JPH0254376B2 - - Google Patents

Info

Publication number
JPH0254376B2
JPH0254376B2 JP15622482A JP15622482A JPH0254376B2 JP H0254376 B2 JPH0254376 B2 JP H0254376B2 JP 15622482 A JP15622482 A JP 15622482A JP 15622482 A JP15622482 A JP 15622482A JP H0254376 B2 JPH0254376 B2 JP H0254376B2
Authority
JP
Japan
Prior art keywords
polymer
film
acid
graft
complementary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15622482A
Other languages
Japanese (ja)
Other versions
JPS5945328A (en
Inventor
Yoshihito Osada
Toshihiro Yamamoto
Yoshikazu Kondo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Ltd
Original Assignee
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Ltd filed Critical Kanebo Ltd
Priority to JP15622482A priority Critical patent/JPS5945328A/en
Publication of JPS5945328A publication Critical patent/JPS5945328A/en
Publication of JPH0254376B2 publication Critical patent/JPH0254376B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は、高分子間錯䜓を衚面に持぀フむルム
及びその補造方法に関するものである。 近幎異皮高分子間で盞補的分子間盞互䜜甚を利
甚しお錯䜓を圢成せしめ出発高分子ずは異な぀た
性質を有する新芏耇合高分子系−高分子間錯䜓に
関する研究が極めお掻発にな぀おいる。これらの
高分子間錯䜓は、たずえば高分子カチオン〜高分
子アニオンあるいは塩基性高分子〜酞性高分子間
のように互いに異なる荷電を有する高分子間の静
電気的結合に基ずくものポリむオンコンプレツ
クス、電子䟛䞎性〜電子吞匕性高分子間で圢成
する錯䜓氎玠結合、電荷移動結合等その盞互
䜜甚分子間力によ぀お分類できる。「機胜高分
子」第章共立出版瀟を参照ここで䞀方の高分
子ず互いに盞互䜜甚しお錯圢成するような盞手高
分子を盞補性高分子ず呌ぶこずずする。これらの
高分子間錯䜓は協同的な盞互䜜甚によ぀お圢成さ
れるので反応が瞬時に終了するず共に極めお簡単
な操䜜で生成出来、しかも埗られる錯䜓がランダ
ムないしブロツク共重合䜓やグラフト共重合䜓、
曎にはポリマヌブレンドずは異な぀た新しい特性
を有する高分子耇合系であるので倚くの研究者ら
の泚目を集めおおり、すでに限倖過膜、逆浞透
膜、コンタクトレンズ、抗血栓材料、各皮医甚材
料等に関する応甚研究が掻発に展開され䞀郚は既
に実甚化されおいる。 このように興味深い特性を有する高分子間錯䜓
は皮の高分子溶液を混合するこずによ぀お生成
されるのが垞法であるが、この物質は䞊蚘のよう
に皮々の興味深い機胜を有しおいるものの倧きな
欠点は機械的匷床に欠けおいるこずであり、それ
がより広範囲にわたる実甚化をさたたげおいる原
因である。埓぀おもし高分子耇合䜓を䜕らかの方
法によ぀お本来の特性を倱うこずなく機械的匷床
を増匷せしめれば埓来になく新しい応甚の可胜性
が生たれ曎に新しい機胜を付䞎するこずも出来
る。 本発明者らは䞊蚘思想のもず埓来の欠陥を排陀
すべく鋭意怜蚎の結果、本発明を完成させたもの
である。 本発明の目的は疎氎性フむルムにグラフトさせ
たグラフト重合䜓にその盞補性重合䜓を盞互䜜甚
させた高分子間錯䜓を含有する機械的匷床の優れ
たフむルム及びその補造方法を提䟛するにあり他
の目的は限倖過膜、逆浞透膜、抗血栓材料、お
よび各皮医甚材料に有効な高分子間錯䜓をフむル
ム衚面に持぀た疎氎性フむルム及びその補造方法
を提䟛するこずにある。 本発明は疎氎性フむルムを圢成する疎氎性重合
䜓にむオン化ガスプラズマを照射した埌、該プラ
ズマの䞍存圚䞋で芪氎性䞍飜和単量䜓をグラフト
重合せしめた芪氎化フむルムの衚面に該重合によ
り埗られたグラフト重合䜓ずその盞補性重合䜓ず
の高分子間錯䜓を圢成せしめたフむルムにかかる
ものであり、本発明方法は疎氎性フむルムを圢成
する疎氎性重合䜓にむオン化ガスプラズマを照射
した埌、該プラズマの䞍存圚䞋で芪氎性䞍飜和単
量䜓をグラフト重合せしめた芪氎化フむルムを該
重合により埗られたグラフト重合䜓ず高分子間錯
䜓圢成胜を有する盞補性重合䜓を含有する氎溶液
に浞挬した該高分子間錯䜓を圢成させるこずを特
城ずする。 本発明に適甚される疎氎性フむルムずは疎氎性
重合䜓をフむルム圢成したものであれば良いが品
質面や、コスト面からはポリ゚チレン、ポリプロ
ピレン、たたはポリ゚チレンテレフタレヌトから
なる疎氎性フむルムが奜たしい。フむルムには倚
孔性フむルムも䜿甚でき、䟋えば発泡、盞分離に
より孔を圢成させたもの、又はフむルム圢成埌可
溶性成分を溶解陀去したもの、或いは機械的に孔
を圢成させたものが䜿甚される。䟋えば限倖過
膜又は逆浞透膜の甚途に䟛する堎合は倚孔性フむ
ルムがが奜たしい。たた芪氎性䞍飜和単量䜓ずし
おは、ビニル基たたはアリル基を持ちしかも芪氎
性である単量䜓で通垞のラゞカル重合を行なうも
のであれば良く特に限定されない。 䞀般にはアクリルアミド、メタクリルアミド、
−ビニルピロリドンアクリル酞、メタクリル
酞、−スチレンスルホン酞、ビニルスルホン
酞、−メタアクリロむルオキシ゚チルスルホン
酞、−メタアクリロむルオキシ−−ヒドロキ
シプロピルスルホン酞、アリルスルホン酞、メタ
クリルスルホン酞、䞊びにこれらの酞のアンモニ
りム塩、及びアルカリ金属塩、ゞメチルアミノ゚
チルアクリレヌト、ゞメチルアミノ゚チルメタク
リレヌト、ゞ゚チルアミノ゚チルアクリレヌト及
びゞ゚チルアミノ゚ルメタクリレヌト、ビニル
ビリゞン及びビニルビリゞンの塩酞、硝酞、ゞ
メチル硫酞、ゞ゚チル硫酞又は塩化゚チルの玚
化物である。 奜たしい芪氎性䞍飜和単量䜓ずしおはアクリル
酞、メタクリル酞、ヒドロキシ゚チルメタクリ
レヌト、ヒドロキシ゚チルアクリレヌト、アク
リルアミド、メタクリルアミド、アクリルアミ
ド−−メチルプロパンスルホン酞、ゞメ
チルアミノ゚チルメタクリレヌト又はゞメ
チルアミノ゚チルアクリレヌトが挙げられる。 たた本発明におけるグラフト重合のグラフト重
合率は目的、甚途に応じ自由に可倉可胜である
が、奜たしくはフむルムを圢成する疎氎性重合䜓
に察し少くずも0.1重量、奜たしくは0.5重量
以䞊である。本発明の芪氎化フむルムのグラフト
重合率は目的により広範囲に倉えられ、䟋えばヌ
レ性、接着性、印刷性又は塗装性を改良する堎合
はグラフト重合率0.1〜重量、むオン亀換胜、
吞湿性又は反応性を付䞎する堎合或いは電池隔膜
ずしお䜿甚する堎合はグラフト重合率数重量乃
至100重量、吞氎性、むオン亀換性、凝集性又
は金属捕集性を付䞎する堎合はグラフト重合率数
乃至1000重量のものが䜿甚される。勿論これ
を越えた数千重量のものも䜿甚し埗る。 本発明における重合はいわゆるプラズマ開始重
合である。即ちプラズマ開始重合ずは非平衡のむ
オン化ガスプラズマを甚いお重合を開始もしくは
掻性皮を䜜り、か぀プラズマの䞍存圚䞋に重合の
倧郚分もしくは党郚を完結させるものである。む
オン化ガスプラズマの生成はプラズマを生成する
ための公知方法のいずれによ぀おも行なうこずが
出来る。䟋えばJ.R.ホラハンHollahanず
・ベルBell版“プラズマ化孊の応甚技
術”、ワむリヌ、ニナヌペヌク1974および・シ
゚ンShen版“重合䜓のプラズマ化孊”デツ
カヌニナヌペヌク1976に蚘茉されおいる。即
ち高呚波発生噚に連結された平行板電極の間にモ
ノマヌを真空䞋で入れ、真空宀の倖郚又は内郚の
いずれかの平行板を甚いおプラズマを生成させる
こずが出来る。たた倖郚誘導コむルによ぀お電堎
を぀くらせ、むオン化ガスのプラズマを発生させ
おもよく、たた反察に荷電した電極に間隔をおい
お盎接真空宀に入れおプラズマを生成させおもよ
い。 本発明においおは疎氎性重合䜓よりなるフむル
ムだけをむオン化ガスプラズマの存圚䞋に保持し
た埌、該プラズマの䞍存圚䞋の芪氎性䞍飜和単量
䜓の氎溶液䞭で、芪氎性䞍飜和単量䜓を疎氎性重
合䜓よりなるフむルムにグラフト重合させるか、
たたは疎氎性重合䜓よりなるフむルムず芪氎性䞍
飜和単量䜓の氎溶液、たたは疎氎性重合䜓よりな
るフむルムず芪氎性䞍飜和単量䜓のガスずをむオ
ン化ガスプラズマの存圚䞋で重合を開始し、しか
る埌に前蚘フむルムを該単量䜓の氎溶液䞭に浞挬
しお該プラズマの䞍存圚䞋、前蚘フむルム䞊にグ
ラフト重合させる。 むオン化ガスプラズマの䞍存圚䞋芪氎性䞍飜和
単量䜓の氎溶液で重合させる代りに、該単量䜓䞭
又は該単量䜓の乳化液或いは有機溶媒溶液を䜿甚
しおもよい。 本発明に適甚されるグラフト重合䜓の盞補性重
合䜓ずはグラフト重合䜓ず高分子間錯䜓を圢成す
る重合䜓である。䟋えばグラフト重合䜓がアクリ
ル酞、メタクリル酞、無氎マレむン酞などのカル
ボン酞基を有する単量䜓からなる重合䜓では、そ
の盞補性重合䜓ずしおはポリ゚チレングリコヌ
ル、ポリビニルピロリドン、ポリキシリルビオロ
ヌゲン、ポリ゚チレンむミン及びポリビニルピリ
ゞニりムクロラむドなどが挙げられる。たたグラ
フト重合䜓が、アクリルアミド、メタクリルアミ
ド、ビニルピリゞン、−ゞメチルアミノ゚
チルメタクリレヌト又は−ゞメチルアミノ
゚チルアクリレヌトなどの塩基性単量䜓からなる
重合䜓ではその盞補性重合䜓ずしおはポリアクリ
ル酞、ポリメタクリル酞、ポリ−アクリルアミ
ド−メチルプロパンスルホン酞、ポリスチレン
スルホン酞、ポリビニルスルホン酞が挙げられ、
フむルムず盞補性重合䜓を氎溶液䞭に所定時間浞
挬すれば高分子間錯䜓を圢成する。 たた盞補性重合䜓の量は䞀般にフむルムぞのグ
ラフト重合䜓の量によ぀お支配され、䟋えばグラ
フト重合䜓量が倚い堎合は盞補性重合䜓も倚く必
芁ずする。即ちグラフト重合䜓ず錯䜓を圢成する
量だけフむルムに付着するのであるから盞補性重
合䜓の倧過剰の氎溶液䞭で錯䜓を圢成させれば良
い。 本発明方法で曎に詳现に説明すれば脱気を
10-110-4トヌルで行ない疎氎性重合䜓よりなるフ
むルムに䞊蚘方法におプラズマ照射を行なう。奜
たしくは20〜200ワツト、曎に奜たしくは40〜100
ワツトでグロヌ攟電をさせ疎氎性重合䜓に掻性皮
を生成させる。照射時間は通垞〜3600秒、奜た
しくは10〜1800秒間照射する。プラズマ照射を行
な぀た埌に䞊蚘フむルムを芪氎性䞍飜和単量䜓の
氎溶液䞭で該単量䜓を該プラズマの䞍存圚䞋に重
合させるず、前蚘フむルムの掻性皮より該単量䜓
を消費しはじめる、いわゆるグラフト重合が進行
する。埌重合枩床及び時間は䜿甚する単量䜓皮類
によ぀お異なり特に限定されないが通垞枩床は
〜60℃時間は〜25時間で十分である。単量䜓皮
類によ぀おは60℃を超えるず熱重合を起こし䜎分
子のポリマヌも生成しおくるこずがあるので泚意
を芁する。 グラフト重合せしめたフむルムを盞補性重合䜓
を含有する氎溶液䞭に浞挬し高分子間錯䜓を圢成
させる。盞補性重合䜓の濃床はフむルムのグラフ
ト化率、重合䜓の皮類により異なるが通垞0.01〜
モル濃床である。浞挬時の枩床は特に限定され
ず、䟋えば垞枩の堎合15分乃至時間皋床撹拌䞋
に攟眮する。又該氎溶液には食塩等の無機化合物
を添加しお、むオン匷床を䞊げるこずもできる。
氎溶液のPHは盞補性重合䜓の皮類により錯䜓を
圢成し易いように調敎する。浞挬埌必芁に応じ氎
掗し也燥するが、也燥は通垞垞枩で必芁に応じ枛
圧䞋で行なう。 本発明のフむルムは機械的匷床に優れた、しか
も芪氎性、吞氎性、吞湿性、接着性、印刷性又は
金属捕集性に優れおいる為、䟋えば限倖過膜、
逆浞透膜、抗血栓材料及び各皮医甚材料に応甚す
るこずができる。 以䞋本発明を実斜䟋にお詳现に説明する。な
お、実斜䟋䞭グラフト率、氎の接觊角は次の方法
にお枬定した。  グラフト率 グラフト重合したグラフトフむルムを良溶媒
にお日間撹拌掗浄を行ない未反応単量䜓及び
ホモ重合䜓を完党に陀き也燥埌重量によ぀おグ
ラフト率を蚈算 グラフト率凊理埌フむルム重量−初期フ
むルム重量初期フむルム重量×100  氎の接觊角 協和化孊(æ ª)接觊角蚈CA−型を甚いお枬定
した。 実斜䟋  厚さ50ÎŒm䞀蟺15mmの正方圢をしたポリ゚チレ
ンフむルムを10-3トヌルで内埄35mmのセパラブル
フラスコの噚壁に蚭眮し13.56MHzの高呚波発生
装眮に連結させた枚の銅電極板間に挿入し
100Wの出力でプラズマを90秒間発生、照射させ、
その埌10-3トヌル䞭の50重量のアクリル酞氎溶
液を加えお25℃で12時間埌重合させた。埗られた
グラフトフむルムを玔氎にお日間撹拌掗浄、脱
溶媒、也燥しお詊料ずし、氎の接觊角を枬定した
ずころもずのポリ゚チレンフむルムは101゜に比范
しお56゜ず著しく芪氎化されおおり、たたグラフ
ト率は24であ぀た。 該グラフトフむルムをポリビニルベンゞルトリ
メチルアンモニりムクロラむド以䞋PVBず略
称する分子量43000の重量氎溶液25mläž­
に30分間撹拌しながら高分子間錯圢成反応を行な
぀た。次いでこのフむルムを十分氎掗埌、真空也
燥し重量を枬定したずころ、重量増加から錯圢成
したPVBはグラフトしたポリアクリル酞に察し
60重量であ぀た。たたこのフむルムを元玠分折
により窒玠含量を蚈算したずころPVBはポリア
クリル酞に察し19モルであ぀た。このフむルム
の氎に察する接觊角を枬定したずころ0゜であ぀
た。 実斜䟋  実斜䟋で甚いたのず同様のアクリル酞グラフ
トポリ゚チレンフむルムを0.1N氎酞化ナトリり
ム氎溶液100ml䞭に入れ宀枩にお15分間撹拌した
埌、実斜䟋ず同様のPVB氎溶液に浞挬しお也
燥したずころPVBはグラフトしたポリアクリル
酞に察し285重量であ぀た。たたこのフむルム
を元玠分折により窒玠含量を蚈算したずころ95モ
ルであり、たた氎の接觊角は0゜であ぀た。 実斜䟋  実斜䟋ず同様のフむルム、装眮及び実隓条件
を甚い、以䞋に瀺すようなグラフト重合䜓及びそ
の盞補性重合䜓ずの間の錯圢成をおこな぀たずこ
ろ第衚のような結果が埗られた。
The present invention relates to a film having an interpolymer complex on its surface and a method for producing the same. In recent years, research has become extremely active on novel composite polymer systems--polymer complexes that form complexes between different types of polymers using complementary intermolecular interactions and have properties different from those of the starting polymers. These inter-polymer complexes are based on electrostatic bonds between polymers with different charges, such as between polymer cations and polymer anions or between basic polymers and acidic polymers (polyion complexes). , complexes (hydrogen bonds, charge transfer bonds) formed between electron-donating to electron-withdrawing polymers, etc., and can be classified according to their interaction intermolecular forces. (See "Functional Polymers," Chapter 8, Kyoritsu Shuppansha) Here, a partner polymer that interacts with one polymer to form a complex is called a complementary polymer. These inter-polymer complexes are formed through cooperative interactions, so the reaction ends instantly and can be produced with extremely simple operations, and the resulting complexes are random, block copolymers, and graft copolymers. ,
Furthermore, since it is a polymer composite system with new properties different from polymer blends, it has attracted the attention of many researchers, and has already been used in ultrafiltration membranes, reverse osmosis membranes, contact lenses, antithrombotic materials, and various medical applications. Applied research on materials, etc. is being actively carried out, and some of it has already been put into practical use. Polymer complexes with such interesting properties are normally produced by mixing two types of polymer solutions, but this substance has various interesting functions as described above. However, the major drawback is that it lacks mechanical strength, which is what prevents it from being put to practical use more widely. Therefore, if the mechanical strength of a polymer composite can be increased by some method without losing its original properties, new possibilities of application will arise than ever before, and even new functions can be imparted. Based on the above idea, the present inventors have completed the present invention as a result of intensive studies to eliminate the conventional defects. An object of the present invention is to provide a film with excellent mechanical strength containing an inter-polymer complex in which a complementary polymer interacts with a graft polymer grafted onto a hydrophobic film, and a method for producing the same. The object of the present invention is to provide a hydrophobic film having an inter-polymer complex on its surface which is useful for ultrafiltration membranes, reverse osmosis membranes, antithrombotic materials, and various medical materials, and a method for producing the same. In the present invention, after a hydrophobic polymer forming a hydrophobic film is irradiated with ionized gas plasma, a hydrophilic unsaturated monomer is graft-polymerized on the surface of the hydrophilic film in the absence of the plasma. The method of the present invention involves irradiating the hydrophobic polymer forming the hydrophobic film with ionized gas plasma. Then, in the absence of the plasma, a hydrophilic film is prepared by graft polymerizing a hydrophilic unsaturated monomer, and the graft polymer obtained by the polymerization contains a complementary polymer having the ability to form an intermolecular complex. The method is characterized by forming the inter-polymer complex immersed in an aqueous solution. The hydrophobic film applied to the present invention may be any film formed from a hydrophobic polymer, but from the viewpoint of quality and cost, a hydrophobic film made of polyethylene, polypropylene, or polyethylene terephthalate is preferable. Porous films can also be used, such as those in which pores are formed by foaming or phase separation, those in which soluble components are dissolved and removed after film formation, or those in which pores are mechanically formed. For example, when the film is used as an ultrafiltration membrane or a reverse osmosis membrane, a porous film is preferred. The hydrophilic unsaturated monomer is not particularly limited as long as it has a vinyl group or an allyl group and is hydrophilic and can be subjected to normal radical polymerization. Generally acrylamide, methacrylamide,
N-vinylpyrrolidone; acrylic acid, methacrylic acid, P-styrenesulfonic acid, vinylsulfonic acid, 2-methacryloyloxyethylsulfonic acid, 3-methacryloyloxy-2-hydroxypropylsulfonic acid, allylsulfonic acid, methacrylsulfonic acid , and the ammonium salts and alkali metal salts of these acids, dimethylaminoethyl acrylate, dimethylaminoethyl methacrylate, diethylaminoethyl acrylate and diethylaminoel methacrylate, hydrochloric acid, nitric acid, dimethyl sulfate, diethyl sulfate or It is a quaternized product of ethyl chloride. Preferred hydrophilic unsaturated monomers include acrylic acid, methacrylic acid, 2hydroxyethyl methacrylate, 2hydroxyethyl acrylate, acrylamide, methacrylamide, 2-acrylamido-2-methylpropanesulfonic acid, N,N dimethylaminoethyl methacrylate, or N , N dimethylaminoethyl acrylate. Furthermore, the graft polymerization rate in the graft polymerization in the present invention can be freely varied depending on the purpose and use, but is preferably at least 0.1% by weight, preferably 0.5% by weight based on the hydrophobic polymer forming the film.
That's all. The graft polymerization rate of the hydrophilized film of the present invention can be varied over a wide range depending on the purpose. For example, when improving wettability, adhesion, printability, or paintability, the graft polymerization rate is 0.1 to 5% by weight, ion exchange ability,
When imparting hygroscopicity or reactivity, or when used as a battery diaphragm, the graft polymerization rate is a few percent by weight to 100 percent by weight; when imparting water absorbency, ion exchangeability, cohesiveness, or metal trapping ability, the graft polymerization rate is %+ to 1000% by weight is used. Of course, it is also possible to use several thousand percent by weight exceeding this range. The polymerization in the present invention is so-called plasma initiated polymerization. That is, plasma-initiated polymerization is a method in which polymerization is initiated or active species are created using non-equilibrium ionized gas plasma, and most or all of the polymerization is completed in the absence of plasma. Generation of an ionized gas plasma can be accomplished by any of the known methods for generating plasma. For example, "Applied Techniques of Plasma Chemistry" by J. R. Hollahan and A. T. Bell, Wiley, New York 1974 and "Plasma Chemistry of Polymers" by M. Shen, Detzker. New York. Listed in 1976. That is, the monomer can be placed under vacuum between parallel plate electrodes connected to a high frequency generator, and the plasma can be generated using the parallel plates either outside or inside the vacuum chamber. Alternatively, an electric field may be created by an external induction coil to generate a plasma of ionized gas, or a plasma may be generated by placing oppositely charged electrodes spaced apart directly into a vacuum chamber. In the present invention, only a film made of a hydrophobic polymer is held in the presence of an ionized gas plasma, and then a hydrophilic unsaturated monomer is prepared in an aqueous solution of a hydrophilic unsaturated monomer in the absence of the plasma. be graft polymerized onto a film made of a hydrophobic polymer, or
Alternatively, polymerization of a film made of a hydrophobic polymer and an aqueous solution of a hydrophilic unsaturated monomer, or a film made of a hydrophobic polymer and a gas of a hydrophilic unsaturated monomer, is initiated in the presence of ionized gas plasma. Thereafter, the film is immersed in an aqueous solution of the monomer to perform graft polymerization onto the film in the absence of the plasma. Instead of polymerizing with an aqueous solution of a hydrophilic unsaturated monomer in the absence of an ionized gas plasma, an emulsion or an organic solvent solution in or of the monomer may be used. The complementary polymer of the graft polymer applied to the present invention is a polymer that forms an intermolecular complex with the graft polymer. For example, if the graft polymer is made of a monomer having a carboxylic acid group such as acrylic acid, methacrylic acid, or maleic anhydride, complementary polymers include polyethylene glycol, polyvinylpyrrolidone, polyxylyl viologen, and polyethyleneimine. and polyvinylpyridinium chloride. In addition, if the graft polymer is a polymer consisting of a basic monomer such as acrylamide, methacrylamide, vinylpyridine, N,N-dimethylaminoethyl methacrylate or N,N-dimethylaminoethyl acrylate, the complementary polymer is Examples include polyacrylic acid, polymethacrylic acid, poly2-acrylamido-2methylpropanesulfonic acid, polystyrenesulfonic acid, and polyvinylsulfonic acid.
When the film and the complementary polymer are immersed in an aqueous solution for a predetermined period of time, an interpolymer complex is formed. Further, the amount of complementary polymer is generally controlled by the amount of graft polymer to the film; for example, if the amount of graft polymer is large, a large amount of complementary polymer is also required. That is, since an amount of the complementary polymer that forms a complex with the graft polymer is attached to the film, it is sufficient to form the complex in an aqueous solution containing a large excess of the complementary polymer. To explain in more detail in the method of the present invention, degassing is
A film made of a hydrophobic polymer is irradiated with plasma using the above method at a pressure of 10 -1 to 10 -4 Torr. Preferably 20 to 200 watts, more preferably 40 to 100 watts
Glow discharge is caused to generate active species in the hydrophobic polymer. The irradiation time is usually 1 to 3600 seconds, preferably 10 to 1800 seconds. After plasma irradiation, when the film is polymerized in an aqueous solution of a hydrophilic unsaturated monomer in the absence of the plasma, the monomer is consumed by the active species of the film. So-called graft polymerization begins. The post-polymerization temperature and time vary depending on the type of monomer used and are not particularly limited, but the usual temperature is 1.
~60°C time of 1 to 25 hours is sufficient. Depending on the type of monomer, if the temperature exceeds 60°C, thermal polymerization may occur and low-molecular polymers may also be produced, so care must be taken. The graft-polymerized film is immersed in an aqueous solution containing a complementary polymer to form an interpolymer complex. The concentration of the complementary polymer varies depending on the grafting rate of the film and the type of polymer, but is usually 0.01~
The concentration is 1 molar. The temperature during dipping is not particularly limited, and for example, in the case of room temperature, the mixture is left under stirring for about 15 minutes to 1 hour. Moreover, an inorganic compound such as common salt can be added to the aqueous solution to increase the ionic strength.
The pH of the aqueous solution is adjusted depending on the type of complementary polymer to facilitate complex formation. After immersion, it is washed with water and dried if necessary, but drying is usually carried out at room temperature and under reduced pressure if necessary. The film of the present invention has excellent mechanical strength, and also has excellent hydrophilicity, water absorption, hygroscopicity, adhesion, printability, or metal collection property, so it can be used, for example, as an ultrafiltration film.
It can be applied to reverse osmosis membranes, antithrombotic materials and various medical materials. The present invention will be explained in detail below with reference to Examples. In the examples, the grafting rate and water contact angle were measured by the following methods. a Grafting rate Grafting rate is calculated by weight after drying by washing the grafted film with stirring in a good solvent for 2 days to completely remove unreacted monomers and homopolymers Grafting rate (%) = After treatment Film weight - Initial film weight / Initial film weight x 100 b Water contact angle Measured using a contact angle meter model CA-P manufactured by Kyowa Kagaku Co., Ltd. Example 1 A square polyethylene film with a thickness of 50 ÎŒm and a side of 15 mm was placed on the wall of a separable flask with an inner diameter of 35 mm at 10 -3 Torr, and was placed between two copper electrode plates connected to a 13.56 MHz high frequency generator. insert
Generate and irradiate plasma for 90 seconds with an output of 100W,
Thereafter, a 50% by weight aqueous solution of acrylic acid in 10 -3 torr was added and post-polymerized for 12 hours at 25°C. The obtained graft film was washed with stirring in pure water for 2 days, the solvent was removed, and dried to make a sample. When the contact angle of water was measured, it was significantly hydrophilic at 56° compared to 101° for the original polyethylene film. The graft rate was 24%. The graft film was placed in 25 ml of a 5% by weight aqueous solution of polyvinylbenzyltrimethylammonium chloride (hereinafter abbreviated as PVB) (molecular weight 43,000) for 30 minutes while stirring to perform an inter-polymer complex formation reaction. Next, this film was thoroughly washed with water, dried in vacuum, and weighed.As the weight increased, the complex-formed PVB was compared to the grafted polyacrylic acid.
It was 60% by weight. Further, when the nitrogen content of this film was calculated by elemental analysis, the PVB content was 19 mol % based on the polyacrylic acid. When the contact angle of this film with water was measured, it was 0°. Example 2 An acrylic acid-grafted polyethylene film similar to that used in Example 1 was placed in 100 ml of 0.1N sodium hydroxide aqueous solution and stirred at room temperature for 15 minutes, and then immersed in the same PVB aqueous solution as in Example 1. When dried, the PVB was 285% by weight based on the grafted polyacrylic acid. Further, the nitrogen content of this film was calculated by elemental analysis to be 95 mol%, and the contact angle of water was 0°. Example 3 Using the same film, equipment, and experimental conditions as in Example 1, complex formation between the graft polymer and its complementary polymer as shown below was performed, and the results shown in Table 1 were obtained. was gotten.

【衚】【table】

【衚】 実斜䟋  実斜䟋No.で埗られた也燥アクリル酞
AMPSグラフト化ポリ゚チレンフむルムにPVB
を錯圢成したフむルムグラムを玔氎150ml䞭に
12時間浞挬埌氎より取り出しロ玙ず軜く觊れさせ
おフむルムにより衚面の氎滎を陀去した埌重量の
をはか぀たずころ75グラムあ぀た。これよりこの
フむルムは玄25倍の氎を吞氎する胜力を有しおい
るこずがわか぀た。グラフト化しおいないポリ゚
チレンはほずんど吞氎胜力を有しおいなか぀た。 実斜䟋  実斜䟋No.で埗られた也燥したアクリル酞グ
ラフト化ポリ゚チレンフむルムにポリ゚チレンむ
ミンを錯圢成したフむルムグラムをCu2+の6.2
×10-3モル氎溶液50ml䞭に浞挬したずころ玄75
のCu2+が吞着した。
[Table] Example 4 Dry acrylic acid obtained in Example 3 No.5/
PVB to AMPS grafted polyethylene film
Add 3 grams of complexed film to 150 ml of pure water.
After soaking for 12 hours, it was taken out of the water, lightly touched with paper, and the water droplets on the surface were removed using a film. When the weight was weighed, it weighed 75 grams. This revealed that this film had the ability to absorb approximately 25 times more water. The ungrafted polyethylene had almost no water absorption capacity. Example 5 One gram of the dried acrylic acid-grafted polyethylene film obtained in Example 3 No. 4 complexed with polyethyleneimine was mixed with 6.2 ml of Cu 2+ .
Approximately 75% when immersed in 50ml of ×10 -3 molar aqueous solution
of Cu 2+ was adsorbed.

Claims (1)

【特蚱請求の範囲】  疎氎性フむルムを圢成する疎氎性重合䜓にむ
オン化ガスプラズマを照射した埌、該プラズマの
䞍存圚䞋で芪氎性䞍飜和単量䜓をグラフト重合せ
しめた芪氎化フむルムの衚面に該重合により埗ら
れたグラフト重合䜓ずその盞補性重合䜓ずの高分
子間錯䜓を圢成せしめたフむルム。  疎氎性重合䜓がポリ゚チレン、ポリプロピレ
ン又はポリ゚チレンテレフタレヌトである特蚱請
求の範囲第項蚘茉のフむルム。  芪氎性䞍飜和単量䜓がアクリル酞、メタクリ
ル酞、ヒドロキシ゚チルメタクリレヌト、ヒ
ドロキシ゚チルアクリレヌト、アクリルアミド、
メタクリルアミド、−アクリルアミド−−メ
チルプロパンスルホン酞、、ゞメチルアミノ
゚チルメタクリレヌト又は、ゞメチルアミノ
゚チルアクリレヌトである特蚱請求の範囲第項
蚘茉のフむルム。  グラフト重合のグラフト率がフむルムを圢成
する疎氎性重合䜓に察し少なくずも0.1重量で
ある特蚱請求の範囲第項蚘茉のフむルム。  盞補性重合䜓がポリ゚チレングリコヌル、ポ
リキシリルビオロヌゲン又はポリ゚チレンむミン
である特蚱請求の範囲第項蚘茉のフむルム。  盞補性重合䜓がポリアクリル酞、ポリメタク
リル酞、−アクリルアミド−−メチルプロパ
ンスルホン酞、ポリスチレンスルホン酞、ポリビ
ニルスルホン酞である特蚱請求の範囲第項蚘茉
のフむルム。  盞補性重合䜓の量がグラフト化した高分子に
察し繰り返し単䜍で等モル以䞊である特蚱請求の
範囲第項蚘茉のフむルム。  疎氎性フむルムを圢成する疎氎性重合䜓にむ
オン化ガスプラズマを照射した埌、該プラズマの
䞍存圚䞋で芪氎性䞍飜和単量䜓をグラフト重合せ
しめた芪氎化フむルムを、該重合により埗られた
グラフト重合䜓ず高分子間錯䜓圢成胜を有する盞
補性重合䜓を含有する氎溶液に浞挬しお該高分子
間錯䜓を圢成させるこずを特城ずする高分子間錯
䜓を衚面に有するフむルムの補造方法。  疎氎性重合䜓がポリ゚チレン、ポリプロピレ
ン又はポリ゚チレンテレフタレヌトである特蚱請
求の範囲第項蚘茉の方法。  芪氎性䞍飜和単量䜓がアクリル酞、メタク
リル酞、ヒドロキシ゚チルメタクリレヌト、
ヒドロキシ゚チルアクリレヌト、アクリルアミ
ド、メタクリルアミド、アクリルアミド−−
メチルプロパンスルホン酞、、ゞメチルアミ
ノ゚チルメタクリレヌト又は、ゞメチルアミ
ノ゚チルアクリレヌトである特蚱請求の範囲第
項蚘茉の方法。  グラフト重合のグラフト率がフむルムを圢
成する疎氎性重合䜓に察し少なくずも0.1重量
である特蚱請求の範囲第項蚘茉の方法。  盞補性重合䜓がポリ゚チレングリコヌル、
ポリキシリルビオロヌゲン又はポリ゚チレンむミ
ンである特蚱請求の範囲第項蚘茉の方法。  盞補性重合䜓がポリアクリル酞、ポリメタ
クリル酞、−アクリルアミド−−メチルプロ
パンスルホン酞、ポリスチレンスルホン酞、ポリ
ビニルスルホン酞である特蚱請求の範囲第項蚘
茉の方法。  盞補性重合䜓の量がグラフト化した高分子
に察し繰り返し単䜍で等モル以䞊である特蚱請求
の範囲第項蚘茉の方法。
[Scope of Claims] 1. The surface of a hydrophilic film in which a hydrophobic polymer forming a hydrophobic film is irradiated with ionized gas plasma, and then a hydrophilic unsaturated monomer is graft-polymerized in the absence of the plasma. A film in which an interpolymer complex is formed between the graft polymer obtained by the polymerization and its complementary polymer. 2. The film according to claim 1, wherein the hydrophobic polymer is polyethylene, polypropylene, or polyethylene terephthalate. 3 The hydrophilic unsaturated monomer is acrylic acid, methacrylic acid, 2hydroxyethyl methacrylate, 2hydroxyethyl acrylate, acrylamide,
The film according to claim 1, which is methacrylamide, 2-acrylamido-2-methylpropanesulfonic acid, N,N dimethylaminoethyl methacrylate, or N,N dimethylaminoethyl acrylate. 4. The film according to claim 1, wherein the graft ratio of the graft polymerization is at least 0.1% by weight based on the hydrophobic polymer forming the film. 5. The film according to claim 1, wherein the complementary polymer is polyethylene glycol, polyxylylviologen, or polyethyleneimine. 6. The film according to claim 1, wherein the complementary polymer is polyacrylic acid, polymethacrylic acid, 2-acrylamido-2-methylpropanesulfonic acid, polystyrenesulfonic acid, or polyvinylsulfonic acid. 7. The film according to claim 1, wherein the amount of the complementary polymer is at least equimolar in repeating units to the grafted polymer. 8 After irradiating the hydrophobic polymer forming the hydrophobic film with ionized gas plasma, a hydrophilic film obtained by graft polymerizing a hydrophilic unsaturated monomer in the absence of the plasma is obtained by the polymerization. 1. A method for producing a film having an inter-polymer complex on its surface, which comprises immersing the film in an aqueous solution containing a graft polymer and a complementary polymer capable of forming an inter-polymer complex to form the inter-polymer complex. 9. The method according to claim 8, wherein the hydrophobic polymer is polyethylene, polypropylene or polyethylene terephthalate. 10 The hydrophilic unsaturated monomer is acrylic acid, methacrylic acid, 2-hydroxyethyl methacrylate, 2
Hydroxyethyl acrylate, acrylamide, methacrylamide, 2-acrylamide-2-
Claim 8 which is methylpropanesulfonic acid, N,N dimethylaminoethyl methacrylate or N,N dimethylaminoethyl acrylate
The method described in section. 11 Grafting ratio in graft polymerization is at least 0.1% by weight based on the hydrophobic polymer forming the film
The method according to claim 8. 12 Complementary polymer is polyethylene glycol,
9. The method according to claim 8, which is polyxylylviologen or polyethyleneimine. 13. The method according to claim 8, wherein the complementary polymer is polyacrylic acid, polymethacrylic acid, 2-acrylamido-2-methylpropanesulfonic acid, polystyrene sulfonic acid, or polyvinylsulfonic acid. 14. The method according to claim 8, wherein the amount of the complementary polymer is at least equimolar in repeating units to the grafted polymer.
JP15622482A 1982-09-07 1982-09-07 Film having inter-polymer complex at its surface and its preparation Granted JPS5945328A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15622482A JPS5945328A (en) 1982-09-07 1982-09-07 Film having inter-polymer complex at its surface and its preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15622482A JPS5945328A (en) 1982-09-07 1982-09-07 Film having inter-polymer complex at its surface and its preparation

Publications (2)

Publication Number Publication Date
JPS5945328A JPS5945328A (en) 1984-03-14
JPH0254376B2 true JPH0254376B2 (en) 1990-11-21

Family

ID=15623066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15622482A Granted JPS5945328A (en) 1982-09-07 1982-09-07 Film having inter-polymer complex at its surface and its preparation

Country Status (1)

Country Link
JP (1) JPS5945328A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6353263U (en) * 1986-09-24 1988-04-09
JPS63115554A (en) * 1986-11-04 1988-05-20 東レ株匏䌚瀟 Artificial blood vessel excellent in pseudo-endothelium forming property
JPH064713B2 (en) * 1988-07-22 1994-01-19 テルモ株匏䌚瀟 Biocompatible material
JP2717622B2 (en) * 1993-09-29 1998-02-18 鹿島建蚭株匏䌚瀟 Algae control device for fishpond

Also Published As

Publication number Publication date
JPS5945328A (en) 1984-03-14

Similar Documents

Publication Publication Date Title
JP3152931B2 (en) Method for producing polymer sheet
TW483912B (en) Battery diaphragm
US5270137A (en) Secondary battery with graft-polymerized separator
JP2005539117A (en) Process for making graft copolymers useful in membranes
JPS6028851B2 (en) Process for treating films made of hydrophilic polymeric substances
US3376168A (en) Metal-containing graft-polymerized product and method of making same
EP0186758A2 (en) Porous membrane having hydrophilic surface and process of its manufacture
EP0014459B1 (en) Process for production of separators for use in cells
JPH10208767A (en) Diaphragm for vanadium-based redox flow cell and manufacture thereof
JP2005521771A (en) Polymer grafted support polymer
JPH0254376B2 (en)
JPS596469B2 (en) Manufacturing method for battery diaphragm with excellent dimensional stability
JP2610676B2 (en) Method for producing porous separation membrane
US4865743A (en) Method for production of solution-diffusion membranes and their application for pervaporation
JP2001313057A (en) Manufacturing method of ion-exchange filter for solid polymer fuel cell
JPS59160505A (en) Separating membrane having interpolymer complex on surface and its production
JPS59160504A (en) Hydrophilic separating membrane and its production
JPS6034980B2 (en) Method for producing graft membranes with excellent dimensional stability using radiation graft polymerization method
Zouahri et al. Synthesis of perfluorinated cation exchange membranes by preirradiation grafting of acrylic acid onto ethylene‐tetrafluoroethylene films
JP3101058B2 (en) Battery separator
JP3846843B2 (en) Manufacturing method of diaphragm for vanadium redox flow battery
JPH0413368B2 (en)
JP3101085B2 (en) Manufacturing method of battery separator
JPS58205545A (en) Uranium adsorbent containing both amidoxime group and neutral hydrophilic group and its production
JPH0742342B2 (en) Hydrophilized film