JPS63115554A - Artificial blood vessel excellent in pseudo-endothelium forming property - Google Patents

Artificial blood vessel excellent in pseudo-endothelium forming property

Info

Publication number
JPS63115554A
JPS63115554A JP61260718A JP26071886A JPS63115554A JP S63115554 A JPS63115554 A JP S63115554A JP 61260718 A JP61260718 A JP 61260718A JP 26071886 A JP26071886 A JP 26071886A JP S63115554 A JPS63115554 A JP S63115554A
Authority
JP
Japan
Prior art keywords
artificial blood
blood vessel
fibers
less
pseudointima
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61260718A
Other languages
Japanese (ja)
Other versions
JPH0548132B2 (en
Inventor
泰晴 野一色
渡辺 幸二
有一 森
岡本 三宜
昌夫 関
英明 北川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP61260718A priority Critical patent/JPS63115554A/en
Publication of JPS63115554A publication Critical patent/JPS63115554A/en
Publication of JPH0548132B2 publication Critical patent/JPH0548132B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Prostheses (AREA)
  • Materials For Medical Uses (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は実際の体内への植え込みに当たりその前処理と
してのプリクロッティング性および擬内膜形成性に優れ
た人工血管およびその製法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an artificial blood vessel with excellent preclotting properties and pseudo-endometrium formation properties as a pretreatment for actual implantation into the body, and a method for producing the same. be.

(従来の技術) 人工血管に必用とされる特性として取扱性と生体適合性
とがある。取扱性とは体内への植え込みに関する吻合性
、縫合性、耐はつれ性、漏血防止性といった要素である
。生体適合性は抗血栓性である。この生体適合性を付与
するに当たって従来種々の方法が検討されてきたが、基
本的に大きく分けて2つの方法がある。第1の方法は血
管内部へ生体の擬内膜を薄くかつ早期に形成し生体機能
で抗血栓性を付与しようとする方法である。他の方法は
、抗血栓性物質を用いて血管を形成し、半永久的に血栓
が全く形成されないようにしようとするものである。後
者においては、ミクロ的血栓形成とその脱落(剥離)と
の定常状態的存在が大きな本質的問題として最近クロー
ズアップされてきている。また吻合部での生体との不適
合性といった解決困難と思われる問題も残されている。
(Prior Art) Characteristics required for artificial blood vessels include ease of handling and biocompatibility. Handlability refers to factors such as anastomotic properties, suturing properties, fraying resistance, and blood leakage prevention properties regarding implantation into the body. Biocompatibility is antithrombotic. Various methods have been studied in the past to impart this biocompatibility, but there are basically two methods. The first method is to form a thin, biological pseudointima inside a blood vessel at an early stage to provide antithrombotic properties through biological functions. Another method uses antithrombotic substances to form blood vessels and attempts to semi-permanently prevent the formation of blood clots. In the latter case, the steady state existence of microthrombus formation and its shedding (exfoliation) has recently been highlighted as a major and essential problem. Additionally, there remain problems that seem difficult to resolve, such as incompatibility with living organisms at the anastomotic site.

従ってより理想的には生体により近い第1の考え方に基
づく人工血管の開発が望まれる。特にこの方式において
は、生体適合性を上げようとするとハイポーラスな構造
とする必用がある。しかし、ハイポーラスな構造とする
と体内に植え込んだ場合に壁面から漏血が生じ大問題と
なる。従ってこの二律背反を如何に解決するかが重要な
問題であり、いままでこれに十分応えうるちのは開発さ
れていない、特に従来においては、ハイポーラスな構造
のものはプリクロノティングにより漏血を回避する手段
が採られているが単にかがる手段だけでハイポーラスな
ものを問題ない程度にまでブロックすることは極めて困
難であった。更にプリクロノティングのし易さは人工血
管の口径にも関係し特に6mm以下の細口径の人工血管
の場合にはプリクロンティング処理は極めて困難となり
専門的高度の技術が要求される。この場合の困難な点は
プリクロッティング中に凝結した血栓は太い場合に比し
相対的に大きく作用し、更に発達し人工血管内部体側の
血栓と相互に網目状もしくは立体的橋架状に連なり血管
内部を閉塞して仕舞う状態となりやすいためである。ま
たかがるプリクロノティングが不要な程度にまでローポ
ロシティにすると均一なフィブリン膜形成およびそれに
伴う屋内膜形成が著しく狙害される。
Therefore, it is desirable to develop an artificial blood vessel based on the first concept, which is ideally closer to the living body. Particularly in this method, in order to improve biocompatibility, it is necessary to have a highly porous structure. However, if the device has a highly porous structure, blood leaks from the wall surface when implanted in the body, which poses a major problem. Therefore, how to resolve this trade-off is an important issue, and until now no solution has been developed that satisfactorily meets this requirement.In particular, conventionally, highly porous structures avoid blood leakage by preclonoting. Although methods have been adopted to do so, it has been extremely difficult to block highly porous objects to an extent that poses no problem simply by using countermeasures. Furthermore, the ease with which preclonting can be performed is also related to the diameter of the artificial blood vessel; in particular, in the case of an artificial blood vessel with a small diameter of 6 mm or less, preclonting becomes extremely difficult and requires highly specialized techniques. The difficult point in this case is that the thrombus that coagulates during preclotting acts relatively more strongly than when it is thick, and it develops further and connects with the thrombus on the side of the body inside the artificial blood vessel in a network or three-dimensional bridge formation. This is because the inside is likely to become blocked and shut down. Furthermore, if the porosity is made so low that preclonoting is unnecessary, uniform fibrin film formation and the accompanying indoor film formation will be seriously targeted.

(発明が解決しようとする問題点) 本発明の目的は漏血防止と擬内膜形成性に優れた人工血
管とその製法を提供せんとするものである。
(Problems to be Solved by the Invention) An object of the present invention is to provide an artificial blood vessel that is excellent in preventing blood leakage and having pseudointimal formation properties, and a method for manufacturing the same.

(問題点を解決するための手段) 本発明者らは上記従来欠点に対して鋭意検討を進めた結
果下記手段によりプリクロッティング性と擬内膜形成性
に優れた人工血管とその製法を見出したのである。
(Means for Solving the Problems) The present inventors have conducted intensive studies to address the above-mentioned conventional drawbacks, and as a result, have discovered an artificial blood vessel with excellent preclotting properties and pseudo-endometrium formation properties, and a method for manufacturing the same, by the following means. It was.

(1)繊維により形成され6表面の濡れ係数が50秒以
下であることを特徴とする擬内膜形成性に優れた人工血
管。
(1) An artificial blood vessel with excellent pseudointima-forming properties, which is formed from fibers and has a wettability coefficient of 50 seconds or less on its 6 surfaces.

(2)人工血管が1dtex以下の極細繊維を含むもの
である特許請求の範囲第1項に記載の擬内膜形成性に優
れた人工血管。
(2) The artificial blood vessel excellent in pseudointima-forming properties according to claim 1, wherein the artificial blood vessel contains ultrafine fibers of 1 dtex or less.

(3)人工血管が口径6IIlnA以下の部分を含むも
のである特許請求の範囲第1項に記載の擬内膜形成性に
優れた人工血管。
(3) The artificial blood vessel excellent in pseudo-intima-forming properties according to claim 1, wherein the artificial blood vessel includes a portion having a diameter of 6IIlnA or less.

(4)人工血管のMi織が織り9編み1組紐などの基本
構造で構成されており、かつ1dtex以下の極細繊維
が該基本構造組織目の間隙に散在した構造となっている
特許請求の範囲第1項に記載の擬内膜形成性に優れた人
工血管。
(4) A patent claim in which the Mi weave of the artificial blood vessel is composed of a basic structure such as 9 weaves and 1 braid, and ultrafine fibers of 1 dtex or less are scattered in the gaps between the basic structure tissues. The artificial blood vessel excellent in pseudoendometrium formation properties according to item 1.

(5)実質的に繊維により形成された擬内膜形成性に優
れた人工血管の製法であって繊維を予めもしくはチュー
ブ形成後親水化処理することを特徴とする擬内膜形成性
に優れた人工血管の製法(6)R水化処理がプラズマ処
理により行われる特許請求の範囲第5項に記載の凝内膜
形成性に優れた人工血管の製法。
(5) A method for producing an artificial blood vessel with excellent pseudo-intima-forming properties that is substantially formed of fibers, characterized in that the fibers are hydrophilized in advance or after tube formation. Method for producing an artificial blood vessel (6) The method for producing an artificial blood vessel with excellent endomembrane formation according to claim 5, wherein the R hydration treatment is performed by plasma treatment.

(7)親水化処理をアクリル酸、アクリルアミド。(7) Hydrophilic treatment with acrylic acid or acrylamide.

ビニルピロリドン、ポリエチレングリコール。Vinylpyrrolidone, polyethylene glycol.

キチン、キトサン、セルロース5アルギン酸から選ばれ
た少なくとも1種を用いて行われる特許請求の範囲第5
項記載の擬内膜形成性に優れた人工血管の製法。
Claim 5 is carried out using at least one selected from chitin, chitosan, and cellulose 5-alginic acid.
A method for producing an artificial blood vessel with excellent pseudointima-forming properties as described in Section 2.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

本発明の人工血管は繊維を用いて形成された人工血管で
あって、予め親水化処理した繊維を用いチューブを形成
するが、もしくはチューブ形成後、親水化処理すること
によって得られる。本発明は後程説明する表面の濡れ係
数が極めて重要であり、これが層内膜形成性としての生
体適合性及びプリクロッティング性効果に対し、決定的
な影響を与えること、さらにこの効果も特に極細繊維と
組み合わせることにより一層顕著となることを見出した
ものである。例えばブリクロッティング性の改善につい
て、本発明の如く表面(内面)を親水化する手段を考え
てみると、従来の一般的考えでは、表面を親水化(i?
Jれやすく)すると水(血液)は壁面に浸み込み易く漏
れやすくなりむしろブリクロッティング性にとっては逆
効果ではないかと懸念される。然しかかる親水化処理を
行うことにより予想外にも均一にして強固なフィブリン
沈着がみられこれによりブリクロッティング性の著しい
改善あるいは均一なフィブリン膜形成および層内1!り
形成など全く予想外の効果が得られることを見出した。
The artificial blood vessel of the present invention is an artificial blood vessel formed using fibers, and can be obtained by forming a tube using fibers that have been previously treated to make them hydrophilic, or by subjecting them to hydrophilic treatment after forming the tube. In the present invention, the wetting coefficient of the surface, which will be explained later, is extremely important, and this has a decisive influence on the biocompatibility and preclotting effect of interlayer film formation. We have discovered that this effect becomes even more noticeable when combined with fibers. For example, when considering the method of making the surface (inner surface) hydrophilic as in the present invention to improve briquetting properties, the conventional general idea is that the surface is made hydrophilic (i?
There is a concern that water (blood) will easily seep into the wall surface and leak easily, which may actually have the opposite effect on briquetting properties. However, by performing such a hydrophilic treatment, unexpectedly uniform and strong fibrin deposition was observed, which resulted in a significant improvement in briquetting properties, uniform fibrin film formation, and intralayer 1! It was discovered that completely unexpected effects such as the formation of pores can be obtained.

この理由としては従来の人工血管では疎水性が強く血液
が十分内部に浸透しない間に血管の表面にフィブリンが
沈着する。沈着したこのフィブリン層のために血液がさ
らに内部に浸透しようとした場合、フィブリンのもとと
なる血液中のフィブリノーゲンが濾過され、内部に浸透
する血液はフィブリノーゲンを含まない状態のものとな
る。この結果フィブリンがさらに内部に形成されるのが
妨げられる。したがって、漏血防止と細胞形成性に関与
する人工血管の組織内部にまで及ぶ強固なフィブリン付
着と内表面の均一で薄(強固なフィブリン膜が形成され
がたい。然し本発明の如く親水化された人工血管では血
液はフィブリノーゲンを含んだ状態で瞬間的に人工血管
Mi織の内部にまで浸透しそこでフィブリンの析出沈着
が生ずる。このため内部にまでおよぶ繊維との結合の強
い均一なフィブリンの付着状態が形成されるのである。
The reason for this is that conventional artificial blood vessels are highly hydrophobic and fibrin is deposited on the surface of the blood vessel while blood does not penetrate sufficiently into the blood vessel. When blood tries to penetrate further into the interior of the fibrin layer, the fibrinogen in the blood, which is the source of fibrin, is filtered out, and the blood that penetrates into the interior does not contain fibrinogen. This prevents further fibrin from forming internally. Therefore, strong fibrin adhesion extends to the inside of the tissue of the artificial blood vessel, which is involved in blood leakage prevention and cell formation, and the inner surface is uniform and thin (hard fibrin film is difficult to form. However, it is difficult to form a strong fibrin film. In artificial blood vessels, blood containing fibrinogen instantly penetrates into the interior of the artificial blood vessel Mi fabric, where fibrin deposits occur.This results in uniform fibrin adhesion with strong bonds to the fibers that extend into the interior. A state is formed.

本発明は従来の人工血管をそのまま後述する親水化処理
を行うことでも達成可能であるが予め親水化処理を行っ
た繊維を用い人工血管を形成しても良い。
Although the present invention can be achieved by directly subjecting a conventional artificial blood vessel to a hydrophilic treatment described below, the artificial blood vessel may also be formed using fibers that have been previously subjected to a hydrophilic treatment.

本発明においてより効果的なのは1dtex以下の極細
繊維を含むことである。かかる人工血管の作製に当たっ
ては1dtex以下の合成、再生の極細繊維を用い、常
法により作製可能である。
In the present invention, it is more effective to include ultrafine fibers of 1 dtex or less. Such an artificial blood vessel can be manufactured by a conventional method using synthetic or regenerated ultrafine fibers of 1 dtex or less.

しかし極細繊維を用いる場合は、作製途中で糸切れが生
じ易く作製上の問題が多いため、チューブ形成後極細化
可能繊維を用いて行なう方法が推奨される。かかる極細
化可能繊維としては、物理的もしくは化学的処理により
極細化可能な繊維であって2例えば特公昭44−183
69号、特公昭46−3816号、特公昭53−374
03号もしくはポリマーブレンド繊維1等であり2成分
以上の成分の剥離、あるいは少なくとも1成分の分解も
しくは抽出除去によって極細化が可能となる、チェープ
形成方法は通常の方法に従い織り1編み、Al1紐、不
織布の方法で容易に可能である。
However, when ultra-fine fibers are used, thread breakage tends to occur during production and there are many manufacturing problems, so a method using fibers that can be made ultra-fine after tube formation is recommended. Such fibers that can be made ultra-fine include fibers that can be made ultra-fine through physical or chemical treatment, such as those disclosed in Japanese Patent Publication No. 44-183.
No. 69, Special Publication No. 46-3816, Special Publication No. 53-374
No. 03 or polymer blend fiber 1, etc., and can be made extremely fine by peeling off two or more components, or by decomposing or extracting and removing at least one component.The chain forming method follows the usual method, such as 1 weaving, 1 Al string, This is easily possible with the non-woven fabric method.

本発明においては極細繊維の他に、補強もしくはキンキ
ング防止等のため通常の太い繊維と組み合わせても良い
。本発明で従来のごとく単に疎水性の繊維を用い人工血
管を作製した場合、水(血液)と接触した時毛細管現象
がはたらくが特に1dtex以下好ましくは0.6 d
 t e x以下より好ましくはQ、 3 d t e
 x以下の極細繊維を用いると初期の乾いた状態では水
(血液)をはじくマイナス(−)に作用し、十分時間が
たって全体が濡れ始めて親水性が出てきた時点で初めて
プラス(+)に働く。しかしこの時点ではすでにフィブ
リン膜が表面に形成されておりフィブリノーゲンを含ん
だ血液の浸透は阻害され本発明のごとく内部にまでおよ
ぶ強固なフィブリンの付着は生じないことになる。しか
し本発明のごとく最初から親水性にしておくことにより
毛細管現象は正(+)に作用する。しかも極細繊維のた
めにより強く働き血液の血管Mi織内部への浸透が極め
て速やかに均一に行える。また極細繊維を用いる効果と
して細胞形成がいちじるしく促進され1表面に用いた場
合は表面の初期フィブリン層、或いは屋内膜の厚さが極
めて薄く均一となり、特に細口径の場合にを利である。
In the present invention, in addition to ultrafine fibers, ordinary thick fibers may be used in combination for reinforcement or prevention of kinking. In the present invention, when an artificial blood vessel is fabricated simply using hydrophobic fibers as in the past, capillary action occurs when it comes into contact with water (blood), but the fiber is less than 1 dtex, preferably 0.6 d.
t e or less, preferably Q, 3 d t e
When ultra-fine fibers with a diameter of x or less are used, in the initial dry state, they act negatively (-) to repel water (blood), but only after enough time has passed, when the entire fiber begins to get wet and become hydrophilic, does it become positive (+). work. However, at this point, a fibrin film has already been formed on the surface, and the penetration of blood containing fibrinogen is inhibited, so that the strong adhesion of fibrin to the inside does not occur as in the present invention. However, by making the material hydrophilic from the beginning as in the present invention, the capillary phenomenon acts positively (+). Moreover, because of the ultra-fine fibers, it works more strongly and allows blood to penetrate into the blood vessel Mi tissue extremely quickly and uniformly. Furthermore, as an effect of using ultrafine fibers, cell formation is significantly promoted, and when used on one surface, the initial fibrin layer or indoor membrane on the surface becomes extremely thin and uniform in thickness, which is particularly advantageous in the case of small diameter fibers.

さらに好ましい態様としては、かかる極細繊維の利用の
みならずより空隙の多い構造即ち高透水率とすることに
よりより薄く均一な内皮膜の形成が可能となる。
In a more preferred embodiment, it is possible to form a thinner and more uniform endothelial membrane not only by using such ultrafine fibers but also by creating a structure with more voids, that is, a higher water permeability.

本発明では低透水率でも効果があるが、よりその特徴が
発揮されるのは高透水率の場合である。
Although the present invention is effective even with a low water permeability, its characteristics are more pronounced when the water permeability is high.

例えば500 mll1l /min −cn+”  
・120mmH,以上さらには100100O/win
−am”  ・120mm1l、以上100100O0
/ll1in  −cva”  ・12On+mt1.
以下のような場合である。本発明の特徴は細口径で高透
水率の場合に特に顕著となる。従来5mm以下の細口径
でこのような高透水率の場合は、ブリクロノティングは
極めて難しめ′1ったが1本発明は繊維表面の親水性を
改善することでフィブリンの付着量が高められ血管を血
栓で閉塞させずにブリクロッティングを薄く均一におこ
なえることを見出した。
For example, 500 ml1l/min -cn+”
・120mmH, more than 100100O/win
-am”・120mm1l, more than 100100O0
/ll1in -cva” ・12On+mt1.
The following cases apply. The features of the present invention are particularly noticeable when the diameter is small and the water permeability is high. Conventionally, it was extremely difficult to perform fibrin knotting in the case of such a high water permeability with a narrow diameter of 5 mm or less, but the present invention increases the amount of fibrin attached by improving the hydrophilicity of the fiber surface. We have discovered that briquetting can be performed thinly and uniformly without occluding blood vessels with blood clots.

親水性付与としてはプラズマ処理等の物理的加工が生体
への影響の少なさの点で最も好ましいが、アクリル酸、
アクリルアミド、ビニルピロリドン、ポリエチレングリ
コールなど通常親水化剤とし利用されるものあるいはセ
ルロース、キトサン、アルギン酸等もしくはその変成物
を単独あるいは混合したものを適宜用い親水化処理する
ことも可能である。この場合はモノマー、ポリマー、の
状態で華に繊維に付着させておくだけでもよいが、共重
合、繊維へのグラフト重合の形でも利用可能である。ま
たより効果的な手法としては−C00H,や −3O3
,OH,などの親水基をポリマー段階で共重合したポリ
マーを用い繊維化したものを用いることもよい。かかる
親木基を付与することはフィブリン析出、細胞との親和
性との点で特に好ましい。またかかる親水化処理は繊維
を形成する前のポリマー段階もしくは繊維形成後の状態
で予め行った後、チューブを形成してもよいが、チュー
ブ形成後処理したほうが自由度の点から好ましい。
For imparting hydrophilicity, physical processing such as plasma treatment is most preferable in terms of having little effect on living organisms, but acrylic acid,
It is also possible to carry out the hydrophilic treatment using acrylamide, vinyl pyrrolidone, polyethylene glycol, or other commonly used hydrophilic agents, or cellulose, chitosan, alginic acid, etc., or modified products thereof alone or in combination, as appropriate. In this case, it is sufficient to simply attach it to the fibers in the form of a monomer or polymer, but it can also be used in the form of copolymerization or graft polymerization onto fibers. Moreover, as a more effective method, -C00H, or -3O3
It is also possible to use a polymer obtained by copolymerizing hydrophilic groups such as , OH, etc. at the polymer stage and making it into fibers. Providing such a parent tree group is particularly preferable in terms of fibrin precipitation and affinity with cells. Further, such hydrophilic treatment may be performed in advance at the polymer stage before fiber formation or after fiber formation, and then tubes are formed, but it is preferable to perform the treatment after tube formation from the viewpoint of flexibility.

一層プラズマ処理はアルゴン、酸素、窒素、アンモニア
、水素、などの如きプラズマ処理に用いられる一般的ガ
スを、単独もしくは混合状態のものを用い、加電圧を調
整して行いうる。
Further, the plasma treatment can be carried out by adjusting the applied voltage using common gases used in plasma treatment, such as argon, oxygen, nitrogen, ammonia, hydrogen, etc., singly or in a mixed state.

親水化処理の条件としてはそれぞれの場合に応じていち
がいには決め難いが、親水性の目安として、たとえば表
面の濡れ係数が50秒以下、より好ましくは30秒以下
、さらには5秒以下である0表面の濡れ係数は以下の定
義・方法に従うものである。
The conditions for hydrophilic treatment are difficult to determine depending on each case, but as a guideline for hydrophilicity, for example, the wettability coefficient of the surface is 50 seconds or less, more preferably 30 seconds or less, and even 5 seconds or less. The surface wettability coefficient follows the definition and method below.

測定方法はまず人工血管を切り開き余分な力がかからな
い程度になるべくピーンと張った状態で枠に水平に固定
する。その3cm上に針の先端がくるように、lcc容
量の注射器をホルダーに固定する。用いる注射針はTE
RUMO26G1/20.45 X 13mmに準じる
もので水滴0.005ccが滴下できるものである。こ
の注射針によって蒸溜水を試験片上に1滴滴下しこの時
の時間から試験片上の水滴が特別の反射を示さなく成っ
た時まで(試験片に吸収された時まで)の時間を0.1
秒車位まで読み取る。これを3ケ所で行いこの平均値を
その試料の濡れ係数と定義する。本発明ではかかる濡れ
係数を50秒以下より好ましくは30秒以下とすること
で初期ブリクロッティングの状態を安定化させ極めてス
ムーズなブリクロッティングを可能としこれにより薄く
均一な生体屋内膜形成が可能となる。
To measure, first cut open the artificial blood vessel and fix it horizontally on a frame with as much tension as possible without applying any extra force. A syringe with an lcc capacity is fixed in the holder so that the tip of the needle is 3 cm above the syringe. The injection needle used is TE.
It is similar to RUMO26G1/20.45 x 13mm and can drop 0.005cc of water. One drop of distilled water is dropped onto the test piece using this syringe needle, and the time from this point until the water droplet on the test piece no longer shows any particular reflection (until it is absorbed by the test piece) is 0.1.
Reads down to the second wheel position. This is done at three locations and the average value is defined as the wetting coefficient of the sample. In the present invention, by setting the wetting coefficient to 50 seconds or less, preferably 30 seconds or less, the initial briquetting condition is stabilized and extremely smooth briquetting is possible, thereby forming a thin and uniform indoor membrane in living organisms. It becomes possible.

本発明のさらに効果的な手段としては織り1編み5組紐
等の組織により形成された場合は、各織目、網目等の空
隙に基本組織を構成するよりも少ない割合の極細繊維が
実質的に縦横に散在する様な構造となさしめることであ
る。より具体的にはMi織の目の空隙に一本以上の極細
繊維が単独もしくは集団として透水を妨げない程度に散
在する構造であって、より理想的には独立分繊した極細
繊維が蜘蛛の巣状に薄(散在するようになさしめた状態
である。高透水率となすには例えばwi組織の場合は目
を粗くせざるを得ないがこれだと十分なブリクロッティ
ング性、即ち薄皿防止効果はなくなる。しかし極細繊維
が織り目の間隙に縦横に僅かでも存在すると、それが血
液凝固のための核となり、良好なブリクロノティングが
可能となるのである。しかも極細繊維は細く、広がった
状態で僅か存在するだけで十分であり、質量としては極
めて少なくて済みこのため実質的に生体細胞形成のため
に好ましいとされている高透水構造の阻害要因とはなら
ない。また、かかる状態のものをさらに親水化処理する
ことによりより一層の効果が期待出来るのである。第1
図、第2図にこの構造の概念図を示した。これらは車な
る典型的な例であり、実際はこれらが混在した状態も多
(存在するためこれにとられれるものでない、この原理
は組織の目の大きな空間を分繊した極細繊維が薄い蜘蛛
の巣状に走っており実質的に透水率を妨げないが、プリ
クロッティング性は著しく上がるのである。さらに警鳴
的にこの現象を説明すると、極細繊維で構成されている
ため通常目ではほとんど感知出来ないような蜘蛛の巣が
、空気は良く通すが露の核となり巣の糸に沿って大きな
露の玉が出来る現象ににている。
As a more effective means of the present invention, when the structure is formed by a structure such as one weave, five braids, etc., a smaller proportion of ultrafine fibers than in the basic structure is substantially present in the voids of each weave, mesh, etc. The idea is to create a structure that looks like it is scattered horizontally and vertically. More specifically, it is a structure in which one or more ultrafine fibers are scattered individually or in groups in the voids of the Mi weave to the extent that they do not impede water permeation, and more ideally, independently separated ultrafine fibers are In order to achieve high water permeability, for example, in the case of a wi structure, it is necessary to make the mesh coarse, but this has sufficient briclotting properties, i.e., thin The anti-dish effect is lost.However, if even a small amount of ultrafine fibers exist vertically and horizontally in the gaps between the weaves, they become nuclei for blood coagulation, allowing for good blood clotting.Moreover, ultrafine fibers are thin and spread out. It is sufficient to exist in a small amount in such a state, and the mass is extremely small, so it does not substantially inhibit the highly water-permeable structure that is considered preferable for the formation of biological cells. Further effects can be expected by further treating the material to make it hydrophilic.Part 1
A conceptual diagram of this structure is shown in Fig. 2. These are typical examples of cars, and in reality there are many situations in which these are mixed (there are many), so this should not be taken as such. Although they run in a nest-like pattern and do not substantially impede water permeability, they significantly increase pre-clotting properties.Another alarming explanation of this phenomenon is that they are composed of ultra-fine fibers that are almost invisible to the normal eye. Spider webs, which appear to be thin, allow air to pass through well, but act as a nucleus for dew, causing large dew beads to form along the threads of the web.

即ち血液が対象となる人工血管では1本発明の構造とす
ることにより一般の意味での透水性は十分あるものの血
液の凝固核として作用し、プリクロッティング性を著し
く高められるのである。
That is, in the case of an artificial blood vessel in which blood is the object, by adopting the structure of the present invention, although it has sufficient water permeability in a general sense, it acts as a coagulation nucleus for blood, and the preclotting property can be significantly improved.

かかる構造となすに当たっては織り、編み5組紐等のM
i織によって作製したチューブを高速流体例えば、ウォ
ータージェット、エアージェット。
When constructing such a structure, weave, knit, etc.
The tubes made by weaving can be used with high-speed fluids such as water jets and air jets.

等で処理して組織を適宜乱す手段、あるいは真綿状のウ
ェッブをかさね同様な処理により一体化する手段、また
表面起毛とこれら手段とを組み合わせること等により達
成できる。本発明に係る人工血管は一部に口径6mm以
下の部分を含むものであす、単なるストレートタイプは
もちろん分岐タイプ、テーパーを存するタイプ、などタ
イプを問わずいずれも適用可能である。
This can be achieved by appropriately disturbing the structure by processing with a similar process, by stacking cotton-like webs and integrating them by a similar process, or by combining these methods with surface raising. The artificial blood vessel according to the present invention includes a part with a diameter of 6 mm or less, and can be applied to any type, such as a simple straight type, a branched type, a tapered type, etc.

本発明に適用可能な繊維用ポリマー例としてはポリエス
テル、ポリアミド、ポリウレタン、コラーゲン、セルロ
ース、ポリフェニレンスルファイドもしくはポリスルホ
ン、ポリテトラフルオロエチレンに代表される弗素系ポ
リマー、ポリオレフィン、ポリエーテルお・よびこれら
の共重合体などであるがかかる人工血管に適用可能なも
のなら特にこれらにとられれにるものではない。然し一
般的に言って特にポリエステルが好ましい。
Examples of fiber polymers applicable to the present invention include polyester, polyamide, polyurethane, collagen, cellulose, polyphenylene sulfide or polysulfone, fluorine-based polymers represented by polytetrafluoroethylene, polyolefins, polyethers, and copolymers thereof. Although such methods may include merging, they are not particularly applicable as long as they are applicable to such artificial blood vessels. However, polyesters are generally preferred.

またブリクロッティングを行うに際し、大口径のものは
比較的容易であるが細口径の場合は内部の閉塞化が生じ
やすく困難となる。特に高透水率の場合は目の間を完全
に血栓で詰めようとすると血栓の度合、厚みが大きくな
り内部閉塞化が一層起きやす(なる。このプリクロッテ
ィングをより容易に行わしめる手段として1例えば人工
血管内部にほぼその内径に合った、かつ人工血管素材よ
りも凝固血液に対し剥離が容易な状態もしくは物質から
なる棒、パイプ、チューブ等より好ましくは、疎水性の
物質例えばフッ素系、ポリアセタール系、シリコーン系
、ポリオレフィン系、などからなるもしくは表面コーテ
ィングされた棒、パイプ、チューブなどを挿入した状態
でプリクロノティングを行った後棒を引き抜く方法が極
めて効果的であり一般に広く推奨できるii!i期的的
方法である。本発明においてもこの方法は有効に活用出
来よう。
Further, when performing briquetting, it is relatively easy to perform briquetting with a large diameter, but with a small diameter, it is difficult to perform briquetting as it tends to cause internal clogging. Particularly in the case of high water permeability, if you try to completely fill the space between the eyes with blood clots, the degree and thickness of the blood clots will increase, making internal occlusion more likely to occur. For example, rods, pipes, tubes, etc. that are made of a state or substance that approximately matches the inner diameter of the artificial blood vessel and that is easier to peel off from coagulated blood than the artificial blood vessel material are preferably hydrophobic materials such as fluorine-based materials or polyacetal. The method of inserting a rod, pipe, tube, etc. made of silicone, silicone, polyolefin, etc. or whose surface is coated, performing preclonoting, and then pulling out the rod is extremely effective and widely recommended.ii! This is an idiosyncratic method.This method can be effectively utilized in the present invention as well.

(実施例) 実施例 1 縦糸55dtex−48fのポリエチレンテレフタレー
ト、緯糸に220dtex−72fの高分子配列体繊維
を用いて平織組v60チェープを作製した。この時用い
た高分子配列体繊維は海成分ポリスチレン20部、島成
分ポリエチレンテレフタレート80部で品数16/fで
あった。このチューブを80℃のソーダ灰を添加した湯
で十分処理したのちトルエン中につけ次いで起毛機で起
毛しさらにウォータージェットパンチを行った。クリン
プ付与処理を行った後Arガスの存在下でプラズマ処理
を行なった。この人工血管の内径は3mmΦで、また透
水率は3700m1/m1n−120+n+nH,であ
った。織目の間には極細繊維0.16dtexの極細繊
維か分繊し薄く (4本)ランダムに蜘蛛の巣状に走っ
ていた。表面の濡れ係数を測定した結果3.6秒であっ
た。この人工血管に太さ約3mmのポリテトラフルオロ
エチレンの棒を通し犬の血液でプリクロッティングテス
トを行った所血液の乗りがよく内部閉塞もなく均一に良
好なプリクロッティングが出来た。この人工血管を用い
犬に移植し、グリシジル−トリメチル−アンモニューム
−クロライドとヘパリンとの併用処理を行った後血流を
再開し、30日後の経過をみた。
(Examples) Example 1 A plain weave V60 chain was produced using polyethylene terephthalate with a warp of 55 dtex-48 f and polymer array fibers with a weft of 220 dtex-72 f. The polymer array fibers used at this time were 20 parts of sea component polystyrene, 80 parts of island component polyethylene terephthalate, and had a product number of 16/f. This tube was sufficiently treated with hot water containing soda ash at 80° C., then immersed in toluene, raised with a napper, and further subjected to water jet punching. After performing the crimp treatment, plasma treatment was performed in the presence of Ar gas. The inner diameter of this artificial blood vessel was 3 mmΦ, and the water permeability was 3700 m1/m1n-120+n+nH. Between the weaves, 0.16 dtex ultra-fine fibers (4 fibers) were running randomly in a spider web pattern. The wetting coefficient of the surface was measured and found to be 3.6 seconds. When a polytetrafluoroethylene rod with a thickness of about 3 mm was passed through this artificial blood vessel and a preclotting test was performed with dog blood, the blood flowed well and there was no internal blockage, and good preclotting was achieved. This artificial blood vessel was used to transplant into a dog, and after treatment with a combination of glycidyl-trimethyl-ammonium chloride and heparin, blood flow was resumed, and the progress was observed 30 days later.

この結果内表面にすでに一部擬内膜の形成が認められた
が、約20μmと極めて薄くかつ均一であった。
As a result, some pseudointimal membrane formation was already observed on the inner surface, but it was extremely thin and uniform at about 20 μm.

比較例 1 実゛施例1でプラズマ処理せずにそのままのものを用い
同様にプリクロッティング処理を行った。
Comparative Example 1 Pre-clotting treatment was performed in the same manner as in Example 1 without plasma treatment.

このものは血液の乗りが悪<、J!Xさむらが出来プリ
クロッティングを完全に行おうとすると内部に血栓の相
互のja渡しが出来5氷中3本はすでにこの段階で完全
に閉塞してしまった。
This thing has bad blood<, J! When X Samurai was formed and I tried to complete the preclotting, blood clots formed inside each other and three of the five tubes were already completely occluded at this stage.

実施例 2 実施例1でプラズマ処理条件で加電圧を変更し表面の濡
れ係数38秒のものを試作した。実施例1と同様に良好
なプリクロッティング性を示した実施例 3 実施例1における高分子配列体繊維を用いトーションレ
ース組織でチューブを形成した。同様にトルエンで処理
した後、プラズマ処理直後に空気に触れない状態でアク
リル酸のガスと接触させた、このサンプルの濡れ係数は
0.9秒であった。
Example 2 A sample with a surface wetting coefficient of 38 seconds was produced by changing the applied voltage under the plasma treatment conditions in Example 1. Example 3 Showing Good Pre-Clotting Properties Like Example 1 Using the polymer array fibers in Example 1, a tube was formed with a torsion lace structure. The wetting coefficient of this sample, which was similarly treated with toluene and then brought into contact with acrylic acid gas without exposure to air immediately after plasma treatment, was 0.9 seconds.

このサンプルを実施例1と同様にプリクロッティング処
理したところ血液の乗りが良(プリクロッティング処理
は極めて良好に出来た。
When this sample was subjected to preclotting treatment in the same manner as in Example 1, the blood was coated well (the preclotting treatment was performed extremely well).

比較例 2 55dtex−35fのポリエチレンテレフカレート繊
維を縦、緯糸に用い3IΦの内径のチューブで透水率3
300ml/min−120mmH9のチューブを形成
した。これをプリクロッティング処理したところ不均一
な状態のプリクロッティング性しか示さなかった。
Comparative Example 2 55dtex-35f polyethylene terephthalate fibers were used for the warp and weft, and a tube with an inner diameter of 3IΦ had a water permeability of 3.
A tube of 300ml/min-120mmH9 was formed. When this was subjected to preclotting treatment, it showed only non-uniform preclotting properties.

実施例3 縦糸に55dtex−48fのポリエチレンテレフタレ
ート、緯糸に170dtex−5Ofの高分子配列体繊
維を用いて平織組織でチューブを作製した。この時用い
た高分子配列体繊維は海成分熱水可溶型ポリエステル共
重合体10部、島成分ポリエチレンテレフタレート90
部で品数16/fであった。この組み合わせで平織によ
りチューブを形成し、熱水中につけたのちウォータージ
ェット処理した。さらにクリンプ加工を行って作製した
内径3Iφの人工血管を用い、下記水準のプラズマ処理
を行った。血液に対する濡れテストとして、スライドグ
ラスの上に大の血液をたらして且つそれに接し各長さ3
.5 c mのサンプルを垂直に立て血液が染み込んで
み上昇して平衡に達する時間と高さく c m )を見
た。水準1〜3はいずれも10秒以下で水準4は15秒
以下であった。この結果は水準1〜4はいずれも、比較
水準5が半分の高さにしか浸透せずしかも長時問掛かっ
ていることに比し瞬間的に良く染み込むこと示している
Example 3 A tube was fabricated using a plain weave structure using polyethylene terephthalate of 55 dtex-48f for the warp and polymer array fibers of 170 dtex-5Of for the weft. The polymer array fibers used at this time were 10 parts of sea component hot water soluble polyester copolymer and 90 parts of island component polyethylene terephthalate.
The number of items in the department was 16/f. A tube was formed from this combination by plain weaving, immersed in hot water, and then subjected to water jet treatment. Furthermore, using an artificial blood vessel with an inner diameter of 3Iφ prepared by crimping, plasma treatment was performed at the following level. As a wetting test for blood, drop a large amount of blood onto a slide glass and place 3 lengths of blood in contact with it.
.. A 5 cm sample was held vertically, and the time and height (cm) for blood to soak in, rise, and reach equilibrium were observed. Levels 1 to 3 were all 10 seconds or less, and Level 4 was 15 seconds or less. This result shows that levels 1 to 4 all penetrate well instantly compared to comparative level 5, which penetrates only half the height and takes a long time.

またこれらサンプルのフィブリン吸着量の効果として、
血管を完全に血液に浸し、10分後(血液が完全に凝固
した後)生理食塩水につけ、ついで蒸溜水に浸し血液細
胞を浸透圧で破壊し、繊維間隙に強固に形成されたフィ
ブリンのみを残し乾燥後重量を測定し付着率を算出した
In addition, as an effect of the amount of fibrin adsorbed in these samples,
The blood vessel is completely immersed in blood, and after 10 minutes (after the blood has completely coagulated) it is immersed in physiological saline, and then in distilled water to destroy blood cells with osmotic pressure, removing only the fibrin that is firmly formed between the fibers. After drying, the remaining weight was measured and the adhesion rate was calculated.

この結果、本発明に関する水準1〜4は比較水準5に比
し2倍のしかも強固なフィブリンが形成されていた。な
おこの人工血管のプラズマ処理したものの濡れ係数はい
ずれも1秒以下で比較品は*10秒以下、**15秒以
下 (本発明の効果) 本発明に係る人工血管は、プリクロッティング性に優れ
、薄<良好なプリクロッティングと薄く均一な屋内膜形
成が可能となり細口径における閉塞性を著しく軽減でき
る。
As a result, in Levels 1 to 4 according to the present invention, fibrin was twice as strong as that in Comparative Level 5 and was formed. The wetting coefficients of the plasma-treated artificial blood vessels were all 1 second or less, and the comparative products were *10 seconds or less and **15 seconds or less (effects of the present invention). Excellent, thin < good preclotting and thin, uniform indoor film formation are possible, and occlusion in small diameters can be significantly reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は本発明にかかる&11織のめの間陳に
極細繊維が分繊して薄く散在する状態の14I!!念図
であって、第1図は極細繊維が縦横に横切っている場合
、第2図は極wfi繊維が単に頭を出している状態の典
型例である。
Figures 1 and 2 show 14I! in a state in which ultrafine fibers are separated and thinly scattered in the mesh of &11 weave according to the present invention! ! As a conceptual diagram, FIG. 1 shows a typical example in which the ultra-fine fibers are crisscrossing each other, while FIG. 2 shows a typical example in which the ultra-wfi fibers are simply protruding.

Claims (7)

【特許請求の範囲】[Claims] (1)繊維により形成され、表面の濡れ係数が50秒以
下であることを特徴とする擬内膜形成性に優れた人工血
管。
(1) An artificial blood vessel with excellent pseudointima-forming properties, which is formed from fibers and has a surface wetting coefficient of 50 seconds or less.
(2)人工血管が1dtex以下の極細繊維を含むもの
である特許請求の範囲第1項に記載の擬内膜形成性に優
れた人工血管。
(2) The artificial blood vessel excellent in pseudointima-forming properties according to claim 1, wherein the artificial blood vessel contains ultrafine fibers of 1 dtex or less.
(3)人工血管が口径6mm以下の部分を含むものであ
る特許請求の範囲第1項に記載の擬内膜形成性に優れた
人工血管。
(3) The artificial blood vessel with excellent pseudointima-forming properties according to claim 1, wherein the artificial blood vessel includes a portion with a diameter of 6 mm or less.
(4)人工血管の組織が織り、編み、組紐などの基本構
造で構成されており、かつ1dtex以下の極細繊維が
該基本構造組織目の間隙に散在した構造となっている特
許請求の範囲第1項に記載の擬内膜形成性に優れた人工
血管。
(4) The tissue of the artificial blood vessel is composed of basic structures such as weaving, knitting, and braiding, and ultrafine fibers of 1 dtex or less are scattered in the gaps between the basic structural tissues. The artificial blood vessel having excellent pseudoendometrium formation properties as described in item 1.
(5)実質的に繊維により形成された擬内膜形成性に優
れた人工血管の製法であって繊維を予めもしくはチュー
ブ形成後親水化処理することを特徴とする擬内膜形成性
に優れた人工血管の製法。
(5) A method for producing an artificial blood vessel with excellent pseudo-intima-forming properties that is substantially formed of fibers, characterized in that the fibers are hydrophilized in advance or after tube formation. Manufacturing method for artificial blood vessels.
(6)親水化処理をプラズマ処理により行う特許請求の
範囲第5項に記載の擬内膜形成性に優れた人工血管の製
法。
(6) The method for producing an artificial blood vessel with excellent pseudointima-forming properties according to claim 5, wherein the hydrophilic treatment is performed by plasma treatment.
(7)親水化処理をアクリル酸、アクリルアミド、ビニ
ルピロリドン、ポリエチレングリコール、キチン、キト
サン、セルロース、アルギン酸から選ばれた少なくとも
1種を用いて行う特許請求の範囲第5項記載の擬内膜形
成性に優れた人工血管の製法。
(7) Pseudointima-forming property according to claim 5, in which the hydrophilic treatment is performed using at least one selected from acrylic acid, acrylamide, vinylpyrrolidone, polyethylene glycol, chitin, chitosan, cellulose, and alginic acid. A manufacturing method for artificial blood vessels with excellent results.
JP61260718A 1986-11-04 1986-11-04 Artificial blood vessel excellent in pseudo-endothelium forming property Granted JPS63115554A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61260718A JPS63115554A (en) 1986-11-04 1986-11-04 Artificial blood vessel excellent in pseudo-endothelium forming property

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61260718A JPS63115554A (en) 1986-11-04 1986-11-04 Artificial blood vessel excellent in pseudo-endothelium forming property

Publications (2)

Publication Number Publication Date
JPS63115554A true JPS63115554A (en) 1988-05-20
JPH0548132B2 JPH0548132B2 (en) 1993-07-20

Family

ID=17351793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61260718A Granted JPS63115554A (en) 1986-11-04 1986-11-04 Artificial blood vessel excellent in pseudo-endothelium forming property

Country Status (1)

Country Link
JP (1) JPS63115554A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03254752A (en) * 1989-12-13 1991-11-13 Korea Res Inst Of Chem Technol Artificial blood vessel coated with polysaccharide or its derivative and manufacture of said artificial blood vessel
WO2001070292A1 (en) * 2000-03-24 2001-09-27 Yuichi Mori Artificial hollow organ
WO2014038219A1 (en) * 2012-09-07 2014-03-13 有限会社ナイセム Medical material for long-term in vivo implantation use which is made from ultrafine fiber
WO2014168198A1 (en) * 2013-04-12 2014-10-16 東レ株式会社 Antithrombotic artificial blood vessel
EP2985041A4 (en) * 2013-04-12 2016-10-19 Toray Industries Antithrombotic artificial blood vessel

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0945145A (en) * 1995-08-01 1997-02-14 Nec Corp Electromagnetic radiation countermeasure cable, connector, and cable connecting structure
EP3106128B1 (en) 2014-02-12 2020-12-02 Toray Industries, Inc. Artificial blood vessel

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5493121A (en) * 1977-12-12 1979-07-24 Akzo Nv Hydrophilic polyester fiber and production thereof
JPS56157437A (en) * 1980-05-07 1981-12-04 Sumitomo Electric Ind Ltd Preparation of hydrophilic porous structure
JPS5945328A (en) * 1982-09-07 1984-03-14 Kanebo Ltd Film having inter-polymer complex at its surface and its preparation
JPS6077764A (en) * 1983-10-05 1985-05-02 東レ株式会社 Artificial blood vessel

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5493121A (en) * 1977-12-12 1979-07-24 Akzo Nv Hydrophilic polyester fiber and production thereof
JPS56157437A (en) * 1980-05-07 1981-12-04 Sumitomo Electric Ind Ltd Preparation of hydrophilic porous structure
JPS5945328A (en) * 1982-09-07 1984-03-14 Kanebo Ltd Film having inter-polymer complex at its surface and its preparation
JPS6077764A (en) * 1983-10-05 1985-05-02 東レ株式会社 Artificial blood vessel

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03254752A (en) * 1989-12-13 1991-11-13 Korea Res Inst Of Chem Technol Artificial blood vessel coated with polysaccharide or its derivative and manufacture of said artificial blood vessel
US5415619A (en) * 1989-12-13 1995-05-16 Korea Research Institute Of Chemical Tech. Method of manufacturing a vascular graft impregnated with polysaccharide derivatives
WO2001070292A1 (en) * 2000-03-24 2001-09-27 Yuichi Mori Artificial hollow organ
WO2014038219A1 (en) * 2012-09-07 2014-03-13 有限会社ナイセム Medical material for long-term in vivo implantation use which is made from ultrafine fiber
JP2014050568A (en) * 2012-09-07 2014-03-20 Naisemu:Kk Ultra fine fiber made medical material for extended period organism implant
WO2014168198A1 (en) * 2013-04-12 2014-10-16 東レ株式会社 Antithrombotic artificial blood vessel
EP2985041A4 (en) * 2013-04-12 2016-10-19 Toray Industries Antithrombotic artificial blood vessel
EP2985042A4 (en) * 2013-04-12 2016-10-19 Toray Industries Antithrombotic artificial blood vessel
JPWO2014168198A1 (en) * 2013-04-12 2017-02-16 東レ株式会社 Artificial blood vessel with antithrombotic properties
US9662233B2 (en) 2013-04-12 2017-05-30 Toray Industries, Inc. Antithrombotic artificial blood vessel

Also Published As

Publication number Publication date
JPH0548132B2 (en) 1993-07-20

Similar Documents

Publication Publication Date Title
US5549664A (en) Artificial blood vessel
US5851230A (en) Vascular graft with a heparin-containing collagen sealant
EP0216149B1 (en) Artificial vessel having excellent patency
RU2670970C1 (en) Vascular prosthesis
US9662233B2 (en) Antithrombotic artificial blood vessel
JP6323332B2 (en) Artificial blood vessel
JP6863295B2 (en) Cylindrical woven fabric
KR20180012748A (en) Tubular fabric structure
US4871361A (en) Artificial vessel
JPS63115554A (en) Artificial blood vessel excellent in pseudo-endothelium forming property
RU2646506C1 (en) Artificial blood vessel
EP0495127B1 (en) Artificial blood vessel and production thereof
WO2000018321A1 (en) Hydrophilic synthetic blood vessels
EP0217115B1 (en) Artificial vessel
JPS63115555A (en) Artificial blood vessel excellent in living body compatibility and preclotting property
JP2568100B2 (en) Medical tubular article with excellent antithrombogenicity and method for producing the same
WO2020158847A1 (en) Medical base material for indwelling cardiovascular device
JPS61168365A (en) Antithrombotic medical material
JPS6397158A (en) Artificial blood vessel
RU2288304C1 (en) Thread made from poly(vinylidene sulfide), knitted mesh and a method for manufacture thereof
JPS61244345A (en) Production of artificial blood vessel
JPH02104365A (en) Mandril inserting method for mandril graft
JPS6395050A (en) Artificial blood vessel

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S801 Written request for registration of abandonment of right

Free format text: JAPANESE INTERMEDIATE CODE: R311801

ABAN Cancellation due to abandonment
R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350