象又は放熱体とペルチェ素子との間は球面又は円
筒面の接合面を介して接合されているので、両者間の相
対的位置誤差は球面又は円筒面の接合面におけるずれに
より吸収される。
Effect〉 Since the heating object or heat dissipation body and the Peltier element are joined via the spherical or cylindrical joint surface, the relative position error between the two is due to the deviation in the spherical or cylindrical joint surface. Absorbed.

く夾 施 例〉 以下、本発明を実施例に基づいて説明する。Example of application Hereinafter, the present invention will be explained based on examples.

第1図には好適な一実施例を示す。同図に示すように、
例えば半導体レーザからなる発熱体1に接合されたペル
チェ素子2の放熱面3は凸球面状に形成されてお抄、該
放熱面3は放熱フィン4の背面に固着されている柔軟構
造伝熱体5及び良熱伝導性可撓膜6で形成された凹球面
状の接合面7と接合されている。
FIG. 1 shows a preferred embodiment. As shown in the figure,
For example, the heat dissipation surface 3 of the Peltier element 2 bonded to the heating element 1 made of a semiconductor laser is formed into a convex spherical shape, and the heat dissipation surface 3 is a flexible structure heat transfer material fixed to the back surface of the heat dissipation fin 4. 5 and a concave spherical joint surface 7 formed of a flexible film 6 with good thermal conductivity.

乙のように放熱面3と接合面7とを球面にすることによ
り、放熱フィン4の姿勢に大きな三次元的自由度が与え
られ、接合面の相対的な傾きは平面同士の接合に比較し
て5倍以上許容される。
By making the heat dissipation surface 3 and the joint surface 7 spherical as shown in Part B, a large three-dimensional degree of freedom is given to the posture of the heat dissipation fin 4, and the relative inclination of the joint surfaces is greater than when joining flat surfaces. 5 times or more is allowed.

したがって、接合面7と放熱面3とを合せつつ放熱フィ
ン4を断面ねじ8及び断面スペーサ9によゆ装置ケース
10に組付ける場合のペルチェ素子2と放熱フィン4と
の相対位置誤差を吸収することができる。また、スペー
スや構造上の制約で放熱経路を意識的に曲げる場合に最
適であし、発熱体1が半導体レーザの場合にはビーム出
射方向のIImにも自由度を与えることができる。また
、放熱フィン4の自由度が大きいから、放熱部を強制的
に空冷する場合など風向きに合わせて正確な位置決めを
することができる。
Therefore, it is possible to absorb the relative positional error between the Peltier element 2 and the heat dissipating fin 4 when the heat dissipating fin 4 is assembled to the device case 10 using the cross-sectional screw 8 and the cross-sectional spacer 9 while aligning the joint surface 7 and the heat dissipating surface 3. be able to. Further, it is most suitable when the heat dissipation path is intentionally bent due to space or structural constraints, and when the heating element 1 is a semiconductor laser, a degree of freedom can be given to IIm in the beam emission direction. Furthermore, since the radiation fins 4 have a large degree of freedom, they can be accurately positioned in accordance with the direction of the wind, such as when the radiation portion is forcibly air-cooled.

接合面7を球面にしたことにより、柔軟構造伝熱体5と
良熱伝導性可撓膜6との接合も平面の場合と比較して確
実とな口、接合面積も増す。
By making the joint surface 7 spherical, the flexible structure heat transfer body 5 and the highly thermally conductive flexible membrane 6 can be joined more reliably and the joint area can be increased compared to a flat surface.

なお、柔軟構造伝熱体5としては、例えば不織布のよう
な銅網ss合体を主熱伝導体として、その空隙に粒径的
100μmの銅粉末と良熱伝導性粘性体であるシリコー
ンオイルコンパウンドとの混合物を充填したものを用い
ればよく、また、良熱伝導性可撓膜6としては、例えば
0.3■厚の熱伝導性シリコーンゴム成形膜を用いれば
よい。
The flexible structure heat transfer body 5 is made of, for example, a copper net SS coalescence such as a non-woven fabric as the main heat conductor, and the voids thereof are filled with copper powder having a particle size of 100 μm and a silicone oil compound which is a viscous material with good thermal conductivity. It is sufficient to use a film filled with a mixture of the above, and as the good thermally conductive flexible membrane 6, a thermally conductive silicone rubber molded membrane having a thickness of, for example, 0.3 mm may be used.

ペルチェ素子2においては、放熱面3の裏面は例えば半
導体素子が組付けてあり電気的に絶縁されていることが
必要であるから、本実施例では凸球面状の放熱面3全体
を通常のペルチェ素子と同様な硬質なアルミナセラミッ
クで形成している。しかし、通常のペルチェ素子のアル
ミナセラミック平板からなる放熱面上に鋼などの高熱伝
導率金属又は上述した柔軟構造伝熱体及び良熱伝導性可
撓膜などで放熱面3を形成すれば伝熱効率がさらに向上
する。なお、以下の実施例でも同様であることは言うま
でもない。
In the Peltier element 2, the back surface of the heat dissipation surface 3 has, for example, a semiconductor element assembled thereon and needs to be electrically insulated. It is made of hard alumina ceramic similar to the element. However, if the heat dissipation surface 3 is formed of a high thermal conductivity metal such as steel or the above-mentioned flexible structure heat transfer body and a good heat conductive flexible film on the heat dissipation surface made of the alumina ceramic flat plate of a normal Peltier element, the heat transfer efficiency will be improved. further improves. It goes without saying that the same applies to the following examples.

また、本実施例では凸球面状の放熱面3の曲率半径を比
較的小さくしているが、それほど大きくない相対位置誤
差を吸収する場合には、曲率半径の大きい球面とすれば
確実な熱接合が実現できる。
In addition, in this embodiment, the radius of curvature of the convex spherical heat dissipation surface 3 is made relatively small, but if a relatively small relative position error is to be absorbed, a spherical surface with a large radius of curvature can be used to ensure reliable thermal bonding. can be realized.

なお、放熱面3と接合面7どの相対的傾きによる相対位
置誤差の吸収が一方向のみでよい場合には、放熱面3及
び接合面7を球面の代ゆに円筒面とすることでも同様な
目的を達成することができる。
Note that if the relative position error due to the relative inclination of the heat dissipation surface 3 and the joint surface 7 can be absorbed only in one direction, the same effect can be obtained by making the heat dissipation surface 3 and the joint surface 7 cylindrical surfaces instead of spherical surfaces. Able to achieve purpose.

第2図は他の実施例を示すものであり、放熱面3を凹球
面、接合面7を凸球面とした以外は上述した実施例と同
様である。なお、この場合も、相対位置誤差の吸収が一
方向のみでよい場合には球面の代りに円筒面を用いても
よいことは言うまでもない。
FIG. 2 shows another embodiment, which is the same as the embodiment described above except that the heat radiation surface 3 is a concave spherical surface and the joint surface 7 is a convex spherical surface. In this case as well, it goes without saying that a cylindrical surface may be used instead of a spherical surface if the relative position error can be absorbed only in one direction.

第3図はさらに他の実施例を示すものであり、本実施例
では、柔軟構造伝熱体5及び良熱伝導性可撓膜6の代り
に他のペルチェ素子11を放熱フィンの背面に固着しで
ある。このペルチェ素子11はその吸熱面12が凸球面
状となってペルチェ素子2の凹球面状の放熱面3と接合
するようになっている。このように二つのペルチェ素子
を用いて球面の接合面を介して連結することにより冷却
効果を増大することができる。なお、二つのペルチェ素
子2,11の接合面の間には、シリコーングリースなど
の良熱伝導材を介装することにより、滑りを良好にする
とともに熱接合をさらに確実なものとすることができる
FIG. 3 shows yet another embodiment. In this embodiment, another Peltier element 11 is fixed to the back surface of the heat dissipation fin instead of the flexible structure heat transfer body 5 and the highly thermally conductive flexible film 6. It is. This Peltier element 11 has a heat absorbing surface 12 having a convex spherical shape and is connected to a concave spherical heat dissipating surface 3 of the Peltier element 2 . In this way, by using two Peltier elements and connecting them via a spherical joint surface, the cooling effect can be increased. In addition, by interposing a good heat conductive material such as silicone grease between the joint surfaces of the two Peltier elements 2 and 11, it is possible to improve the slippage and further ensure thermal bonding. .

なお、本実施例において、ペルチェ素子11の放熱面と
放熱フィン4との間に上述した実施例に示すような例え
ば球面状の接合面をさらに設ければ、自由度が一層大き
くなる。
In addition, in this embodiment, if a spherical joint surface, for example, as shown in the above-mentioned embodiment is further provided between the heat dissipation surface of the Peltier element 11 and the heat dissipation fin 4, the degree of freedom will be further increased.

以上説明した実施例では、ペルチェ素子と放熱フィンと
の間に球面又は円筒面からなる接合面を設けた例を示し
たが、ペルチェ素子と発熱体との間に球面又は円筒面か
らなる接合面を設けても同様な効果が得られることば言
うまでもない。
In the embodiment described above, an example was shown in which a joint surface made of a spherical or cylindrical surface was provided between the Peltier element and the heat dissipation fin, but a joint surface made of a spherical or cylindrical surface was provided between the Peltier element and the heating element. It goes without saying that the same effect can be obtained even if

〈発明の効果〉 以上説明したように、本発明のペルチェ素子は発熱体又
は放熱体との接合面を球面又は円筒面にしであるから、
近接して配置した発熱体又は放熱体の接合部をこの接合
面に整合させることによって放熱体の接合姿勢に従来に
ない大きな自由度を与えることができ、冷却分計での応
用範囲が広い。
<Effects of the Invention> As explained above, since the Peltier element of the present invention has a spherical or cylindrical joint surface with the heating element or the heat radiating element,
By aligning the joining portions of the heat radiating elements or heat radiating elements placed close to each other with this joint surface, a greater degree of freedom than ever before can be given to the joining posture of the heat radiating elements, and the range of application in cooling fraction meters is wide.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第3図はそれぞれ本発明の実施例にかかるペル
チェ素子の使用状態を示す外観図、第4図はペルチェ素
子の外観図、第5図(al〜(e)はそれぞれ従来の伝
熱方法を示す説明図、第6図は他の伝熱方法を示す説明
図である。 図 面 中、 1は発熱体、 2はペルチェ素子、 3は放熱面、 4は放熱フィン、 5は柔軟構造伝熱体、 6は良熱伝導性可撓膜、 7は接合面、 10は装置ケース、 11はペルチェ素子) 12は吸熱面である。
FIGS. 1 to 3 are external views showing how the Peltier element according to the embodiment of the present invention is used, FIG. 4 is an external view of the Peltier element, and FIGS. Figure 6 is an explanatory diagram showing the heat transfer method. In the drawing, 1 is a heating element, 2 is a Peltier element, 3 is a heat radiation surface, 4 is a heat radiation fin, and 5 is a flexible 1 is a structural heat transfer body, 6 is a flexible film with good thermal conductivity, 7 is a joint surface, 10 is a device case, 11 is a Peltier element), and 12 is a heat absorption surface.

Claims (1)

【特許請求の範囲】[Claims]  発熱対象との接合面の裏面に電極パタン面を形成して
なる吸熱部と、放熱体との接合面の裏面に電極パタン面
を形成してなる放熱部と、当該両電極パタン間に挟持・
接合された複数の半導体素子若しくは導電体素子とから
なるペルチェ素子において、上記発熱対象と上記吸熱部
との間又は上記放熱体と上記放熱部との間の少なくとも
一方が球面又は円筒面を介して接合されてなることを特
徴とするペルチェ素子。
A heat absorbing part formed by forming an electrode pattern surface on the back side of the surface to be joined with the heat generating object, a heat radiating part formed by forming the electrode pattern surface on the back surface of the joint surface with the heat radiating body, and a sandwiched between the two electrode patterns.
In a Peltier element consisting of a plurality of semiconductor elements or conductor elements bonded together, at least one of the heat generating object and the heat absorption part or the heat radiating body and the heat radiating part is connected through a spherical or cylindrical surface. A Peltier element characterized by being bonded.
JP63204793A 1988-08-19 1988-08-19 Peltier element Pending JPH0254975A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63204793A JPH0254975A (en) 1988-08-19 1988-08-19 Peltier element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63204793A JPH0254975A (en) 1988-08-19 1988-08-19 Peltier element

Publications (1)

Publication Number Publication Date
JPH0254975A true JPH0254975A (en) 1990-02-23

Family

ID=16496449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63204793A Pending JPH0254975A (en) 1988-08-19 1988-08-19 Peltier element

Country Status (1)

Country Link
JP (1) JPH0254975A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008182011A (en) * 2007-01-24 2008-08-07 Toshiba Corp Device and method for evaluating reliability on thermoelectric conversion system
GB2500678A (en) * 2012-03-29 2013-10-02 Spirax Sarco Ltd Heatsinks for thermoelectric generators

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008182011A (en) * 2007-01-24 2008-08-07 Toshiba Corp Device and method for evaluating reliability on thermoelectric conversion system
GB2500678A (en) * 2012-03-29 2013-10-02 Spirax Sarco Ltd Heatsinks for thermoelectric generators

Similar Documents

Publication Publication Date Title
JP2570605B2 (en) Semiconductor device
JP4488778B2 (en) Thermoelectric converter
JP2001156219A (en) Semiconductor device
JP2001156219A5 (en)
JPH1056131A (en) Semiconductor device
JPH11145381A (en) Semiconductor multi-chip module
JP2001274177A (en) Semiconductor device and method of manufacturing the same
JP2006093733A (en) Semiconductor device
JP2006073632A (en) Thermoelectric conversion device and method for manufacturing the same
JP2005012127A (en) Electronic control apparatus
JPH11265976A (en) Power-semiconductor module and its manufacture
JP2014013878A (en) Electronic apparatus
JP3252902B2 (en) Temperature control unit
JP2000058741A (en) Hybrid module
JPH0254975A (en) Peltier element
EP0509732A2 (en) Semiconductor device attached on a substrate
JPH11121662A (en) Cooling structure for semiconductor device
JP3598660B2 (en) Thermoelectric unit
JPH0864731A (en) Heat conducting member and cooler and electronic apparatus employing the same
JP4645276B2 (en) Semiconductor device
JP2005101489A (en) Press contact type semiconductor device
JP2710986B2 (en) Electronic equipment
JPH03180054A (en) Resin-sealed type semiconductor device
CN115249666A (en) Chip packaging structure and electronic equipment
JP2001168447A (en) Laser diode optical module