JPS6397158A - Artificial blood vessel - Google Patents

Artificial blood vessel

Info

Publication number
JPS6397158A
JPS6397158A JP61243144A JP24314486A JPS6397158A JP S6397158 A JPS6397158 A JP S6397158A JP 61243144 A JP61243144 A JP 61243144A JP 24314486 A JP24314486 A JP 24314486A JP S6397158 A JPS6397158 A JP S6397158A
Authority
JP
Japan
Prior art keywords
blood vessel
artificial blood
water
heparin
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61243144A
Other languages
Japanese (ja)
Inventor
靖 城
金子 憲明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP61243144A priority Critical patent/JPS6397158A/en
Publication of JPS6397158A publication Critical patent/JPS6397158A/en
Pending legal-status Critical Current

Links

Landscapes

  • Prostheses (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 未発明は、新しい人工血管に関し、更に詳しくは、優れ
た耐久性、易縫合性をそなえ、反萌開存性を示す大王血
管に関する。
[Detailed Description of the Invention] [Objective of the Invention] (Industrial Application Field) The present invention relates to a new artificial blood vessel, and more specifically, to a new artificial blood vessel that has excellent durability, easy suturing properties, and exhibits reversal patency. Regarding the great blood vessels.

(従来の技術) 従来、人工血管としてはポリエチレンテレフタレートを
素材とし、これを紡糸して得られるポリエステルの高分
子繊維を編織してチューブ状とし、これに蛇腹状のひだ
をつけてキング現象(屈曲によって折れる現象)を防止
したものや、ポリ四フッ化エチレンをチューブ状に成形
し、延伸加工してフィブリル化(微細な繊維状構造化)
したもの(以後、フッ素樹脂系人工血管という)が用い
られて来た。これらを代用血管として用いると、管壁の
構造が有孔化されているために、この隙間に細胞が浸入
生育し、生体化するという利点がある。
(Prior art) Conventionally, artificial blood vessels have been made from polyethylene terephthalate, which is spun to create a tube-like shape by knitting and weaving polyester polymer fibers. Polytetrafluoroethylene is molded into a tube shape and stretched to form fibrils (fine fibrous structure).
(hereinafter referred to as fluororesin-based artificial blood vessels) have been used. When these are used as blood vessel substitutes, since the structure of the tube wall is porous, there is an advantage that cells can infiltrate and grow in the gaps and become living organisms.

(発明が解決しようとする問題点) 従来のポリエステル繊維による人工血管も又延伸加工し
たポリ四フッ化エチレンの人工血管も、生体に移植され
ると、まず面液と接触する内表面に凝血層が生じ、この
−I−に細胞が増殖して内皮膜を形成して抗血栓性の内
膜となる。このように血管の内壁が生体化してはじめて
人工血管は生体代用物としての役割を果たすのであるが
、最初に生成する凝血層の厚さは1mm−1,5mmに
も達し、また内皮膜が形成された後にもこの内皮膜の肥
厚が経時的にみられる。
(Problems to be Solved by the Invention) When both conventional artificial blood vessels made of polyester fibers and artificial blood vessels made of stretched polytetrafluoroethylene are transplanted into a living body, a blood clot layer first forms on the inner surface that comes into contact with surface fluid. occurs, and cells proliferate in this -I- to form an endothelial membrane, which becomes an antithrombotic intima. In this way, an artificial blood vessel can only serve as a biological substitute when the inner wall of the blood vessel becomes a living body, but the thickness of the blood clot layer that initially forms reaches 1 mm to 1.5 mm, and the endothelial membrane forms. Thickening of this endothelial membrane can be seen over time even after treatment.

このため、血管として移植後、通常内口径の狭窄が生じ
、内ロ径6mm以下のものは実質的に使用出来ない。実
際に安心して用いられる人工血管は、現行の性能では内
r+7¥1011IIn以Hのものである。
For this reason, after transplantation as a blood vessel, stenosis of the inner diameter usually occurs, and those with an inner diameter of 6 mm or less cannot be practically used. Artificial blood vessels that can actually be safely used have current performance values of less than r+7 yen 1011 IInH.

内口径10mm〜61I1mのものは経時的に次第に内
口径が挟まり、3年後の開存率は60〜70%である。
For those with an inner diameter of 10 mm to 61I1 m, the inner diameter gradually becomes narrower over time, and the patency rate after 3 years is 60 to 70%.

現状では内ロ径6mm以下の人T面管では長期開存性が
なく、殊に4mm以下のものでは実用に供しうるちのは
存在しない。
Currently, human T-plane tubes with an inner diameter of 6 mm or less do not have long-term patency, and in particular, there are no tubes with a diameter of 4 mm or less that can be put to practical use.

冠状動脈狭窄のために心不全をおこす店1者を救うため
に行われる冠状動脈バイパス手術には自己の伏在静脈を
摘出して、これを専ら利用しているが、人によっては適
当な伏在静脈が使えない場合がある。
Coronary artery bypass surgery, which is performed to save patients suffering from heart failure due to coronary artery stenosis, involves removing the own saphenous vein and using it exclusively, but some people use an appropriate saphenous vein. Veins may not be available.

幸い自己の伏在静脈を摘出利用して、冠状動脈バイパス
手術に成功しても、これまでの累積成績でみる限り、開
存率は5年後で60〜70%といわれており、30〜4
0%の人は5年後に、再手術を受けなくてはならない。
Fortunately, even if the patient's own saphenous vein is extracted and utilized and the coronary artery bypass surgery is successful, the patency rate is said to be 60-70% after 5 years, based on the cumulative results so far, and the patency rate is 30-30%. 4
0% of people will have to undergo another surgery after 5 years.

この場合、最早利用出来る伏在静脈がないので、この患
者の救命は難しい。
In this case, it is difficult to save the patient's life because there is no longer a saphenous vein available.

このような人々を救命するためには内口径が4+l1f
flないし3+mの開存性に優れた人工血管が必要であ
るが、世界の研究者の10余年に亘る懸命の開発努力に
もかかわらず、実用に供しうる小口径人工血管の開発成
功例はない。
In order to save these people, the inner diameter must be 4+l1f.
There is a need for an artificial blood vessel with excellent patency of fl to 3+ m, but despite over 10 years of strenuous development efforts by researchers around the world, there has been no successful development of a small-diameter artificial blood vessel that can be put to practical use. .

この不成功の原因は、いずれも移植人工血管の閉塞であ
るが、この閉塞には、凝血による閉塞、吻合部に生じる
パヌス(生長肉塊)、吻合部(=j近に生じるステノシ
ス(狭窄)に起因するものが多い。
The cause of this failure is the occlusion of the transplanted artificial blood vessel, and this occlusion includes occlusion due to blood clots, panus (growth mass) occurring at the anastomosis, and stenosis (stenosis) occurring near the anastomosis (=j). Many things are caused by this.

人工血管に要求される基本性能は多岐に亘るが、現在最
も強く要望されているのは、■力学的性質が充分実用に
耐え生体内で劣化しないこと、■生体適合性が良いこと
、■抗血栓性が優れ、狭窄、閉塞しないこと、■取扱い
易いこと、殊に縫合性がよいこと、■易1frk性を備
えていること、■使用中に動脈圧による11径増大等の
異常な形態変化がないこと等があげられる。
The basic performance required for artificial blood vessels is wide-ranging, but the most strongly desired ones at present are: - Mechanical properties that are sufficient for practical use and do not deteriorate in vivo, - Good biocompatibility, and - Resistance. Excellent thrombogenicity, no stenosis or occlusion, ■Easy to handle, especially good sutureability, ■Easy frk property, ■Abnormal morphological changes such as 11 diameter increase due to arterial pressure during use. For example, there is no such thing.

小口径の人工血管を考えると、これが実用に供しうるた
めには、移植後の管内壁に生成する初期血栓の生成を抑
えること、内皮膜の肥厚を抑えることが大切で、4mm
以下の人工血管では、これが達成されないと実用化は難
しい。
Considering small-diameter artificial blood vessels, in order for them to be put to practical use, it is important to suppress the formation of initial thrombus that forms on the inner wall of the vessel after transplantation, and to suppress the thickening of the endothelial membrane.
The following artificial blood vessels will be difficult to put into practical use unless this is achieved.

一方、透析療法を受けている腎不全患者は、治療の度に
血液を体外に導出、あるいは導入するカテーテルを自己
血管に穿刺するが、このカテーテル挿入針は外径が1.
5mm位あるため、平均週3回の穿刺による自己血管の
損傷がひどく、長期透析者には人工血管によるシャント
を作成する必要がある。この場合、内径5111111
〜6mmの人工血管が使用されるが、これらの径のもの
は、既に述べたとおり、移植後数ケ月で30%以上は血
栓生成、凝血層肥大等の狭窄又は閉塞のトラブルで使用
不能となるばかりでなく、移植人工血管の内壁に生じた
血栓層や、生育内皮細胞が穿刺の度にはがれて血液中に
飛散し、種々のトラブルを惹起する。このような状態を
克服するためには、内管につく血栓層を減少させる必要
があり、血栓層を全く生じないような人工血管が理想で
あることは言うまでもない。
On the other hand, renal failure patients receiving dialysis therapy puncture their own blood vessels with catheters to lead or introduce blood outside the body each time they receive treatment, but this catheter insertion needle has an outer diameter of 1.5 mm.
Since the diameter is approximately 5 mm, the damage to the autologous blood vessels caused by puncturing an average of three times a week is severe, and long-term dialysis patients require the creation of a shunt using an artificial blood vessel. In this case, the inner diameter is 5111111
Artificial blood vessels of ~6 mm are used, but as mentioned above, more than 30% of these diameters become unusable within several months after transplantation due to problems such as thrombus formation, clot layer hypertrophy, stenosis, or occlusion. In addition, the thrombus layer formed on the inner wall of the transplanted artificial blood vessel and the grown endothelial cells are peeled off and scattered into the blood every time the graft is punctured, causing various troubles. In order to overcome this situation, it is necessary to reduce the thrombus layer that forms on the inner tube, and it goes without saying that an artificial blood vessel that does not produce any thrombus layer is ideal.

本発明者らは、この初期血栓の生成を何らかの方法で防
ぎ、生体化を促進することによって小口径人工血管、静
脈用人工血管を開発することを目的として種々の検討を
行った結果本発明に到達した。
The present inventors have conducted various studies with the aim of developing small-caliber artificial blood vessels and venous artificial blood vessels by preventing the formation of this initial thrombus and promoting biologicalization by some method, and as a result of the present invention. Reached.

木発明者らは、厳しい条件下での抗血栓性付与を行うた
めに、ヘパリンを利用する方法を種々検討したが、化学
的な変化を加えるとヘパリンの活性が激減することを知
った。本発明者らは、人工血管の血液接触面に化学的な
手法に依らずにヘパリンを存在させる方法について検討
を行い本発明に到達したものである。本発明者らは抗血
栓性物質の開発に交互浸入網目構造(I PN :In
terpenetrating Polymer Ne
tworks)を利用することを考えた。しかし、ヘパ
リンの交7に浸入網目構造(IPN)を形成させること
は極めて難しい。その理由は、交互浸入網目構造(IP
N)を形成させるには、その交絡すべきポリマーの存在
下に、均一に存在する架橋性七ツマ−の架橋反応を行わ
せる必要があり、ヘパリンのように水にしか溶けない物
質をこういう条件下に設定することは出来ない。ヘパリ
ンは水系でしか溶けず、一方、水系で安定にしてかつ均
一にヘパリンと混じ、活性化処理によって架橋を形成し
つつ、重合するモノマーがないからである。
The inventors investigated various methods of using heparin to impart antithrombotic properties under severe conditions, but found that the activity of heparin was drastically reduced when chemical changes were made. The present inventors investigated a method of making heparin present on the blood contact surface of an artificial blood vessel without relying on chemical methods, and arrived at the present invention. The present inventors developed an antithrombotic substance using an interleaved network structure (I PN :In
Terpenetrating Polymer Ne
I thought about using tworks). However, it is extremely difficult to form an infiltrated network (IPN) in the heparin intersections 7. The reason is that the interleaved network structure (IP
In order to form N), it is necessary to carry out a crosslinking reaction of the uniformly existing crosslinkable heptamer in the presence of the polymer to be entangled, and a substance that is only soluble in water, such as heparin, is subjected to such conditions. It cannot be set below. This is because heparin is only soluble in an aqueous system, and on the other hand, it is stable and uniformly mixed with heparin in an aqueous system, and there is no monomer that polymerizes while forming crosslinks through activation treatment.

[発明の構成コ (問題点を解決するための手段と作用)本発明の人工血
管は人工血管の管壁内にヘパリンを内蔵し、内腔表層部
にヘパリン内蔵部に連通した多数の空孔もしくは空隙と
該空孔もしくは空隙を封止する水I11潤性ポリマー層
を右するものであって、その水膨潤性ポリマー層が、水
溶性もしくは水膨潤性ポリマー又は水溶性もしくは木1
1〆潤性鎖をセグメントとして含有するポリマーが架橋
珪素化合物に交絡した交互浸入網目構造を有するもので
ある。
[Structure of the Invention (Means and Effects for Solving the Problems) The artificial blood vessel of the present invention has heparin built into the wall of the artificial blood vessel, and a large number of holes in the lumen surface area communicating with the heparin built-in part. or a water-swellable polymer layer sealing the voids or voids, wherein the water-swellable polymer layer is a water-soluble or water-swellable polymer or a water-soluble or water-swellable polymer layer that seals the voids or voids.
1. It has an alternating interpenetration network structure in which a polymer containing a 1.1 lubricant chain as a segment is intertwined with a crosslinked silicon compound.

本発明を実施するに当って用いられる人工血管は、内壁
が多孔質であるものが適用可能である。
The artificial blood vessel used in carrying out the present invention may have a porous inner wall.

ここで言う多孔質とはスポンジ状又は空胞群の連続体で
あってもよいし、又従来のポリエステル高分子繊維を編
織したものや、ポリ四フッ化エチレンを延伸加工してフ
ィブリル化したもののように、繊維状物質の集合体であ
ってもよい。
The porous material mentioned here may be spongy or a continuum of vacuole groups, or may be made by knitting and weaving conventional polyester polymer fibers, or by stretching polytetrafluoroethylene into fibrils. It may also be an aggregate of fibrous substances.

特に好ましいのは管断面がスポンジ状又は連続した空胞
群よりなるポリウレタン又はポリウレタンウレアの人工
血管である。本発明の人工血管の内面を本発明のポリマ
ー組成物でコーティング処理するとき、コーティングし
た膜の剥離を防ぐためにポリウレタン人工血管の場合、
その内面にはスキン層のないものが望ましいうこの場合
コーティングしたポリマー組成物は安定に保持されるか
らである。
Particularly preferred is an artificial blood vessel made of polyurethane or polyurethane urea whose tube cross section is spongy or has a group of continuous vacuoles. When the inner surface of the artificial blood vessel of the present invention is coated with the polymer composition of the present invention, in the case of a polyurethane artificial blood vessel, in order to prevent the coated film from peeling off,
It is desirable that there be no skin layer on the inner surface, since in this case the coated polymer composition can be stably maintained.

本発明の実施において1人工血管の壁内部に存在するヘ
パリンがIPN構造を持つ水膨潤性ポリマー層のバリヤ
ーをとおって除数されるために、人工血管の内壁内のヘ
パリン分子が表面に移行する必要があり、少なくとも内
腔を形成する人工血管内面に水とともにヘパリン分子が
移行するに充分なチャンネル孔が多孔性の管断面の壁体
に必要なことは言うまでもない。繊維の集合体又はフィ
ブリル化した構造をもつポリエステルm!dtや延伸ポ
リ四フッ化エチレンの人二I肩61管は勿論この条件を
満たすが、本発明者らは素材として々fましいコンプラ
イアンス(順応性)をもつ管内壁が多孔性のポリウレタ
ン人工血管を得た。
In carrying out the present invention, it is necessary for the heparin molecules within the inner wall of the artificial blood vessel to migrate to the surface because the heparin present inside the wall of the artificial blood vessel is diluted through the barrier of the water-swellable polymer layer having an IPN structure. Needless to say, the wall of the porous cross-section of the tube must have enough channel pores for heparin molecules to migrate together with water at least to the inner surface of the artificial blood vessel forming the lumen. Polyester with an aggregate or fibrillated structure of fibers m! Of course, dt and expanded polytetrafluoroethylene tubes satisfy this condition, but the present inventors have developed an artificial blood vessel made of polyurethane, which has a porous inner wall and has excellent compliance as a material. I got it.

一般に人工血管を移植したときに、縫合部の宿主血管に
生じるステノシス(狭窄)は、宿主血管に比べて剛直な
人工血管では、拍動流に順応するコンプライアンスに欠
け、血液の拍動に伴って血流の噴流(ジェット)が縫合
部イ1近の宿主血管壁を異常に刺戟し、これを受けて生
体反応として宿主血管壁が肥厚すると本発明者らは考え
ており、本発明の提案によるポリウレタン人工血管は、
適当なコンプライアンスをもつので本発明の実施に特に
好適である。
In general, when an artificial blood vessel is transplanted, stenosis (stenosis) occurs in the host blood vessel at the suture site.The artificial blood vessel is more rigid than the host blood vessel, and lacks compliance to adapt to the pulsatile flow. The present inventors believe that the jet of blood flow abnormally stimulates the host blood vessel wall near the suture site A1, and in response, the host blood vessel wall thickens as a biological reaction. Polyurethane artificial blood vessels are
It has suitable compliance and is therefore particularly suitable for carrying out the present invention.

本発明に用いられる水溶性又は水膨潤性ポリマーの例と
しては、ポリエチレングリコール、ポリプロピレングリ
コール又はこれらの共重合体、ヒアルロン酸、ポリサッ
カライド、キトサン、ポリビこルピロリドン、アテロコ
ラーゲン、ゼラチン、ポリアクリル酸、ポリメタクリル
酸、ポリアクリルアミド、ポリジアセトンアクリルアミ
ド、ポリ−2−アクリルアミド−2−メチルプロパンス
ルホン酸、ポリビニルアルコールあるいは」二足ポリマ
ーを含む共重合体などがある。
Examples of water-soluble or water-swellable polymers used in the present invention include polyethylene glycol, polypropylene glycol or copolymers thereof, hyaluronic acid, polysaccharide, chitosan, polyvinylpyrrolidone, atelocollagen, gelatin, polyacrylic acid, Examples include polymethacrylic acid, polyacrylamide, polydiacetone acrylamide, poly-2-acrylamido-2-methylpropanesulfonic acid, polyvinyl alcohol, or copolymers containing bipedal polymers.

分子内に水溶性又は水膨潤性釦をセグメントとして含有
するポリマーの例として、ソフトセグメントにポリエチ
レングリコール鎖又はポリプロピレングリコール鎖ある
いはエチレンオキシド−プロピレンオキシド共重合体釦
を有するポリウレタン、ポリウレタンウレアや、たとえ
ば下式に示すようなポリジメチルシロキサンとポリオレ
フィングリコールの共重合体などがあげられる。
Examples of polymers containing water-soluble or water-swellable buttons as segments in the molecule include polyurethanes and polyurethane ureas having polyethylene glycol chains, polypropylene glycol chains, or ethylene oxide-propylene oxide copolymer buttons in the soft segment; Examples include copolymers of polydimethylsiloxane and polyolefin glycol as shown in .

CH3CH3 CH3CH3 CH2CH20+CH2CH20へ これらの親水性高分子は1種類を単独で用いてもよく、
又2種以上を用いてもよい。又、上記親水性高分子を比
較的疎水性の高分子と併用して組成物として用いてもよ
い。
CH3CH3 CH3CH3 CH2CH20+CH2CH20 These hydrophilic polymers may be used alone,
Also, two or more types may be used. Further, the above-mentioned hydrophilic polymer may be used in combination with a relatively hydrophobic polymer to form a composition.

たとえば、ソフトセグメントが比較的に疎水性のポリテ
トラメチレンオキシドからなるポリウレタンウレア、あ
るいはポリウレタンとポリエチレングリコール、ポリプ
ロピレングリコール、ポリビニルピロリドンあるいはポ
リエチレンオキシド鎖をソフトセグメントに有するポリ
ウレタン等を組合わせた組成物を用いてもよい。
For example, a composition in which a polyurethane urea whose soft segment is composed of relatively hydrophobic polytetramethylene oxide, a combination of polyurethane and polyethylene glycol, polypropylene glycol, polyvinylpyrrolidone, or a polyurethane whose soft segment has a polyethylene oxide chain is used. You can.

本発明に用いられる架橋性珪素化合物は水によって活性
化し架橋ネットワークを作る。上記架橋性珪素化合物は
、高分子の重合体でなくモノマー(単量体)又はオリゴ
マーであり、網目構造を有するポリシロキサンを形成さ
せるために、活性化処理によって架橋性官能基(水酸基
)を3t以上生じるような低分子の含珪素架橋剤を必須
成分として使用する。
The crosslinkable silicon compound used in the present invention is activated by water to form a crosslinked network. The above crosslinkable silicon compound is not a polymer but a monomer or oligomer, and in order to form a polysiloxane having a network structure, 3T of crosslinkable functional groups (hydroxyl groups) are removed by activation treatment. A low-molecular silicon-containing crosslinking agent such as that produced above is used as an essential component.

ここでいう含珪素架橋剤とは珪素をその分子内に1ケ以
」二有し、適当な活性化手法によって架橋能を生じるよ
うな官能基を有する化合物を指し。
The term "silicon-containing crosslinking agent" as used herein refers to a compound that has one or more silicon atoms in its molecule and has a functional group that can generate crosslinking ability by an appropriate activation method.

具体的にはシリコンゴムやシリコン樹脂の室温架橋剤1
 シランカップリング剤として知られている公知の化合
物が広く用いられる。
Specifically, room temperature crosslinking agent 1 for silicone rubber and silicone resin.
Known compounds known as silane coupling agents are widely used.

これらの含珪素架橋剤の官能基の代表例としては、S 
i  0COR、S i  OR(R: CH3。
Representative examples of the functional groups of these silicon-containing crosslinking agents include S
i 0COR, S i OR (R: CH3.

C2H5+ C3H7+ Ca Hsなどの炭化水素)
Hydrocarbons such as C2H5+ C3H7+ Ca Hs)
.

S 1−OX、S iX (X: C1、Br1tどの
ハロゲン)、5t−NR2(R:上記と同じ)などがあ
る。このような含珪素架橋剤を用いたときに生成される
架橋含珪素重合体はポリシロキサン構造をとる。
Examples include S 1-OX, SiX (X: halogen such as C1 and Br1t), and 5t-NR2 (R: same as above). A crosslinked silicon-containing polymer produced when such a silicon-containing crosslinking agent is used has a polysiloxane structure.

水によって活性化して架橋能を発揮し、ポリシロキサン
架橋体を形成する分子内に珪素原子1ケを有する含珪素
架橋剤の例としては一般式%式% (式中、Rはアルキル基、アリール基などの炭化水素残
基を、R′はアルコキシ基、アシルオキシ基、ハロゲン
又はアミン残基を、nは0゜1を表す)で表される化合
物がある。
Examples of silicon-containing crosslinking agents that exhibit crosslinking ability when activated by water and have one silicon atom in the molecule to form a crosslinked polysiloxane include the general formula % (where R is an alkyl group, aryl There are compounds represented by a hydrocarbon residue such as a group, R' is an alkoxy group, an acyloxy group, a halogen or an amine residue, and n is 0°1.

具体的な例としては、たとえばテトラアセトキシシラン
、メチルトリアセトキシシラン、エチルトリアセトキシ
シラン、プロピルトリアセトキシシラン、ブチルトリア
セトキシシラン、フェニルトリアセトキシシラン、メチ
ルトリエトキシシラン、エチルトリエトキシシラン、テ
トラエトキシシラン、フェニルトリエトキシシラン、プ
ロピルトリエトキシシラン、ブチルトリエトキシシラン
、メチルトリメトキシシラン、テトラメトキシシラン リメトキシシラン、ブチルトリメトキシシランるいはテ
トラクロロシラン、メチルトリクロロシラン、エチルト
リクロロシラン、ブチルトリクロロシラン、ビニル]・
リアセI・キシシラン、ビス−(N−メチルベンジルア
ミド)エトキシメチルシラン、トリス−(ジメチルアミ
ノ)メチルシラン、ビニルトリクロロシラン、トリス−
(シクロへキシルアミノ)メチルシラン、ビニルトリエ
トキシシラン、γーグリシドキシプロピルトリメトキシ
シラン、テトラプロポキシシラン、ビニルトリエトキシ
シランなどを代表例として挙げることができる。
Specific examples include tetraacetoxysilane, methyltriacetoxysilane, ethyltriacetoxysilane, propyltriacetoxysilane, butyltriacetoxysilane, phenyltriacetoxysilane, methyltriethoxysilane, ethyltriethoxysilane, and tetraethoxysilane. , phenyltriethoxysilane, propyltriethoxysilane, butyltriethoxysilane, methyltrimethoxysilane, tetramethoxysilanerimethoxysilane, butyltrimethoxysilane or tetrachlorosilane, methyltrichlorosilane, ethyltrichlorosilane, butyltrichlorosilane, vinyl ]・
Liace I xysilane, bis-(N-methylbenzylamide)ethoxymethylsilane, tris-(dimethylamino)methylsilane, vinyltrichlorosilane, tris-
Representative examples include (cyclohexylamino)methylsilane, vinyltriethoxysilane, γ-glycidoxypropyltrimethoxysilane, tetrapropoxysilane, and vinyltriethoxysilane.

又、珪素をその分子中に2ヶ含む含珪素架橋剤の代表例
としては、例えば、ヘキサアセトキシジシロキサン、1
,3−ジメチルテトラアセトキシジシロキサン、1.3
−ジビニルテトラエトキシジシロキサンのような一般式 %式% (式中、n,m=o,1,2,3、n + m =0、
1,2.3のいずれか、Rは架橋能のない炭化水素残基
、R’,R″は適当な活性化手段で架橋能を示す基を示
す) で表される化合物が挙げられる。
Further, typical examples of silicon-containing crosslinking agents containing two silicon atoms in the molecule include hexaacetoxydisiloxane, 1
, 3-dimethyltetraacetoxydisiloxane, 1.3
- general formula % such as divinyltetraethoxydisiloxane, where n, m = o, 1, 2, 3, n + m = 0,
1, 2.3, R is a hydrocarbon residue without crosslinking ability, and R' and R'' are groups that exhibit crosslinking ability by appropriate activation means.

珪素をその分子中に3ヶ含む含珪素架橋剤の例としては
1 、 3 、 5 − 1−リメトキシ−1.1。
An example of a silicon-containing crosslinking agent containing three silicon atoms in its molecule is 1, 3, 5-1-rimethoxy-1.1.

3.5.5ペンタメチルトリシロキサン、1゜1,3,
3,5.5−ヘキサアセトキシ−1,5−ジメチルトリ
シロキサンなどを挙げることが出来る。
3.5.5 Pentamethyltrisiloxane, 1°1,3,
Examples include 3,5.5-hexaacetoxy-1,5-dimethyltrisiloxane.

これらの含珪素架橋剤としては公知の室温架橋型のシラ
ンカップリング剤が広く用いられ、例えばPetrar
ch System Inc、 (ペトラーチシステム
インコーポレイテッド)発行のカタログSilicon
Compounds、 Register & Rev
iew■1979や同社のSi l1cones @ 
1981に記載されているすべての含珪素架橋剤を用い
ることが出来る。
As these silicon-containing crosslinking agents, known room temperature crosslinking type silane coupling agents are widely used, such as Petrar.
Catalog Silicon published by ch System Inc.
Compounds, Register & Rev
iew■1979 and the company's Si l1 cones @
All the silicon-containing crosslinking agents described in 1981 can be used.

以上に述べた架橋性(即ち3官能性)の含珪素化合物に
加えて2官能性の縮合によって5i−0−3i結合を順
次生じてポリシロキサンを生じるような低分子の含珪素
化合物を併用してよいことは勿論である。このような2
官能性の含珪素化合物として、珪素原子に2ケの炭化水
素基を有し、分子中に2ケの水によって活性化されて架
橋能を生じる官能基を有する。たとえば一般式%式% (式中、R,−R4は同種又は異種の炭化水素基、nは
0,1,2.3等の正の整数、Y及びY′は同種又は異
種の水によって活性化される架橋性官能基をそれぞれ表
す) で示される含珪素化合物がある。これらの化合物の例と
してはジメチルジアセトキシシラン、ジエチルジアセト
キシシラン、ジメチルジェトキシシラン、ジエチルジェ
トキシシラン、メチルエチルジメトキシシラン、ジエチ
ルジメトキシシラン、ジメチルジクロロシラン、メチル
フェこルジアセトキシシラン、ジフェニルジアセトキシ
シラン、ジベンジルジアセトキシシラン、ジビこルエト
キシシランなどがある。又、1,1,3.3−テトラメ
チル−1,3−ジアセトキシジシロキサン、1,1,3
.3−テトラメチル−1,3−ジメトキシジシロキサン
、1,1,3.3−テトラメチル−1,3−ジェトキシ
ジシロキサン、1.1.3,3,5.5−へキサメチル
−1,5−ジアセトキシトリシロキサン、1,1,3゜
3.5.5−へキサエチル−1,5−ジェトキシトリシ
ロキサン、1,1,3,3,5.5−へキサメチル−1
,5−ジメトキシトリシロキサン、1.1,1,5,5
.5−へキサメチル−3゜3−ジアセトキシトリシロキ
サン、1,1,1゜3.5.5−へキサメチル−3,5
−ジアセトキシトリシロキサンなどが例として挙げられ
る。
In addition to the crosslinkable (i.e., trifunctional) silicon-containing compounds mentioned above, a low-molecular silicon-containing compound that sequentially generates 5i-0-3i bonds through bifunctional condensation to produce polysiloxane is used in combination. Of course, it is a good thing. 2 like this
As a functional silicon-containing compound, the silicon atom has two hydrocarbon groups, and the molecule has two functional groups that are activated by water to generate crosslinking ability. For example, the general formula % formula % (where R, -R4 are the same or different hydrocarbon groups, n is a positive integer such as 0, 1, 2.3, etc., and Y and Y' are activated by the same or different types of water. There are silicon-containing compounds represented by the following formulas, each representing a crosslinkable functional group. Examples of these compounds are dimethyldiacetoxysilane, diethyldiacetoxysilane, dimethyljethoxysilane, diethyljethoxysilane, methylethyldimethoxysilane, diethyldimethoxysilane, dimethyldichlorosilane, methylphecoldiacetoxysilane, diphenyldiacetoxysilane. , dibenzyldiacetoxysilane, divinyl ethoxysilane, etc. Also, 1,1,3.3-tetramethyl-1,3-diacetoxydisiloxane, 1,1,3
.. 3-tetramethyl-1,3-dimethoxydisiloxane, 1,1,3.3-tetramethyl-1,3-jethoxydisiloxane, 1.1.3,3,5.5-hexamethyl-1, 5-Diacetoxytrisiloxane, 1,1,3゜3.5.5-hexaethyl-1,5-jethoxytrisiloxane, 1,1,3,3,5.5-hexamethyl-1
,5-dimethoxytrisiloxane, 1.1,1,5,5
.. 5-hexamethyl-3゜3-diacetoxytrisiloxane, 1,1,1゜3.5.5-hexamethyl-3,5
Examples include -diacetoxytrisiloxane.

本発明を実施するに当っては次のような方法が用いられ
る。
In carrying out the present invention, the following method is used.

まず第1段階として、本発明に用いる管断面多孔質のチ
ューブをヘパリン含有水溶液で処理して、管断面の空孔
中、あるいは断面の空隙内にヘパリン含有水溶液を充分
溝たすようにする。ヘパリン水溶液中のヘパリンの濃度
は任意であるが、飽和溶液を用いてもよい。この状態で
チューブを乾燥させると管壁内の空隙部にヘパリンを導
入することが出来る。
First, as a first step, a tube with a porous cross section used in the present invention is treated with an aqueous heparin-containing solution so that the heparin-containing aqueous solution is sufficiently filled in the pores or voids in the cross section of the tube. Although the concentration of heparin in the heparin aqueous solution is arbitrary, a saturated solution may be used. By drying the tube in this state, heparin can be introduced into the void within the tube wall.

第2段階として、水の存在で活性化し架橋を伴って高分
子化するモノマーと水溶性もしくは水膨潤性ポリマー、
又は分子内に水溶性もしくは水膨潤性類をセグメントと
して含有するポリマー(以後、親水性ポリマーと総称す
る)とを有機溶剤に溶解してなる溶液で前記のヘパリン
処理チューブの内面を処理し、内面を一様に被覆する。
As a second step, a monomer and a water-soluble or water-swellable polymer are activated in the presence of water and polymerized through crosslinking.
Alternatively, the inner surface of the heparin-treated tube may be treated with a solution obtained by dissolving a polymer containing a water-soluble or water-swellable segment in its molecule (hereinafter collectively referred to as a hydrophilic polymer) in an organic solvent. Cover uniformly.

このとき、架橋性官能基を有する架橋性モノマーと前記
の親木性ポリマーとは有機溶剤に均一に溶かすことが必
要である。この有機溶剤には前記架橋性モノマーの活性
化を促す物質、たとえば水が含まれていないことが望ま
しい。しかし本発明を達成するのに差支えない程度の水
分は当然許容されることは言うまでもない。
At this time, it is necessary to uniformly dissolve the crosslinkable monomer having a crosslinkable functional group and the wood-philic polymer in the organic solvent. This organic solvent desirably does not contain any substance that promotes activation of the crosslinking monomer, such as water. However, it goes without saying that a certain amount of moisture is allowed to achieve the present invention.

第3の段階で、架橋を伴って高分子化するモノマーを活
性化させるが、通常適当な湿度を有する雰囲気中に放置
すれば充分である。空気中の水分によって活性化された
均一に存在する架橋モノマーは、次々と架橋反応をおこ
して交互浸入網目構造を形成する。この架橋高分子化さ
れて生じたネットワークに前記親木性ポリマーは交絡し
、水には膨潤するが溶出しない状態となる。
In the third step, the monomer to be polymerized with crosslinking is activated, but it is usually sufficient to leave it in an atmosphere with appropriate humidity. The homogeneously existing crosslinking monomers activated by moisture in the air undergo a crosslinking reaction one after another to form an interleaved network structure. The wood-philic polymer is entangled with the network produced by this cross-linked polymerization, resulting in a state in which it swells in water but does not dissolve out.

この架橋反応を促進ないし完成させるために、適当な時
期に前記処理後の人工血管の内腔に水を導入してもよい
し、又この水のpHを調節、たとえば酸性にして反応を
速める処理をほどこしてもよい。
In order to promote or complete this cross-linking reaction, water may be introduced into the lumen of the artificial blood vessel after the above-mentioned treatment at an appropriate time, or the pH of this water may be adjusted, for example, by acidification to accelerate the reaction. may be applied.

本発明の処理を行った人工血管を使用すると血液中の水
分で内腔を形成する前記人工血管の内面の親水性ポリマ
ーは膨潤する。それに伴って人工血管の管壁内に存在す
るヘパリンは前記水で膨潤するポリマー層のバリヤーを
通して徐放される。
When an artificial blood vessel treated according to the present invention is used, the hydrophilic polymer on the inner surface of the artificial blood vessel that forms the lumen swells with water in the blood. Accordingly, the heparin present in the wall of the artificial blood vessel is gradually released through the water-swellable polymer layer barrier.

これによって初期血栓は有効にその生成を防1にするこ
とができる。初期血栓はこのようにヘパリンの徐放によ
って防止し、中期の血栓は交互浸入網目構造をとった交
絡親水性ポリマーの作用によって防止される。その間に
内皮細胞は水IM¥ H性ポリマー層の中に浸入成育し
、生体化が着実に進むのである。本発明の人工血管は血
栓が生じないばかりでなく、興味あることに内皮が極め
てF、u <生成し、経時的に内皮細胞の肥厚がわずか
しか認められないことがわかった。本発明では徐放され
るヘパリンは経時的に減少するが、完全に消失するまで
にはかなりの長時間を要し、完全に消失する前に内皮が
生育するようにして生体化を行わせることができる。こ
れはまたA−Vシャントに用いても同様の効果を発揮す
るし、血液の遅い静脈系の代用血管としても用いうる。
This effectively prevents the formation of initial thrombus. Early thrombi are thus prevented by the sustained release of heparin, and intermediate thrombi are prevented by the action of interlaced hydrophilic polymers in an interpenetrating network. During this time, endothelial cells infiltrate and grow into the water IM\H polymer layer, and biogenicization progresses steadily. In the artificial blood vessel of the present invention, it was found that not only no thrombus occurred, but also, interestingly, the endothelium produced extremely F,u<<, and only slight thickening of the endothelial cells was observed over time. In the present invention, the sustained-release heparin decreases over time, but it takes a considerable amount of time for it to completely disappear, so it is necessary to allow the endothelium to grow and biogenize before it completely disappears. Can be done. It can also be used as an A-V shunt to achieve the same effect, and can also be used as a substitute blood vessel for slow-moving venous systems.

以下実施例によって本発明を更に詳細に説明する。The present invention will be explained in more detail below with reference to Examples.

(実施例) 実施例1 単繊維度0.7デニルのポリエチレンテレフタレート繊
維よりなる平織チューブに蛇腹加工を施し、内径4mm
、長さ30cmの人工血管をつくった。これを充分に洗
浄して乾燥後、20%のヘパリンを含む水溶液中に浸し
て繊維集合体全部を充分にぬらして乾燥した。
(Example) Example 1 A plain weave tube made of polyethylene terephthalate fiber with a monofilament degree of 0.7 denyl was subjected to bellows processing, and the inner diameter was 4 mm.
, an artificial blood vessel with a length of 30 cm was created. After thorough washing and drying, this was immersed in an aqueous solution containing 20% heparin to sufficiently wet the entire fiber assembly and dried.

これとは別に、分子量1350のポリテトラメチレング
リコールと4,4′−ジフェニルメタンジイソシアネー
トからプレポリマーをつくり、これを1,4−ブタンジ
オールで鎖延長して得たポリウレタン(8部)をテトラ
ヒドロフラン(90部)に溶かして溶液とし、この溶液
に分子量2400のポリエチレングリコール(8部)と
、メチルトリアセトキシシラン(15部)を夫々、前記
テトラヒドロフラン溶液に加えて均一に溶かした。溶液
はやや粘いものである。
Separately, a prepolymer was made from polytetramethylene glycol with a molecular weight of 1350 and 4,4'-diphenylmethane diisocyanate, and this was chain-extended with 1,4-butanediol. Polyurethane (8 parts) was mixed with tetrahydrofuran (90 parts). Polyethylene glycol (8 parts) having a molecular weight of 2400 and methyltriacetoxysilane (15 parts) were added to the tetrahydrofuran solution and uniformly dissolved in this solution. The solution is somewhat viscous.

先に準備したヘパリン処理の平織チューブの内腔に、前
記テトラヒドロフラン溶液を・置溝たし、充分該溶液で
内面をぬらしたのちすぐに流去して、相対湿度65%の
雰囲気中で乾燥した。この操作によってポリエステル繊
維の平織チューブの内面はポリマー組成物で被覆され、
メチルトリアセトキシシランは被覆組成物中にほぼ均一
に分布する。雰囲気中の水によってメチルトリアセトキ
シシランは脱酢酸して架橋反応を開始し、次々に架橋反
応を繰り返して親水性ポリマーを交絡しつつポリシロキ
サンとなる。この状態で1週間放置し架橋を完成させた
The tetrahydrofuran solution was placed in the inner cavity of the heparin-treated plain weave tube prepared earlier, and after sufficiently wetting the inner surface with the solution, it was immediately drained and dried in an atmosphere with a relative humidity of 65%. . This operation coats the inner surface of the polyester fiber plain weave tube with the polymer composition.
Methyltriacetoxysilane is approximately uniformly distributed in the coating composition. Methyltriacetoxysilane is deaceticated by water in the atmosphere and starts a crosslinking reaction, and the crosslinking reaction is repeated one after another to form polysiloxane while entangling the hydrophilic polymer. This state was left for one week to complete crosslinking.

このようにして内表面に抗血栓性の良い親木性ポリマー
のIPN被膜をつくることができた。
In this way, it was possible to create an IPN coating of a woody polymer with good antithrombotic properties on the inner surface.

実施例2 単繊維度が0.6デニルのポリエチレンテレフタレート
繊維のメリヤス編で内径4mmのチューブをつくり、蛇
腹加工を施した。これを実施例1と同じ方法でヘパリン
処理を行った。
Example 2 A tube with an inner diameter of 4 mm was made of knitted polyethylene terephthalate fiber with a monofilament degree of 0.6 denyl, and was subjected to bellows processing. This was treated with heparin in the same manner as in Example 1.

分子量1800のポリテトラメチレングリコールと4.
4′−ジシクロへキシルジイソシアネートからプレポリ
マーをつくり、これをエチレンジアミンを鎖延長剤に用
いてポリウレタンウレアを調製した。
4. polytetramethylene glycol with a molecular weight of 1800;
A prepolymer was prepared from 4'-dicyclohexyl diisocyanate, and a polyurethaneurea was prepared from this prepolymer using ethylenediamine as a chain extender.

このポリウレタンウレア5部、分子量 120.000のポリビニルピロリドン4部、メチルト
リアセトキシシラン−ジメチルジアセトキシシラン混合
物(1:1)10部をジメチルアセトアミド79部に溶
かし、粘稠な溶液を得た。
5 parts of this polyurethaneurea, 4 parts of polyvinylpyrrolidone having a molecular weight of 120.000, and 10 parts of a methyltriacetoxysilane-dimethyldiacetoxysilane mixture (1:1) were dissolved in 79 parts of dimethylacetamide to obtain a viscous solution.

この溶液で前記ヘパリン処理チューブの内面をコーティ
ングし、空気中で減圧乾燥した。その後更に相対湿度6
5%の雰囲気中で1oft間放置して架橋を完成させた
The inner surface of the heparinized tube was coated with this solution and dried under reduced pressure in air. Then further relative humidity 6
Crosslinking was completed by leaving it for 100 minutes in a 5% atmosphere.

このようにしてヘパリンを内蔵させ、人工血管の内面に
は親水性ポリマーと交絡させたIPN構造をもつ架橋高
分子層を形成Sせることかできる。
In this way, heparin is incorporated and a crosslinked polymer layer having an IPN structure intertwined with a hydrophilic polymer can be formed on the inner surface of the artificial blood vessel.

実施例3 ポリテトラメチレングリコール(分子量1200)と4
,4′−ジフェニルメタンジイソシアネートと1,4−
ブタンジオールを原本゛lとして合成したポリウレタン
をジメチルアセトアミドとテトラヒドロフラン混合溶剤
に溶解し、24%の溶液とした。
Example 3 Polytetramethylene glycol (molecular weight 1200) and 4
,4'-diphenylmethane diisocyanate and 1,4-
Polyurethane synthesized using butanediol as the original material was dissolved in a mixed solvent of dimethylacetamide and tetrahydrofuran to form a 24% solution.

直径6.2)の円形オリフィスから、精密に上記オリフ
ィスと同心に設定された外径4mmのステンレス林(断
面円形)を一定速度で押し出し、押し出されるステンレ
ス林の全周表面に上記ステンレスとオリフィスの間隙よ
り、先に調製したポリウレタン溶液を均一に押し出し流
延しつつ、この棒を8 ’Oの水中に押し出し、緩慢に
凝固させた。この場合、ポリウレタンの凝固は外部のみ
から生じる。8℃の水中にこのまま一夜放置し凝固を完
結させて生成したポリウレタンチューブをとりはずし風
乾した。
A stainless steel forest (circular cross section) with an outer diameter of 4 mm, which is precisely set concentrically with the orifice, is extruded at a constant speed from a circular orifice with a diameter of 6.2), and the mixture of the stainless steel and the orifice is spread over the entire circumferential surface of the extruded stainless steel forest. While uniformly extruding and casting the previously prepared polyurethane solution through the gap, the rod was extruded into 8'O water and slowly solidified. In this case, coagulation of the polyurethane occurs only from the outside. The polyurethane tube was left in water at 8° C. overnight to complete coagulation, and the resulting polyurethane tube was removed and air-dried.

得られたポリウレタンチューブは管断面は連続した空胞
群よりなり、管内面には異質の緻密層は存在せず、管壁
内部の空胞群の壁体と同質の内面であった。このチュー
ブのコンプライアンス(笹島ら9人工臓器、エヱ、17
9 (1983))は0.15であった。
The cross section of the obtained polyurethane tube consisted of a continuous group of vacuoles, and there was no heterogeneous compact layer on the inner surface of the tube, and the inner surface was the same as the wall of the vacuole group inside the tube wall. The compliance of this tube (Sasashima et al. 9 Artificial organs, E., 17
9 (1983)) was 0.15.

このポリウレタンチューブを、ヘパリンヲ30重量%含
有する水溶液に浸して、チューブの空胞中にヘパリンの
水溶液が充分溝たされるようにした。そののち、これを
空転した。
This polyurethane tube was immersed in an aqueous solution containing 30% by weight of heparin so that the aqueous heparin solution was sufficiently filled into the vacuoles of the tube. After that, I idled this.

別に本例に用いたポリウレタン10部、分子量3000
のポリエチレングリコール10部、テトラアセトキシシ
ラン20部をテトラヒドロフラン/ジオキサン混合溶液
(混合比2:1)に溶かし均一溶液とした。
Separately, 10 parts of polyurethane used in this example, molecular weight 3000
10 parts of polyethylene glycol and 20 parts of tetraacetoxysilane were dissolved in a tetrahydrofuran/dioxane mixed solution (mixing ratio 2:1) to form a homogeneous solution.

この溶液で前記ヘパリン処理ポリウレタンチューブの内
腔面を溶液で均一にぬらし、乾燥した。空気中の水分で
架橋反応が生じるが、これを促進するために一旦水蒸気
を吹き込み、架橋反応を促進してから再び乾燥した。
The lumen surface of the heparin-treated polyurethane tube was uniformly wetted with this solution and dried. Moisture in the air causes a crosslinking reaction, and in order to accelerate this, water vapor was once blown into the material to promote the crosslinking reaction, and then the material was dried again.

実施例4 実施例3のポリウレタンの合成に用いた1、4−ブタン
ジオールの代りにエチレンジアミンを用いてポリウレタ
ンウレアを合成し、これを用いて実施例3と同様に、ポ
リウレタンチューブを作成した。
Example 4 Polyurethane urea was synthesized using ethylenediamine instead of 1,4-butanediol used in the synthesis of polyurethane in Example 3, and a polyurethane tube was produced in the same manner as in Example 3 using this.

このポリウレタンウレアは管壁断面をみると連続した空
胞群よりなっており、チューブ内面には異質のスキン構
造がなく、コンプライアンス値は0.18であった。
When looking at the cross section of the tube wall, this polyurethane urea consisted of a group of continuous vacuoles, there was no foreign skin structure on the inner surface of the tube, and the compliance value was 0.18.

別に本例で用いたポリウレタンウレア5部、ヒアルロン
酸5部、ポリビニルピロリド73部、メチルトリアセト
キシシラン−ジメチルジアセトキシシラン(1:2)混
合物15部を含むジオキサン溶液を調製した。
Separately, a dioxane solution containing 5 parts of the polyurethaneurea used in this example, 5 parts of hyaluronic acid, 73 parts of polyvinylpyrrolid, and 15 parts of the methyltriacetoxysilane-dimethyldiacetoxysilane (1:2) mixture was prepared.

この調製液で管断面空胞中にヘパリンを含有するポリウ
レタンウレアチューブ内腔面をコーティングして窒素気
流中で乾燥した。更に相対湿度70%の雰囲気中で架橋
させた。雰囲気中の水の作用で珪素化合物は活性化し架
橋反応は進行し、親木性ポリマーをからめてネットワー
クをつくり内面にIPNを構成した。
The lumen surface of a polyurethane urea tube containing heparin in the vacuoles of the tube cross section was coated with this prepared solution and dried in a nitrogen stream. Furthermore, crosslinking was carried out in an atmosphere with a relative humidity of 70%. The silicon compound was activated by the action of water in the atmosphere, the crosslinking reaction progressed, and the wood-philic polymer was entangled to form a network, forming IPN on the inner surface.

(試験例) 試験例1 雑種成犬を用いて、実施例1及び3で作成した本発明の
人工血管を腸骨動脈から大腿動脈にかけて得られた人工
血管の太さとマツチするところを選んで、端一端結合で
移植した。移植実験は夫々8例づつ行った。
(Test Example) Test Example 1 Using a mongrel adult dog, the artificial blood vessel of the present invention prepared in Examples 1 and 3 was selected to match the thickness of the artificial blood vessel obtained from the iliac artery to the femoral artery. It was transplanted by joining one end to the other. The transplant experiment was conducted in 8 cases each.

3ケ月後の結果を、夫々木発明の処理を行わないものと
の比較で下表に示した。
The results after 3 months are shown in the table below in comparison with those without the Fumomogi invention treatment.

才 実施例1の対照比較 本家実施例3の対照比較 試験例2 雑種成犬を用いて、大間動脈−大11a静脈のバイパス
実験を実施例2と4の木発1!1の人工血管を用いて行
い、本発明の処理を行わないものと比較した。結合方法
は端側結合によった。バイパスの全長は23c■とじた
。その結果を下表に示す。
Control Comparison of Example 1 Control Comparison Test Example 2 Using an adult mongrel dog, a bypass experiment of the large artery and large 11a vein was performed using the artificial blood vessels of Examples 2 and 4. The results were compared with those not subjected to the treatment of the present invention. The joining method was end-side joining. The total length of the bypass was 23 cm. The results are shown in the table below.

本 実施例2の対照比較 よ木実流側4の対照比較 [発明の効果] 本発明の人工血管は、耐久性及び易縫合性に優れるのみ
ならず、抗血栓性に優れているので小口径であっても長
期開存性を有する。
Control comparison of Example 2 and control comparison of tree flow side 4 [Effects of the invention] The artificial blood vessel of the present invention not only has excellent durability and ease of suturing, but also has excellent antithrombotic properties, so it has a small diameter. Even has long-term patency.

Claims (2)

【特許請求の範囲】[Claims] (1)人工血管の管壁内にヘパリンを内蔵し、内腔表層
部にヘパリン内蔵部に連通した多数の空孔もしくは空隙
と該空孔もしくは空隙を封止する水膨潤性ポリマー層を
有することを特徴とする人工血管。
(1) Heparin is built into the wall of the artificial blood vessel, and the lumen surface layer has a large number of holes or voids that communicate with the heparin built-in portion and a water-swellable polymer layer that seals the holes or voids. An artificial blood vessel characterized by:
(2)水膨潤性ポリマー層が、水溶性もしくは水膨潤性
ポリマー又は水溶性もしくは水膨潤性鎖をセグメントと
して含有するポリマーが架橋珪素化合物に交絡した交互
浸入網目構造を有する特許請求の範囲第1項記載の人工
血管。
(2) The water-swellable polymer layer has an alternating infiltration network structure in which a water-soluble or water-swellable polymer or a polymer containing a water-soluble or water-swellable chain as a segment is entangled with a crosslinked silicon compound. Artificial blood vessel as described in section.
JP61243144A 1986-10-15 1986-10-15 Artificial blood vessel Pending JPS6397158A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61243144A JPS6397158A (en) 1986-10-15 1986-10-15 Artificial blood vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61243144A JPS6397158A (en) 1986-10-15 1986-10-15 Artificial blood vessel

Publications (1)

Publication Number Publication Date
JPS6397158A true JPS6397158A (en) 1988-04-27

Family

ID=17099440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61243144A Pending JPS6397158A (en) 1986-10-15 1986-10-15 Artificial blood vessel

Country Status (1)

Country Link
JP (1) JPS6397158A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5415619A (en) * 1989-12-13 1995-05-16 Korea Research Institute Of Chemical Tech. Method of manufacturing a vascular graft impregnated with polysaccharide derivatives
US5735897A (en) * 1993-10-19 1998-04-07 Scimed Life Systems, Inc. Intravascular stent pump
US6117168A (en) * 1996-12-31 2000-09-12 Scimed Life Systems, Inc. Multilayer liquid absorption and deformation devices

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61258670A (en) * 1985-05-09 1986-11-17 Fujitsu Ltd Power source circuit system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61258670A (en) * 1985-05-09 1986-11-17 Fujitsu Ltd Power source circuit system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5415619A (en) * 1989-12-13 1995-05-16 Korea Research Institute Of Chemical Tech. Method of manufacturing a vascular graft impregnated with polysaccharide derivatives
US5735897A (en) * 1993-10-19 1998-04-07 Scimed Life Systems, Inc. Intravascular stent pump
US6117168A (en) * 1996-12-31 2000-09-12 Scimed Life Systems, Inc. Multilayer liquid absorption and deformation devices
US6517575B1 (en) 1996-12-31 2003-02-11 Scimed Life Systems, Inc. Multilayer liquid absorption and deformation devices

Similar Documents

Publication Publication Date Title
AU771243B2 (en) Biocompatible medical articles and process for their production
JPS6145765A (en) Blood vessel prosthesis and its production
JP6495241B2 (en) Method for manufacturing medical device and medical device
US6117535A (en) Biocompatible devices
JP2016519222A (en) Core-sheath fiber and method for making it and method for using it
CA2090177A1 (en) Method for grafting preformed hydrophilic polymers onto hydrophobic polymer substrates
US20040105880A1 (en) Interpenetrating polymer network
US4871361A (en) Artificial vessel
EP0246638A2 (en) Biologically modified synthetic grafts
KR20220162148A (en) Biocompatible porous materials and methods of manufacture and use
JP2007222477A (en) Fibrous medical material containing in vivo absorbent material
JPS6397158A (en) Artificial blood vessel
JPS62258670A (en) Artificial blood vessel and its production
JPS61263448A (en) Blood vessel prosthesis
EP0495127B1 (en) Artificial blood vessel and production thereof
JPH0359704B2 (en)
JP3884501B2 (en) Artificial blood vessel
WO2000018321A1 (en) Hydrophilic synthetic blood vessels
JPH0262264B2 (en)
JPH0751354A (en) Polyester artificial blood vessel and method of manufacturing the same
EP0217115A1 (en) Artificial vessel
JPS6320552B2 (en)
CN118524861A (en) Antithrombotic coating
JPS625354A (en) Artificial blood vessel
JPS6395050A (en) Artificial blood vessel