JPH0254740A - Steel material and tube for absorption thermal apparatus having excellent corrosion resistance - Google Patents
Steel material and tube for absorption thermal apparatus having excellent corrosion resistanceInfo
- Publication number
- JPH0254740A JPH0254740A JP63207160A JP20716088A JPH0254740A JP H0254740 A JPH0254740 A JP H0254740A JP 63207160 A JP63207160 A JP 63207160A JP 20716088 A JP20716088 A JP 20716088A JP H0254740 A JPH0254740 A JP H0254740A
- Authority
- JP
- Japan
- Prior art keywords
- steel
- corrosion resistance
- libr
- steel material
- absorption
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000007797 corrosion Effects 0.000 title claims abstract description 77
- 238000005260 corrosion Methods 0.000 title claims abstract description 77
- 239000000463 material Substances 0.000 title claims abstract description 41
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 39
- 239000010959 steel Substances 0.000 title claims abstract description 39
- 238000010521 absorption reaction Methods 0.000 title claims description 24
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 14
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 13
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 12
- 229910052742 iron Inorganic materials 0.000 claims abstract description 5
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 4
- 229910052758 niobium Inorganic materials 0.000 claims abstract description 4
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 4
- 229910052720 vanadium Inorganic materials 0.000 claims abstract description 4
- 239000012266 salt solution Substances 0.000 claims description 13
- 239000012535 impurity Substances 0.000 claims description 5
- 230000002745 absorbent Effects 0.000 claims 1
- 239000002250 absorbent Substances 0.000 claims 1
- AMXOYNBUYSYVKV-UHFFFAOYSA-M lithium bromide Chemical compound [Li+].[Br-] AMXOYNBUYSYVKV-UHFFFAOYSA-M 0.000 abstract description 33
- 229910052717 sulfur Inorganic materials 0.000 abstract description 4
- 150000003839 salts Chemical class 0.000 abstract description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 3
- 238000005242 forging Methods 0.000 abstract description 2
- 238000004519 manufacturing process Methods 0.000 abstract description 2
- 238000002844 melting Methods 0.000 abstract description 2
- 230000008018 melting Effects 0.000 abstract description 2
- 238000000034 method Methods 0.000 abstract description 2
- 238000002161 passivation Methods 0.000 abstract description 2
- 238000005098 hot rolling Methods 0.000 abstract 1
- 238000005488 sandblasting Methods 0.000 abstract 1
- 230000000694 effects Effects 0.000 description 30
- 238000005336 cracking Methods 0.000 description 14
- 230000035882 stress Effects 0.000 description 14
- 239000007864 aqueous solution Substances 0.000 description 8
- 238000012360 testing method Methods 0.000 description 8
- 229910001220 stainless steel Inorganic materials 0.000 description 7
- 239000010935 stainless steel Substances 0.000 description 7
- 239000000203 mixture Substances 0.000 description 6
- 239000000243 solution Substances 0.000 description 5
- 238000003466 welding Methods 0.000 description 5
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 241000316887 Saissetia oleae Species 0.000 description 3
- 239000006096 absorbing agent Substances 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 238000007654 immersion Methods 0.000 description 3
- 230000002411 adverse Effects 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 1
- 241000385223 Villosa iris Species 0.000 description 1
- 238000004378 air conditioning Methods 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- BWKOZPVPARTQIV-UHFFFAOYSA-N azanium;hydron;2-hydroxypropane-1,2,3-tricarboxylate Chemical compound [NH4+].OC(=O)CC(O)(C(O)=O)CC([O-])=O BWKOZPVPARTQIV-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000005422 blasting Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- ZCDOYSPFYFSLEW-UHFFFAOYSA-N chromate(2-) Chemical class [O-][Cr]([O-])(=O)=O ZCDOYSPFYFSLEW-UHFFFAOYSA-N 0.000 description 1
- 238000005097 cold rolling Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000003009 desulfurizing effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000004021 metal welding Methods 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- 238000005057 refrigeration Methods 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 239000000779 smoke Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A30/00—Adapting or protecting infrastructure or their operation
- Y02A30/27—Relating to heating, ventilation or air conditioning [HVAC] technologies
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B30/00—Energy efficient heating, ventilation or air conditioning [HVAC]
- Y02B30/62—Absorption based systems
Landscapes
- Sorption Type Refrigeration Machines (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、臭化リチウム水溶液を代表とする塩類溶液を
使用する吸収式熱機器類に使用される鋼材、並びに該鋼
材を用いて作製される管体に関するものである。尚上記
吸収式熱機器類としては、吸収式冷凍機、吸収式冷温水
機、吸収式ヒートポンプ等が例示されるが、要は塩類溶
液の吸収濃度による冷媒分圧の変化を利用して熱移動を
行なわせる装置であれば、装置の詳細機構や塩類の種類
の如何等を問わず全て本発明の対象となる。従って以下
においては臭化リチウム水溶液を用いる吸収式冷凍機の
場合を代表例に取り挙げて説明を行なうが、これによっ
て本発明の技術的範囲が限定解釈されるものではない。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a steel material used in absorption heat equipment that uses a salt solution such as an aqueous lithium bromide solution, and a steel material manufactured using the steel material. This relates to the pipe body. Examples of the above-mentioned absorption heat equipment include absorption chillers, absorption chillers and hot water machines, absorption heat pumps, etc., but the key is to transfer heat by utilizing changes in refrigerant partial pressure due to absorption concentration of salt solution. Any device that can perform this is covered by the present invention, regardless of the detailed mechanism of the device or the type of salt. Therefore, in the following explanation, the case of an absorption refrigerator using an aqueous lithium bromide solution will be taken up as a representative example, but the technical scope of the present invention is not interpreted to be limited by this.
[従来の技術]
吸収式冷凍機は、所謂圧縮機型冷凍機に代る低価格乃至
小型効用機器として普及しはじめており、特に太陽熱利
用装置の拡充に伴い、特にビルディングにおける空調用
吸収式冷暖房システムの分野を中心として更に幅広く利
用されていく傾向にある。[Prior Art] Absorption chillers are becoming popular as low-cost and small-sized equipment to replace so-called compressor-type chillers, and with the expansion of solar heat utilization devices, absorption chillers are becoming more popular, especially in absorption heating and cooling systems for air conditioning in buildings. There is a tendency for it to be used more widely, mainly in the fields of
この様な吸収式冷凍機の構成材料としては、溶接性に優
れ且つ安価な汎用材料、例えばSM材(溶接構造用圧延
鋼材)やSS材(−殻構造用圧延鋼材)等の軟鋼板が使
用され、溶接材料としては同成分系のものが用いられて
きた。As the constituent material of such absorption chillers, general-purpose materials with excellent weldability and low cost, such as mild steel plates such as SM materials (rolled steel materials for welded structures) and SS materials (rolled steel materials for shell structures), are used. Therefore, welding materials with the same composition have been used.
ところで吸収式冷凍機のもっとも基本的な概念は第1図
に示す通りであって、凝縮器1.蒸発器2、吸収器3.
再生器4.熱交換器5を基本構成とし、これらが弁やポ
ンプを介して配管されている。面図は一重効用タイブで
あり、二重効用タイプ、その他の変形タイプであっても
以下述べるのと同様の問題がある。即ちこの様な吸収式
冷凍システムに用いられる塩類溶液は比較的濃厚であり
、特に再生器4の内部及び再生器4から吸収器3に向う
輸液配管(熱交換器5を通る管を含む)の内部には相当
の濃厚塩類溶液が存在し、これらの中でも再生器4の内
部及び熱交換器5に向う配管内では相当な高温となる。By the way, the most basic concept of an absorption refrigerating machine is as shown in FIG. Evaporator 2, absorber 3.
Regenerator 4. The basic configuration is a heat exchanger 5, which is piped via valves and pumps. The cross-sectional view is a single effect type, and even if it is a double effect type or other modified type, there are problems similar to those described below. That is, the salt solution used in such an absorption refrigeration system is relatively concentrated, and is particularly concentrated inside the regenerator 4 and in the infusion piping from the regenerator 4 to the absorber 3 (including the pipe passing through the heat exchanger 5). There is a considerably concentrated salt solution inside, and among these, the inside of the regenerator 4 and the piping toward the heat exchanger 5 reach a considerably high temperature.
この様な高濃度、特に高温高濃度の塩類溶液は腐食性が
強く、これを考慮した対策を講じておくことが望まれて
いる。Salt solutions of such high concentration, especially at high temperature and high concentration, are highly corrosive, and it is desirable to take measures that take this into consideration.
例えば臭化リチウムの濃厚水溶液を用いる場合の対策と
しては、水酸化リチウム、或は各種のクロム酸塩やモリ
ブデン酸塩を腐食抑制剤として添加することが検討され
ている。For example, as a countermeasure when using a concentrated aqueous solution of lithium bromide, it has been considered to add lithium hydroxide or various chromates and molybdates as corrosion inhibitors.
しかしながら上記の様な腐食抑制剤は防食効果が弱く、
孔食或は時に全面腐食を招いて前者の場合は有毒な濃厚
塩類溶液の漏出事故を起こす危険かあり、後者の場合は
塩類溶液の汚染や劣化、或はスケールの生成に伴う熱交
換器5内での伝熱性能の低下といりた問題を経て、遂に
は装置としての継続使用が不可能となる。尚前者の場合
は液漏れ事故に止まらず、突然の破損事故につながる危
険性すら内包するものである。However, the corrosion inhibitors mentioned above have a weak anticorrosion effect,
In the former case, there is a risk of leakage of a toxic concentrated salt solution due to pitting corrosion or sometimes general corrosion, and in the latter case, the heat exchanger 5 may suffer from contamination or deterioration of the salt solution or the formation of scale. As a result of problems such as a decline in heat transfer performance within the device, it becomes impossible to continue using the device. In the former case, there is a risk not only of liquid leakage but also of sudden damage.
この様なところから、耐食性が良いとされているステン
レス鋼を使用することが検討され、全面腐食の防止には
有効であることが確認されたが、却フて孔食深さを増大
させ、或は新たに応力腐食割れの恐れが指摘されるに至
り、危険性の高い腐食損傷という面では、ステンレス鋼
の使用はむしろ改悪と言わなければならない。そこで本
発明者らは、ステンレス鋼の使用によるこの様な危険性
の増大についてその原因を究明すべく種々研究を行なっ
た。それによれば、ステンレス鋼の耐食性にもっとも大
きく寄与していると考えられているCrとNiが、ステ
ンレス鋼における必要含有量レベルにおいては、却って
驚くべきことに、塩類溶液に対する耐孔食性および耐応
力腐食割れ性を大きく劣化させる原因となっていること
が分かった。従って高温高濃度臭化リチウム水溶液を用
いる吸収式冷凍機を始めとする当分野における耐食性改
善技術の開発に当たっては、従来耐食性材料として知ら
れていたものの中から適当なものを選択してくるという
対応策は全く無力であり、従って従来耐食性改善手段と
して知られていた技術的事項をいったん白紙に戻し、全
面腐食、孔食および応力腐食割れという3つの特性に対
して、好影響を示す元素と悪影響を示す元素に区分けす
るというところから出発し直すと共に、各元素の影響力
およびその作用機構を考察し、更にそれら元素の相互作
用を究明するという立場から検討しなければならない。For this reason, the use of stainless steel, which is said to have good corrosion resistance, was considered, and it was confirmed that it is effective in preventing general corrosion, but on the contrary, it increases the depth of pitting corrosion. In addition, the fear of stress corrosion cracking has been newly pointed out, and the use of stainless steel must be said to be an improvement in terms of highly dangerous corrosion damage. Therefore, the present inventors conducted various studies in order to investigate the cause of such increased risk due to the use of stainless steel. According to the study, Cr and Ni, which are thought to contribute most significantly to the corrosion resistance of stainless steel, surprisingly show resistance to pitting corrosion against salt solutions and stress resistance at the required content levels in stainless steel. It was found that this caused a significant deterioration in corrosion cracking resistance. Therefore, when developing technology to improve corrosion resistance in this field, including absorption refrigerators that use high-temperature, high-concentration lithium bromide aqueous solutions, the approach is to select appropriate materials from among those conventionally known as corrosion-resistant materials. Therefore, the technical matters that were conventionally known as means for improving corrosion resistance have to be brought back to the drawing board. In addition to starting from the point of classifying elements into elements that exhibit the
[発明が解決しようとする課題]
本発明はこの様な状況下になされたものであって、吸収
式冷凍機を始めとする吸収式熱機器において、高濃度(
特に高温高濃度)塩類溶液と接する部分に使用された場
合に全面腐食、孔食および応力腐食割れに対して優れた
抵抗性を示すことのできる鋼材を開発する目的で種々検
討した。[Problems to be Solved by the Invention] The present invention has been made under such circumstances, and is intended to be used in absorption heat equipment such as absorption refrigerators.
Various studies were conducted with the aim of developing a steel material that can exhibit excellent resistance to general corrosion, pitting corrosion, and stress corrosion cracking when used in areas that come into contact with salt solutions (particularly at high temperatures and high concentrations).
[課題を解決する為の手段]
上記目的を達成することのできた本発明の鋼材は、
C: 0.25%以下
S i : 0.20〜3%
Mn:1%以下
を含有する他、
P : 0.05〜0.15%
Cr : 0.25〜11.5%
N i : 0.05〜10%
よりなる群から選ばれる1f!!又は2種以上を含有し
、残部をFeおよび不可避不純物で構成したことを基本
的要旨とするものである。またこの成分組成に対して、
更に
S : 0.020〜0.10%
V : 0.01〜0.5%
T i : 0.005〜0.5%
N b : 0.005〜0.5%
よりなる群から選ばれる1種又は2種以上を含有せしめ
たものも本発明鋼材として提供される。そしてこれらの
鋼材は上記の様な吸収式熱機器における構成材料、例え
ば容器壁材、管板材、朋材、煙管材、或はその他配管類
や弁類等の素材として利用できる他、共金溶接用溶接材
料として応用することも可能である。[Means for Solving the Problems] The steel material of the present invention that has achieved the above objects contains: C: 0.25% or less, Si: 0.20 to 3%, Mn: 1% or less, and P. 1f selected from the group consisting of: 0.05-0.15% Cr: 0.25-11.5% Ni: 0.05-10%! ! The basic gist is that it contains two or more types, and the remainder is composed of Fe and unavoidable impurities. Also, for this component composition,
Furthermore, 1 selected from the group consisting of S: 0.020-0.10% V: 0.01-0.5% Ti: 0.005-0.5% Nb: 0.005-0.5% A steel material containing one or more species is also provided as the steel material of the present invention. These steel materials can be used as constituent materials in the above-mentioned absorption heat equipment, such as container wall materials, tube sheet materials, pipe materials, smoke pipe materials, and other materials such as piping and valves, as well as co-metal welding. It is also possible to apply it as a welding material.
[作用コ
本発明鋼材における各種合金元素の添加理由および添加
量の設定理由を説明する。[Function] The reason for adding various alloying elements to the steel material of the present invention and the reason for setting the amount of addition will be explained.
二二虹並履旦J
Cは強度確保の為に必要な元素であるが、含有量が多く
なり過ぎると延性および靭性が劣化し、また溶接性にも
悪影響を及ぼすようになるので、0.25%を上限とし
た。22 Rainbows and Sandals JC is an element necessary to ensure strength, but if its content is too high, ductility and toughness will deteriorate, and it will also have a negative effect on weldability. The upper limit was set at 25%.
S i : 0.20〜3%
Siは、高温高濃度臭化リチウム水溶液中での耐孔食性
及び耐全面腐食性の改善に欠くことのできない元素の1
つであって、その効果を得るためには0.20%以上の
添加が必要である。一方、3%を越えるとその効果が飽
和するとともに、加工性が劣化する。Si: 0.20-3% Si is an element essential for improving pitting corrosion resistance and general corrosion resistance in a high-temperature, high-concentration lithium bromide aqueous solution.
In order to obtain this effect, it is necessary to add 0.20% or more. On the other hand, if it exceeds 3%, the effect is saturated and workability deteriorates.
Mn:1%以下
Mnは、製鋼時の脱酸、脱硫や、強度上昇、溶接性向上
などに有効であるが、全面腐食及び孔食を増長するもっ
とも重要な有害元素である。そこで、その上限を1%と
した。尚0.5%以下にすれば更に好ましい。Mn: 1% or less Mn is effective in deoxidizing and desulfurizing during steel manufacturing, increasing strength, and improving weldability, but it is the most important harmful element that increases general corrosion and pitting corrosion. Therefore, the upper limit was set at 1%. Further, it is more preferable to keep the content to 0.5% or less.
P : 0.05〜0.15%
Pは一般に不純物として含まれるものであるが、本発明
者等の研究によれば高温高濃度臭化リチウム水溶液に対
する鋼材の耐孔食性改善に著しい有効性を示す元素であ
ることが明らかとなった。そしてその効果を得るには0
.05%以上の添加が必要であることも分かった。しか
し0.15%を越えて添加すると、靭性および溶接性を
悪化させ、特に溶接時の高温割れ性を促進する傾向が認
められる。P: 0.05-0.15% P is generally contained as an impurity, but according to the research of the present inventors, it is extremely effective in improving the pitting corrosion resistance of steel materials against high-temperature, high-concentration lithium bromide aqueous solutions. It was revealed that the element is shown in the figure. And to get that effect 0
.. It was also found that addition of 0.5% or more was necessary. However, when added in excess of 0.15%, there is a tendency to deteriorate toughness and weldability, and particularly to promote hot cracking during welding.
Cr : 0.25〜11.5%
前述の如(、Crをステンレス鋼レベル(通常12%以
上)で含有させることは、高温高濃度臭化リチウム水溶
液中での耐孔食性および耐応力腐食割れ性を著しく劣化
させる原因となる。従って本発明者等は種々検討し、1
1.5%以下に抑えるべきであることを知ったが、11
.5%以下では耐全面腐食性および耐孔食性において著
効を示し、耐食性改善にとって不可欠の元素であった。Cr: 0.25-11.5% As mentioned above, containing Cr at the stainless steel level (usually 12% or more) improves pitting corrosion resistance and stress corrosion cracking resistance in high-temperature, high-concentration lithium bromide aqueous solutions. Therefore, the inventors conducted various studies and found 1.
I learned that it should be kept below 1.5%, but 11
.. When it is less than 5%, it shows remarkable effects on general corrosion resistance and pitting corrosion resistance, and is an essential element for improving corrosion resistance.
Crにおけるこの様な効果が認められるには、0.25
%以上の含有が必要である。In order for such an effect to be recognized in Cr, 0.25
% or more is required.
Ni:0.05〜10%
Niは耐全面腐食性と耐孔食性の改善にとっていずれも
著効を示す元素であり、特に耐全面腐食性の改善効果が
著しい。但し0.05%未満ではそれらの効果が現われ
ず、一方過剰配合では応力腐食割れ感受性を高めるので
10%を上限と定めた。Ni: 0.05 to 10% Ni is an element that exhibits a remarkable effect on improving both general corrosion resistance and pitting corrosion resistance, and the effect of improving general corrosion resistance is particularly remarkable. However, if it is less than 0.05%, these effects will not be exhibited, while if it is added excessively, the susceptibility to stress corrosion cracking will increase, so 10% is set as the upper limit.
尚P、Cr、Niは上述の如くほぼ同様の効果を示す元
素であり、これらの1種を配合すれば上記の効果が得ら
れるが、2種以上配合すれば各々を単独で添加したとき
に比べて特に顕著な効果が示される。As mentioned above, P, Cr, and Ni are elements that exhibit almost the same effects, and if one of these is blended, the above effect can be obtained, but if two or more of these are blended, the effect will be greater than when each is added alone. A particularly remarkable effect is shown in comparison.
S・0.020〜0.10%
Sは一般に不純物として含まれているものであるが、高
温高濃度臭化リチウム水溶液環境という条件の下では耐
全面腐食性の改善に存効な元素であることが分かった。S・0.020-0.10% S is generally contained as an impurity, but it is an effective element in improving general corrosion resistance under the conditions of a high-temperature, high-concentration lithium bromide aqueous solution environment. That's what I found out.
Sが上記効果を発揮するには0.020%以上の添加か
必要であるが、過剰添加は靭性、溶接性、加工性等の劣
化を招くので、0.10%を上限と定めた。尚Sの添加
効果はPとの併用添加において特に顕著であることが確
かめられている。In order for S to exhibit the above effects, it is necessary to add 0.020% or more, but since excessive addition causes deterioration of toughness, weldability, workability, etc., 0.10% is set as the upper limit. It has been confirmed that the effect of adding S is particularly remarkable when added in combination with P.
V : 0.01〜0.5 %
これら3元素も上記範囲内においてSと同様の耐全面腐
食性改善効果を示し、更に耐孔食性向上効果を発揮する
ことも分かった。但しいずれの元素も0,5%を越える
と、その効果が飽和するとともに靭性の劣化を招くので
0.5%を上限とした。V: 0.01 to 0.5% It was also found that these three elements exhibit the same general corrosion resistance improvement effect as S, and also exhibit the pitting corrosion resistance improvement effect within the above range. However, if the content of any element exceeds 0.5%, the effect will be saturated and the toughness will deteriorate, so 0.5% is set as the upper limit.
尚S、V、Ti、Nbは上述の如くほぼ同様の効果を示
す元素であり、これらの1種を配合すれば上記の効果が
得られるが、2種以上配合すれば各々を単独で添加した
ときに比べて特に顕著な効果が示される。As mentioned above, S, V, Ti, and Nb are elements that exhibit almost the same effects, and if one of these is blended, the above effect can be obtained, but if two or more of these are blended, each element can be added alone. A particularly remarkable effect is shown compared to other cases.
本発明における重要基本元素は上記の通りであるが、そ
れらの作用効果発現に悪影響を与えないという限度であ
れば他の元素が含有されていてもよく、その様な元素と
してはCu、AI、M。The important basic elements in the present invention are as described above, but other elements may be included as long as they do not adversely affect the expression of their effects. Examples of such elements include Cu, AI, M.
Ca、REM等が示される。Ca, REM, etc. are shown.
上記成分組成からなる鋼材は、前述の如く吸収式熱機器
における色々な構造材料として使用され、高温高濃度塩
類溶液と接する側において耐孔食性、耐全面腐食性およ
び耐応力腐食割れ性を発揮するが、鋼材表面に圧延工程
で生成した黒皮(酸化物皮膜)をつけたままで使用する
よりは、この黒皮を除去してから使用する方が好ましい
ことが分かった。この理由は十分に解明されおらないが
、鋼材中成分、特にFe、P、Ni、Cr等が塩類溶液
との接触によって塩(例えばLiBr)と反応して反応
生成物皮膜を形成し、この皮膜がそれ自身再生能を有す
ると共に不働態化皮膜として作用し、より優れた耐食性
を発揮するからであろうと考えられる。又、黒皮(酸化
皮膜)の存在が耐食性に悪影響を及ぼす理由として次の
事項が考えられる。As mentioned above, steel materials with the above composition are used as various structural materials in absorption type thermal equipment, and exhibit pitting corrosion resistance, general corrosion resistance, and stress corrosion cracking resistance on the side that comes into contact with high-temperature, high-concentration salt solutions. However, it has been found that it is better to remove this black crust before using the steel material, rather than using it with the black crust (oxide film) generated during the rolling process still attached to the surface of the steel material. The reason for this is not fully understood, but the components in the steel, especially Fe, P, Ni, Cr, etc., react with salt (for example, LiBr) when they come into contact with a salt solution, forming a reaction product film, and this film It is thought that this is because it has regenerating ability itself and acts as a passivation film, thereby exhibiting superior corrosion resistance. Further, the following may be considered as the reason why the presence of black scale (oxide film) has an adverse effect on corrosion resistance.
■黒皮と地鉄の間に腐食電池が形成される。■A corrosion battery is formed between the black crust and the base iron.
■黒皮は一般に責な電位を有し、従って地峡を陽分極し
て孔食の発生を促進する。■ Black scale generally has a negative potential and therefore positively polarizes the isthmus and promotes the occurrence of pitting corrosion.
■黒皮は一般に格子欠陥を多数含有しており、従って孔
食の発生起点となり易い。■Black scale generally contains many lattice defects and therefore tends to become a starting point for pitting corrosion.
[実施例コ
実施例1
第1表に示す成分組成からなる鋼を真空溶解法によって
溶製し、熱間鍛造および熱間圧延を施して160mm’
x 3〜6mmtの鋼板にした後、70mmX 70
mmの大きさに切出した。ショツトブラスト法によっ
て脱スケールした後、試料片の中央部をTIG法(但し
溶加棒を使用せず)でリメルトした。この模擬溶接によ
って溶接残留応力が負荷され、次に述べる溶液浸漬実験
において応力腐食割れ試験片を兼ねることとなる。尚表
中の本発明鋼において、第1群とは請求項(1)の条件
を満足するものを示し、第2群とは請求項(2)の条件
を満足するものを示す。[Example Example 1] A steel having the composition shown in Table 1 was produced by vacuum melting, and hot forged and hot rolled to a length of 160 mm.
After making a steel plate of x 3~6mmt, 70mm x 70
It was cut out to a size of mm. After descaling by shot blasting, the central part of the sample piece was remelted by TIG (without using a filler rod). This simulated welding applies welding residual stress and serves as a stress corrosion cracking test piece in the solution immersion experiment described below. Regarding the steels of the present invention in the table, the first group refers to those that satisfy the conditions of claim (1), and the second group refers to those that satisfy the conditions of claim (2).
上記で得た試料を65%−LiBr+2000ppm−
Li2 Cry4+0.02N−LiOH水溶液(20
0℃中へ500時間浸漬し、
■腐食速度の算出
■最大孔食深さの測定
■応力腐食割れの有無の確認
を夫々行なった。The sample obtained above was mixed with 65%-LiBr+2000ppm-
Li2Cry4+0.02N-LiOH aqueous solution (20
The specimens were immersed in 0°C for 500 hours, and the following tests were carried out: (1) calculation of corrosion rate, (2) measurement of maximum pitting depth, and (2) confirmation of the presence or absence of stress corrosion cracking.
■についは浸漬後の試験片を10%くえん酸2水素アン
モニウム水溶液中で陰極電解してスケールを除去し、浸
漬前後の重量変化により算出し、
■についてはデプスゲージを用いて測定し、■について
は目視観察により行なった。For (2), the test piece after immersion was cathodically electrolyzed in a 10% aqueous ammonium dihydrogen citrate solution to remove scale, and the weight change before and after immersion was calculated. For (2), it was measured using a depth gauge, and for (2) This was done by visual observation.
試験結果は第2表に示す通りである。尚表中の「腐食速
度」とは耐全面腐食性の評価項目となるものである。The test results are shown in Table 2. The "corrosion rate" in the table is an evaluation item for general corrosion resistance.
実施例2
上述実施例1では、試験前にTIG処理をしており、従
って試料表面には710時(リメルト時)に生成した酸
化皮膜が付着した状態であった。Example 2 In Example 1 described above, TIG treatment was performed before the test, and therefore, an oxide film formed at 710 hours (remelt time) was attached to the sample surface.
実31例2では、請求項(3)の効果を実証することを
目的として、実施例1で用いたサンプルをピックアップ
し、TIG処理後再度ショットピーニングを施して、酸
化皮膜を完全に除去した状態で■腐食速度、■孔食、■
応力腐食割れの評価を行なった。In Example 2, for the purpose of demonstrating the effect of claim (3), the sample used in Example 1 was picked up, shot peened again after TIG treatment, and the oxide film was completely removed. ■ Corrosion rate, ■ Pitting corrosion, ■
Stress corrosion cracking was evaluated.
試験条件、評価方法はすべて実施例1と同様である。試
験結果を第2表に示す。All test conditions and evaluation methods are the same as in Example 1. The test results are shown in Table 2.
(イ)本発明鋼材における効果は著しいこと。(a) The effect of the steel material of the present invention is remarkable.
(ロ)特に、耐孔食性の改善が著しいことなどが明らか
である。(b) In particular, it is clear that the pitting corrosion resistance is significantly improved.
従って、本発明の鋼材について酸化皮膜を除去した状態
で臭化リチウム水溶液系などの吸収液と接して反応生成
物を反応せしめることによって、耐食性向上が図れるも
のである。Therefore, the corrosion resistance of the steel material of the present invention can be improved by contacting it with an absorbing liquid such as an aqueous lithium bromide solution in a state in which the oxide film has been removed to cause the reaction product to react.
比較m(A−1)〜(A−t 1)(7)夫々ニツイて
成分組成と試験結果の関係を述べる。Comparison m (A-1) to (A-t 1) (7) The relationship between the component composition and the test results will be described separately.
(A−1,) Mnが上限条件を越えると共に、P、Cr。(A-1,) Mn exceeds the upper limit condition, and P and Cr.
Niの選択的必須成分が下限条件を満足しないので耐全
面腐食性および耐孔食性がいずれも劣悪であった。Since the selective essential component of Ni did not satisfy the lower limit condition, both general corrosion resistance and pitting corrosion resistance were poor.
(A−2)
Mnは上限条件を守ったので耐孔食性は(A−1)に比
べて少し改善されたが(但し評価自体は×印)、p、C
r、Niが下限条件を満足しておらないので、耐全面腐
食性は(A−1)並みの低さを示した。(A-2) Since Mn complied with the upper limit condition, pitting corrosion resistance was slightly improved compared to (A-1) (however, the evaluation itself is marked with an x), p, C
Since r and Ni did not satisfy the lower limit conditions, the overall corrosion resistance was as low as that of (A-1).
(A−3)
P、Ni、Crの3成分についてはCrが本発明要件を
満足したが、Mnが大過剰添加されていると共に、Cが
多く、Stが少ない。従って耐孔食性は劣悪であり、耐
全面腐食性も悪かった。(A-3) Regarding the three components P, Ni, and Cr, Cr satisfied the requirements of the present invention, but Mn was added in large excess, C was large, and St was small. Therefore, the pitting corrosion resistance was poor, and the general corrosion resistance was also poor.
(A−4)
Crが多くステンレス鋼に相当するものであるため、耐
応力腐食割れ性の評価が悪かった。尚最大孔食深さの項
目において若干の難が残るのは耐全面腐食、性が大変良
好で、孔食発生頻度が少ない為、かえって孔食が一度発
生するとそこに腐食電流が集中しやすくなるためである
。(A-4) Since it contains a lot of Cr and is equivalent to stainless steel, the stress corrosion cracking resistance was evaluated poorly. In terms of maximum pitting depth, there is still some difficulty in general corrosion resistance, which is very good and pitting corrosion occurs less frequently, so once pitting corrosion occurs, corrosion current tends to concentrate there. It's for a reason.
(A−5)
(A−4)に比べてCrが更に多くなり、耐応力腐食割
れの評価が悪いだけでなく、最大孔食深さも劣悪になっ
た。(A-5) Compared to (A-4), Cr was further increased, and not only the stress corrosion cracking resistance was evaluated poorly, but the maximum pitting depth was also poor.
(A−6)
Mnが多く、P、Cr、Niが下限条件を満たさないと
いうのは(A−1)と同じであり、更にStも下限条件
をわずかに満たしておらず、全面腐食および孔食共に悪
い評価が与えられた。(A-6) It is the same as (A-1) that Mn is large and P, Cr, and Ni do not satisfy the lower limit condition, and St also slightly does not satisfy the lower limit condition, causing general corrosion and porosity. Both food received poor reviews.
(A−7)
Niが上限条件を越えているので応力腐食割れが発生し
た。(A-7) Stress corrosion cracking occurred because Ni exceeded the upper limit condition.
(A−8)
Mnが多く、P、Ni、Cr共に少ないので耐食性が低
かった。(A-8) Corrosion resistance was low because Mn was high and P, Ni, and Cr were low.
(A−9)
Pが上限を超える為、TIG法によって熱応力を与えた
ときに溶接割れが発生した。(A-9) Since P exceeded the upper limit, weld cracking occurred when thermal stress was applied by the TIG method.
(A−10)
Siが上限を超える為加工性が低下し、例えば熱間鍛造
時に割れが発生した。(A-10) Since the Si content exceeded the upper limit, workability decreased, and cracks occurred during hot forging, for example.
(A−11)
Sが上限を超える為加工性が低下し、冷間圧延に際して
圧延割れが発生した。(A-11) Since S exceeded the upper limit, workability decreased and rolling cracks occurred during cold rolling.
これらの比較鋼に対し、本発明鋼は第1群、第2群共に
本発明の条件を満足したので、全ての項目において優れ
た評価が与えられた。Compared to these comparative steels, the steel of the present invention satisfied the conditions of the present invention in both Group 1 and Group 2, and therefore was given excellent evaluations in all items.
[発明の効果]
本発明鋼は上記の様な成分組成からなることによって、
耐全面腐食性、耐孔食性および耐応力腐食側れ性の全項
目において優れた効果を示す。[Effect of the invention] The steel of the present invention has the above-mentioned composition, so that
Shows excellent effects in all areas: general corrosion resistance, pitting corrosion resistance, and stress corrosion resistance.
従って臭化リチウム水溶液を始めとする高温高濃度塩類
溶液を使用する吸収式熱機器に対して優れた耐食性を与
えることができ、これら熱機器の操業における安定性を
長期間に亘って保証し得る様になった。Therefore, it can provide excellent corrosion resistance to absorption type thermal equipment that uses high-temperature, high-concentration salt solutions such as lithium bromide aqueous solution, and can guarantee long-term operational stability of these thermal equipment. It became like that.
第1図は吸収式冷凍機の概念図である。 1・・・凝縮器 2・・・蒸発器 3・・・吸収器 4・・・再生器 5・・・熱交換器 頃 FIG. 1 is a conceptual diagram of an absorption refrigerator. 1... Condenser 2... Evaporator 3...Absorber 4...Regenerator 5...Heat exchanger Around the time
Claims (3)
部がFeおよび不可避不純物からなるものであることを
特徴とする耐食性に優れた吸収式熱機器用鋼材。(1) Contains C: 0.25% (meaning by weight %, same below) or less Si: 0.20-3% Mn: 1% or less, P: 0.05-0.15% Cr: 0 .25-11.5% Ni: 0.05-10% Contains one or more selected from the group consisting of the following, with the remainder consisting of Fe and unavoidable impurities. Excellent corrosion resistance. Steel materials for absorption type heat equipment.
部がFeおよび不可避不純物からなるものであることを
特徴とする耐食性に優れた吸収式熱機器用鋼材。(2) Contains C: 0.25% or less Si: 0.20-3% Mn: 1% or less, P: 0.05-0.15% Cr: 0.25-11.5% Ni: Contains one or more selected from the group consisting of 0.05-10%, further S: 0.020-0.10% V: 0.01-0.5% Ti: 0.005-0 .5% Nb: 0.005 to 0.5% An absorbent with excellent corrosion resistance characterized by containing one or more selected from the group consisting of the following, with the remainder consisting of Fe and inevitable impurities. Steel materials for type thermal equipment.
形成され、且つ表面の酸化物皮膜が除去されていること
によって、操業環境下で吸収式熱機器用塩類溶液との反
応生成物皮膜を形成する様に構成されてなることを特徴
とする吸収式熱機器用管。(3) It is formed into a tubular shape using the steel material according to claim (1) or (2), and the oxide film on the surface is removed, so that it can react with a salt solution for absorption heat equipment in an operating environment. A pipe for an absorption type thermal equipment, characterized in that it is configured to form a product film.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63207160A JPH08946B2 (en) | 1988-08-19 | 1988-08-19 | Steel and pipes for absorption heat equipment with excellent corrosion resistance |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63207160A JPH08946B2 (en) | 1988-08-19 | 1988-08-19 | Steel and pipes for absorption heat equipment with excellent corrosion resistance |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0254740A true JPH0254740A (en) | 1990-02-23 |
JPH08946B2 JPH08946B2 (en) | 1996-01-10 |
Family
ID=16535220
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63207160A Expired - Lifetime JPH08946B2 (en) | 1988-08-19 | 1988-08-19 | Steel and pipes for absorption heat equipment with excellent corrosion resistance |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH08946B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102330026A (en) * | 2011-09-09 | 2012-01-25 | 武钢集团昆明钢铁股份有限公司 | Corrosion resisting and shock resisting steel with high strength and preparation method thereof |
WO2014162196A2 (en) | 2013-04-04 | 2014-10-09 | Toyota Jidosha Kabushiki Kaisha | Stainless steel and method of manufacturing the same |
CN109910416A (en) * | 2019-01-31 | 2019-06-21 | 武汉科技大学 | A kind of steel plate anticorrosion radiation protection method |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63105950A (en) * | 1986-08-14 | 1988-05-11 | テイツセン シユタ−ル アクチエンゲゼルシヤフト | Structural steel |
JPS63143241A (en) * | 1986-12-04 | 1988-06-15 | Sumitomo Metal Ind Ltd | Muffler tube for engine exhaust gas |
-
1988
- 1988-08-19 JP JP63207160A patent/JPH08946B2/en not_active Expired - Lifetime
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63105950A (en) * | 1986-08-14 | 1988-05-11 | テイツセン シユタ−ル アクチエンゲゼルシヤフト | Structural steel |
JPS63143241A (en) * | 1986-12-04 | 1988-06-15 | Sumitomo Metal Ind Ltd | Muffler tube for engine exhaust gas |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102330026A (en) * | 2011-09-09 | 2012-01-25 | 武钢集团昆明钢铁股份有限公司 | Corrosion resisting and shock resisting steel with high strength and preparation method thereof |
WO2014162196A2 (en) | 2013-04-04 | 2014-10-09 | Toyota Jidosha Kabushiki Kaisha | Stainless steel and method of manufacturing the same |
US10619950B2 (en) | 2013-04-04 | 2020-04-14 | Toyota Jidosha Kabushiki Kaisha | Stainless steel and method of manufacturing the same |
DE112014001812B4 (en) | 2013-04-04 | 2023-03-09 | Toyota Jidosha Kabushiki Kaisha | Stainless steel and method of making same |
CN109910416A (en) * | 2019-01-31 | 2019-06-21 | 武汉科技大学 | A kind of steel plate anticorrosion radiation protection method |
Also Published As
Publication number | Publication date |
---|---|
JPH08946B2 (en) | 1996-01-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR20150110800A (en) | Ferritic stainless steel sheet having excellent brazability, heat exchanger, ferritic stainless steel sheet for heat exchangers, ferritic stainless steel, ferritic stainless steel for members of fuel supply systems, and member of fuel supply system | |
JPH0244896B2 (en) | ||
KR101485641B1 (en) | Ferritic stainless steel for automotive exhaust system with excellent corrosion resistance for water condensation and formability and the method of manufacturing the same | |
US5653117A (en) | Absorption refrigeration compositions containing thiocyanate, and absorption refrigeration apparatus | |
US20080274008A1 (en) | Corrosion-Resistant Steel Excellent in Toughness of Base Metal and Weld Portion, and Method of Manufacturing the Same | |
JPH0254740A (en) | Steel material and tube for absorption thermal apparatus having excellent corrosion resistance | |
Hathesh | A review on welding related problems and remedy of austenitic stainless steels | |
JPS6058779B2 (en) | High Ni alloy with excellent weldability and corrosion resistance | |
US2776263A (en) | Corrosion inhibitors for deuterium exchange process | |
JP3869906B2 (en) | Stainless steel for ammonia-water absorption cycle heat exchanger | |
JPS61136662A (en) | Austenitic stainless steel having superior resistance to stress corrosion cracking | |
JPH01294845A (en) | Electric resistance welded tube excellent in sour resistance and toughness at low temperature in weld zone and its production | |
WO2014187136A1 (en) | Low-carbon nickel-chromium-iron alloy seamless tube | |
Sands | Transportation and Storage of Strong Nitric Acid | |
RU2206632C2 (en) | Two-layer corrosion-resistant steel | |
JPH02298237A (en) | Absorptive refrigerator | |
JPH10130793A (en) | Salt-resistant ni-added carbon steel for absorption type cooling and warming machine for water | |
JP3333331B2 (en) | Austenitic stainless steel for absorption chiller / heater | |
JPS60238423A (en) | Improvement of corrosion resistance in weld zone of two-phase stainless steel | |
JP3546113B2 (en) | Stainless steel for ammonia-water absorption cycle heat exchanger | |
RU2551340C2 (en) | Corrosion-resistant austenite steel | |
JP3524302B2 (en) | Austenitic stainless steel for absorption chiller / heater | |
JP3591067B2 (en) | Manufacturing method of ERW steel pipe with excellent pitting resistance | |
JPH0885844A (en) | Resistance welded tube excellent in corrosion grooving resistance | |
JPS6029872B2 (en) | absorption refrigerator |