JPH0413368B2 - - Google Patents

Info

Publication number
JPH0413368B2
JPH0413368B2 JP57154437A JP15443782A JPH0413368B2 JP H0413368 B2 JPH0413368 B2 JP H0413368B2 JP 57154437 A JP57154437 A JP 57154437A JP 15443782 A JP15443782 A JP 15443782A JP H0413368 B2 JPH0413368 B2 JP H0413368B2
Authority
JP
Japan
Prior art keywords
film
plasma
monomer
polymerization
ionized gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57154437A
Other languages
Japanese (ja)
Other versions
JPS5943010A (en
Inventor
Yoshihito Osada
Yutaka Iryama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Ltd
Original Assignee
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Ltd filed Critical Kanebo Ltd
Priority to JP15443782A priority Critical patent/JPS5943010A/en
Publication of JPS5943010A publication Critical patent/JPS5943010A/en
Publication of JPH0413368B2 publication Critical patent/JPH0413368B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はポリエチレン、ポリプロピレン又はポ
リエチレンテレフタレートのような疎水性重合体
にイオン化ガスプラズマの存在下で親水性不飽和
単量体をグラフト重合させてなる親水化フイルム
及びその製造方法に関するものである。 ポリエチレン、ポリプロピレン及びポリエチレ
ンテレフタレートなどの疎水性高分子は極めて重
要な基材として広範囲な分野で用いられている。
然しこれらの基材をフイルムとした場合、疎水性
である為、静電気の発生しやすさ、ほこりの付着
しやすさなどの静電気障害や、湿度の高いところ
では曇りやすいこと、印刷性能の悪さ、或いは接
着性に欠けるなどの欠点を持つていることは当業
者には周知の事実である。これらの欠点を改良す
る方法として例えば有機高分子体を空中に於いて
電離性放射線を照射することにより、パーオキサ
イド基を生成させ、しかる後にビニル化合物を接
触させる状態に於いてパーオキサイド基を開裂さ
せることによりグラフト共重合体を得る方法が提
案されている。又、特公昭50−6490号公報では有
機高分子体に空気又は酸素の雰囲気に於いて2000
Åより短波長の光を主とする紫外線を照射しパー
オキサイド基を生成させしかる後重合可能なビニ
ル系単量体を接触させてグラフト共重合体を得る
方法が開示されている。また特開昭53−19384号
公報では有機高分子体を0.2mmHg以上、50mmHg
以下のガス圧下の高電圧放電にて処理した後、酸
素ガスにふれさせ、次いでビニル系単量体溶液中
に浸漬してグラフト重合させる方法を提案してい
る。 しかしながら上記の電離性放射線を使用する方
法は未だ、工業的見地からその照射操作の安全
性、照射コストの面に於いて若干の問題が残され
ており、また第2、第3の方法ではいずれも有機
高分子体に紫外線もしくは高電圧放電により活性
種を作るが、直接ビニル系単量体を反応させない
で、まず酸素と反応させパーオキサイド化するこ
と、また次にビニル系単量体を反応させる時に酸
素が存在すると反応の進行が遅いため真空もしく
は窒素雰囲気に置換するなど工程が繁雑であるな
ど工業的に容易でない。そればかりかいずれの方
法に於いてもグラフトされるポリマーの重合度は
ラジカル重合の域を出なく、またパーオキサイド
が開裂する際にグラフト重合と関係のない有機高
分子体にグラフトしないホモポリマーが生成する
など効果、効率的にも問題が残されている。 本発明者らは従来の欠陥を排除すべく鋭意検
討、研究の結果本発明を完成させたものである。 本発明の目的は親水性の優れたフイルムの製造
方法を提供するにあり、他の目的は吸水性、接着
性、反応性、イオン交換性、凝集性又は金属捕集
性に優れた親水化フイルムの製造方法を提供する
にある。更に他の目的は斯かる親水化フイルムを
工業的容易且つ安価に製造する方法を提供するに
ある。 本発明方法は、脱酸素下において疎水性重合体
よりなるフイルムならびに親水性不飽和単量体の
ガス及び/又は該単量体水溶液のガスとをイオン
化ガスプラズマにて処理し、しかる後に前記フイ
ルムを該単量体の水溶液中に浸漬して該プラズマ
の不存在下重合せしめることを特徴とする。 本発明に適用される疎水性フイルムとは疎水性
重合体をフイルムに形成したものであれば良いが
品質面や、コスト面からはポリエチレン、ポリプ
ロピレンまたはポリエチレンテレフタレートから
なる疎水性フイルムが好ましい。 また親水性不飽和単量体としては、ビニル基ま
たはアリル基を持ちしかも親水性である単量体で
通常のラジカル重合を行なうものであれば良く特
に限定されない。 一般にはアクリルアミド、メタクリルアミド、
N−ビニルピロリドン、アクリル酸、メタクリル
酸、P−スチレンスルホン酸、ビニルスルホン
酸、2−メタアクリロイルオキシエチルスルホン
酸、3−メタアクリロイルオキシ−2−ヒドロキ
シプロピルスルホン酸、アリルスルホン酸、メタ
クリルスルホン酸、並びにこれらの酸のアンモニ
ウム塩、及びアルカリ金属塩、ジメチルアミノエ
チルアクリレート、ジメチルアミノメタクリレー
ト、ジエチルアミノエチルアクリレート及びジエ
チルアミノエチルメタクリルレート、2ビニルピ
リジン及び4ビニルピリジンの塩酸、硝酸、ジメ
チル硫酸、ジエチル硫酸又は塩化エチルの4級化
物である。 好ましい親水性不飽和単量体としてはアクリル
酸、メタクリル酸、2ヒドロキシエチルメタクリ
レート、2ヒドロキシエチルアクリレート、アク
リルアミド、メタクリルアミド、2アクリルアミ
ド−2−メチルプロパンスルホン酸、N、Nジメ
チルアミノエチルメタクリレート又はN、Nジメ
チルアミノエチルアクリレートが挙げられる。 また本発明におけるグラフト重合のグラフト重
合率は目的、用途に応じ自由に可変可能である
が、好ましくはフイルムを形成する疎水性重合体
に対し少なくとも0.1重量%、好ましくは0.5重量
%以上である。本発明の親水化フイルムのグラフ
ト重合率は目的により広範囲に変えられ、例えば
ヌレ性、接着性、印刷性又は塗装性を改良する場
合はグラフト重合率0.1〜5重量%、イオン交換
能、吸湿性又は反応性を付与する場合或いは電池
隔膜として使用する場合はグラフト重合率数重量
%乃至100重量%、吸水性、イオン交換性、凝集
性又は金属捕集性を付与する場合はグラフト重合
率数十乃至1000重量%のものが使用される。勿論
これを越えた数千重量%のものも使用し得る。 本発明における重合はいわゆるプラズマ開始重
合である。即ちプラズマ開始重合とは非平衝のイ
オン化ガスプラズマを用いて重合を開始もしくは
活性種を作りかつプラズマの不存在下に重合の大
部分を完結させるものである。イオン化ガスプラ
ズマの生成はプラズマを生成するための公知方法
のいずれによつても行なうことが出来る。例えば
J、R.ホラハン(Hollahan)とA・Tベル
(Bell)版“プラズマ化学の応用技術″、ワイリ
ー、ニユーヨーク1974およびM・シエン(Shen)
版“重合体のプラズマ化学″デツカー.ニユーヨ
ーク.1976に記載されている。即ち高周波発生器
に連結された平行板電極の間にモノマーを真空下
で入れ、真空室の外部又は内部のいずれかの平行
板を用いてプラズマを生成させることが出来る。
また外部誘導コイルによつて電場をつくらせ、イ
オン化ガスのプラズマを発生させてもよく、また
反対に荷電した電極に間隔をおいて直接真空室に
入れてプラズマを生成させてもよい。 本発明においては、脱酸素下において疎水性重
合体よりなるフイルムならびに親水性不飽和単量
体のガス及び/又は該単量体水溶液のガスとをイ
オン化ガスプラズマの存在下で重合を開始し、し
かる後に前記フイルムを該単量体の水溶液中に浸
漬して該プラズマの不存在下、前記フイルム上に
グラフト重合させる。 イオン化ガスプラズマの不存在下親水性不飽和
単量体の水溶液で重合させる代りに、該単量体中
又は該単量体の乳化液或いは有機溶媒溶液を使用
してもよい。 本発明方法を更に詳細に説明すれば脱気を100
〜10-4トールで行ない疎水性重合体よりなるフイ
ルムに上記方法にてプラズマ照射を行なう。好ま
しくは20〜200ワツト、更に好ましくは40〜100ワ
ツトでグロー放電をさせ疎水性重合体に活性種を
生成させる。照射時間は通常1〜3600秒、好まし
くは1〜1800秒間照射する。プラズマ照射を行な
つた後に上記フイルムを親水性不飽和単量体の水
溶液中で該単量体を該プラズマの不存在下に重合
させると前記フイルムの活性種より該単量体を消
費しはじめる、いわゆるグラフト重合が進行す
る。後重合温度及び時間は使用する単量体種類に
よつて異なり特に限定されないが通常温度は1〜
60℃、時間は1〜25時間で十分である。単量体種
類によつては60℃を超えると熱重合を起こし低分
子のポリマーも生成してくることがあるので注意
を要する。 かくして得られた疎水性フイルムへの親水性不
飽和単量体のグラフト重合化物は該フイルムの表
面に重合度の著大な直鎖の親水性重合体がグラフ
ト重合しているので該フイルム表面の性質が改質
され各種の用途に使用される。例えば本発明方法
にてポリエチレンにアクリル酸を24重量%グラフ
トしたものの水の接触角は未処理ポリエチレン
101°に対し56°と著しく向上していることが判る。 またアクリル酸、2−アクリルアミド−2−メ
チルプロパンスルホン酸などを用いてグラフト重
合させた本発明のフイルムはCu2+、Co2+、Cr3+
などの金属イオンを即座に吸着するので金属捕集
フイルムとしても有用に用いられる。 以下本発明を実施例にて詳細に説明する。なお
実施例中グラフト率、水の接触角は次の方法にて
測定した。 a グラフト率 グラフト重合したグラフトフイルムを良溶媒
にて2日間撹拌洗浄を行ない未反応単量体及び
ホモジ重合体を完全に除き乾燥後重量によつて
グラフト率を計算 グラフト率(%) =処理後フイルム重量−初期フイルム重量/初期フ
イルム重量 ×100 b 水の接触角 協和科学(株)接触角形CA−P型を用いて測定
した。 実施例 実施例 1 二又の足を持つ試験管の一方に、第1表に示す
親水性モノマーを蒸留水にモノマー濃度が50重量
%になる様溶解したモノマー水溶液を入れ、もう
一方の足には厚さ50μm、一辺が50mmの正方形を
したポリエチレンフイルムを入れ、先ず1トール
程度までの真空にし、水溶液の方を液体窒素に浸
し十分冷却し次いで10-4トールの高真空まで真空
脱記し、真空を保つたまま徐々に室温まで戻し水
溶液中の酸素を押し出す。この操作を3回繰り返
し水溶液中の酸素を十分に除去する。 次いで、真空を保つたまま水溶液を液体窒素に
て十分に冷却し、10-4トールの高真空までひき、
次いで水溶液を液体窒素より取り出し真空度が
10-1トールになるまで待ち、フイルムの入つた方
を13.56MHz高周波発生装置に連結させた2枚の
銅電極板間に挿入し100Wの出力でプラズマを90
秒間発生、照射させる。その後水溶液を溶解し枝
管を通してフイルム側に移した。次いで水溶液が
フイルムと十分に接触する状態にて、25℃で12時
間後重合させた。得られたグラフトフイルムを水
にて2日間撹拌洗浄、脱溶媒、乾燥して試料と
し、水の接触角を測定した。結果を第1表に示
す。
The present invention relates to a hydrophilic film obtained by graft polymerizing a hydrophilic unsaturated monomer to a hydrophobic polymer such as polyethylene, polypropylene or polyethylene terephthalate in the presence of ionized gas plasma, and a method for producing the same. Hydrophobic polymers such as polyethylene, polypropylene and polyethylene terephthalate are used in a wide range of fields as extremely important substrates.
However, when these base materials are used as films, because they are hydrophobic, they tend to generate static electricity, are prone to static electricity problems such as dust adhesion, tend to fog up in humid areas, and have poor printing performance. It is well known to those skilled in the art that they also have drawbacks such as lack of adhesion. As a method to improve these drawbacks, for example, organic polymers are irradiated with ionizing radiation in the air to generate peroxide groups, and then the peroxide groups are cleaved when brought into contact with a vinyl compound. A method for obtaining a graft copolymer has been proposed. In addition, in Japanese Patent Publication No. 50-6490, organic polymers are exposed to 2000 ml of water in an air or oxygen atmosphere.
A method is disclosed in which a graft copolymer is obtained by irradiating ultraviolet rays mainly having a wavelength shorter than Å to generate peroxide groups, and then contacting with a polymerizable vinyl monomer. Furthermore, in Japanese Patent Application Laid-Open No. 19384-1984, organic polymers are
We have proposed a method in which the material is treated with high-voltage discharge under gas pressure, exposed to oxygen gas, and then immersed in a vinyl monomer solution for graft polymerization. However, the method using ionizing radiation mentioned above still has some problems from an industrial standpoint in terms of safety of irradiation operation and cost of irradiation, and the second and third methods still have some problems. Also, active species are created in organic polymers by ultraviolet rays or high voltage discharge, but instead of directly reacting with vinyl monomers, they are first reacted with oxygen to form peroxides, and then reacted with vinyl monomers. If oxygen is present during the reaction, the progress of the reaction is slow and the process is complicated, such as replacing the reaction with a vacuum or nitrogen atmosphere, making it industrially difficult. Moreover, in either method, the degree of polymerization of the grafted polymer is within the range of radical polymerization, and when the peroxide is cleaved, some homopolymers do not graft onto organic polymers unrelated to graft polymerization. Problems remain in terms of effectiveness and efficiency, such as generation. The present inventors have completed the present invention as a result of intensive study and research in order to eliminate the conventional defects. An object of the present invention is to provide a method for producing a film with excellent hydrophilicity, and another object of the present invention is to provide a hydrophilic film with excellent water absorption, adhesiveness, reactivity, ion exchange property, aggregation property, or metal collection property. To provide a manufacturing method. Still another object is to provide a method for manufacturing such a hydrophilic film industrially easily and at low cost. In the method of the present invention, a film made of a hydrophobic polymer and a gas of a hydrophilic unsaturated monomer and/or a gas of an aqueous solution of the monomer are treated with ionized gas plasma under deoxidized conditions, and then the film is is immersed in an aqueous solution of the monomer and polymerized in the absence of the plasma. The hydrophobic film applied to the present invention may be any film made of a hydrophobic polymer, but from the viewpoint of quality and cost, a hydrophobic film made of polyethylene, polypropylene or polyethylene terephthalate is preferred. The hydrophilic unsaturated monomer is not particularly limited as long as it has a vinyl group or an allyl group and is hydrophilic and can be subjected to normal radical polymerization. Generally acrylamide, methacrylamide,
N-vinylpyrrolidone, acrylic acid, methacrylic acid, P-styrenesulfonic acid, vinylsulfonic acid, 2-methacryloyloxyethylsulfonic acid, 3-methacryloyloxy-2-hydroxypropylsulfonic acid, allylsulfonic acid, methacrylsulfonic acid , and the ammonium salts and alkali metal salts of these acids, dimethylaminoethyl acrylate, dimethylaminomethacrylate, diethylaminoethyl acrylate and diethylaminoethyl methacrylate, 2-vinylpyridine and 4-vinylpyridine of hydrochloric acid, nitric acid, dimethyl sulfate, diethyl sulfate or It is a quaternized product of ethyl chloride. Preferred hydrophilic unsaturated monomers include acrylic acid, methacrylic acid, 2hydroxyethyl methacrylate, 2hydroxyethyl acrylate, acrylamide, methacrylamide, 2-acrylamido-2-methylpropanesulfonic acid, N,N dimethylaminoethyl methacrylate, or N , N dimethylaminoethyl acrylate. Further, the graft polymerization rate in the graft polymerization in the present invention can be freely varied depending on the purpose and use, but is preferably at least 0.1% by weight, preferably 0.5% by weight or more, based on the hydrophobic polymer forming the film. The graft polymerization rate of the hydrophilic film of the present invention can be varied over a wide range depending on the purpose. For example, when improving wettability, adhesion, printability, or coating properties, the graft polymerization rate is 0.1 to 5% by weight, ion exchange ability, and hygroscopicity. Or, when imparting reactivity or when used as a battery diaphragm, the graft polymerization rate is several percent by weight to 100 percent by weight, and when imparting water absorption, ion exchange, aggregation, or metal trapping ability, the graft polymerization rate is several tens of percent. 1000% by weight is used. Of course, it is also possible to use several thousand percent by weight exceeding this range. The polymerization in the present invention is so-called plasma initiated polymerization. That is, plasma-initiated polymerization is one in which a non-equilibrium ionized gas plasma is used to initiate polymerization or create active species, and most of the polymerization is completed in the absence of plasma. Generation of an ionized gas plasma can be accomplished by any of the known methods for generating plasma. For example, J. R. Hollahan and A. T. Bell, “Applied Techniques of Plasma Chemistry”, Wiley, New York 1974 and M. Shen.
Edition “Plasma Chemistry of Polymers” Detzker. New York. Listed in 1976. That is, the monomer can be placed under vacuum between parallel plate electrodes connected to a high frequency generator, and the plasma can be generated using the parallel plates either outside or inside the vacuum chamber.
Alternatively, an electric field may be created by an external induction coil to generate a plasma of ionized gas, or a plasma may be generated by placing oppositely charged electrodes spaced apart directly into a vacuum chamber. In the present invention, polymerization of a film made of a hydrophobic polymer and a gas of a hydrophilic unsaturated monomer and/or a gas of an aqueous solution of the monomer is started in the presence of ionized gas plasma under deoxygenation, Thereafter, the film is immersed in an aqueous solution of the monomer to perform graft polymerization on the film in the absence of the plasma. Instead of polymerizing with an aqueous solution of a hydrophilic unsaturated monomer in the absence of an ionized gas plasma, an emulsion or an organic solvent solution in or of the monomer may be used. To explain the method of the present invention in more detail, degassing is performed at 100
A film made of a hydrophobic polymer is irradiated with plasma using the above method at a pressure of ~10 -4 Torr. Glow discharge is preferably performed at 20 to 200 watts, more preferably 40 to 100 watts, to generate active species in the hydrophobic polymer. The irradiation time is usually 1 to 3600 seconds, preferably 1 to 1800 seconds. After plasma irradiation, when the film is polymerized in an aqueous solution of a hydrophilic unsaturated monomer in the absence of the plasma, the monomer begins to be consumed by the active species of the film. , so-called graft polymerization proceeds. Post-polymerization temperature and time vary depending on the type of monomer used and are not particularly limited, but usually the temperature is 1~
A temperature of 60°C for 1 to 25 hours is sufficient. Depending on the type of monomer, if the temperature exceeds 60°C, thermal polymerization may occur and low-molecular polymers may also be produced, so care must be taken. The thus obtained graft polymerization compound of the hydrophilic unsaturated monomer onto the hydrophobic film has a straight chain hydrophilic polymer having a high degree of polymerization grafted onto the surface of the film. Its properties are modified and used for various purposes. For example, when 24% by weight of acrylic acid is grafted onto polyethylene using the method of the present invention, the contact angle of water is higher than that of untreated polyethylene.
It can be seen that the angle is significantly improved from 101° to 56°. Furthermore, the film of the present invention graft-polymerized using acrylic acid, 2-acrylamido-2-methylpropanesulfonic acid, etc. contains Cu 2+ , Co 2+ , Cr 3+
Since it instantly adsorbs metal ions such as, it is also useful as a metal trapping film. The present invention will be explained in detail below with reference to Examples. In the Examples, the grafting rate and water contact angle were measured by the following methods. a Grafting rate Grafting rate is calculated by weight after drying by washing the grafted film with stirring in a good solvent for 2 days to completely remove unreacted monomers and homodipolymer Grafting rate (%) = After treatment Film weight - Initial film weight / Initial film weight x 100 b Water contact angle Measured using Kyowa Kagaku Co., Ltd. contact angle type CA-P. Examples Example 1 A monomer aqueous solution prepared by dissolving the hydrophilic monomers shown in Table 1 in distilled water to a monomer concentration of 50% by weight was placed in one of the test tubes with two forked legs, and the other leg was filled with a monomer aqueous solution prepared by dissolving the hydrophilic monomers shown in Table 1 in distilled water to a monomer concentration of 50% by weight. A polyethylene film having a square shape with a thickness of 50 μm and a side of 50 mm was put in, first the vacuum was applied to about 1 Torr, the aqueous solution was immersed in liquid nitrogen to cool it down sufficiently, and then the vacuum was removed to a high vacuum of 10 -4 Torr. Gradually return to room temperature while maintaining vacuum to push out oxygen in the aqueous solution. This operation is repeated three times to sufficiently remove oxygen from the aqueous solution. Next, while maintaining the vacuum, the aqueous solution was sufficiently cooled with liquid nitrogen, and the solution was drawn to a high vacuum of 10 -4 Torr.
Next, the aqueous solution is taken out from liquid nitrogen and the vacuum level is
Wait until the temperature reaches 10 -1 torr, insert the end with the film between two copper electrode plates connected to a 13.56MHz high frequency generator, and generate plasma at 100W output at 90MHz.
Generates and irradiates for seconds. Thereafter, the aqueous solution was dissolved and transferred to the film side through a branch pipe. Then, post-polymerization was carried out at 25° C. for 12 hours while the aqueous solution was in full contact with the film. The obtained graft film was washed with water for 2 days with stirring, the solvent was removed, and dried to prepare a sample, and the contact angle of water was measured. The results are shown in Table 1.

【表】 ンスルホン酸
実施例 2 実施例1、No.3で得られたアクリルアミドグラ
フトポリエチレンフイルム10グラムを水1000ml中
にベンナイト10グラムを懸濁させた液200ml中に
浸漬したところ15分後に懸濁液は清澄になり、こ
のポリエチレンフイルムがベントナイトに対し凝
集能力を有していることがわかつた。グラフトし
ていないフイルムは全く凝集能力を示さなかつ
た。 実施例 3 実施例1、No.8で得られた乾燥アクリル酸/
AMPSグラフト化ポリエチレンフイルム3グラ
ムを塊水1500ml中に12時間浸漬後水より取り出
し、ロ紙と軽く触れさせてフイルムにより表面の
水滴を除去した後重量をはかつたところ840グラ
ムあつた。これよりこのフイルムは約280倍の水
を吸水する能力を有していることがわかつた。グ
ラフト化していないポリエチレンは全く吸水能力
を有していなかつた。 実施例 4 実施例1と同一装置で10-3トール中ポリエチレ
ンフイルムに100Wの出力でプラズマを90秒間発
生照射させ、その後60重量%のアクリル酸水溶液
を加えて15時間グラフト重合させた。得られたグ
ラフト重合率は275%であつた。該グラフトフイ
ルム0.71gをCu+2の6.2×10-3モル水溶液50ml中
に浸漬したところ約57%のCu2+が吸着した。
[Table] Sulfonic acid Example 2 When 10 grams of the acrylamide grafted polyethylene film obtained in Example 1, No. 3 was immersed in 200 ml of a suspension of 10 grams of benite in 1000 ml of water, it became suspended after 15 minutes. The liquid became clear and it was found that this polyethylene film had flocculating ability for bentonite. The ungrafted film showed no aggregation ability. Example 3 Dry acrylic acid obtained in Example 1, No. 8/
3 grams of AMPS-grafted polyethylene film was immersed in 1500 ml of water for 12 hours, then taken out of the water, lightly touched with a rolling paper to remove water droplets on the surface, and weighed.The film weighed 840 grams. This revealed that this film had the ability to absorb approximately 280 times more water. The ungrafted polyethylene had no water absorption capacity at all. Example 4 Using the same equipment as in Example 1, a polyethylene film in 10 -3 Torr was irradiated with plasma at an output of 100 W for 90 seconds, and then a 60% by weight aqueous acrylic acid solution was added and graft polymerized for 15 hours. The resulting graft polymerization rate was 275%. When 0.71 g of the graft film was immersed in 50 ml of a 6.2×10 −3 molar aqueous solution of Cu +2 , about 57% of Cu 2+ was adsorbed.

Claims (1)

【特許請求の範囲】 1 脱酸素下において疎水性重合体よりなるフイ
ルムならびに親水性不飽和単量体のガス及び/又
は該単量体水溶液のガスとをイオン化ガスプラズ
マにて処理し、しかる後に前記フイルムを該単量
体の水溶液中に浸漬して該プラズマの不存在下、
前記フイルム上にグラフト重合せしめることを特
徴とする親水性不飽和単量体をグラフト重合した
親水化フイルムの製造方法。 2 疎水性重合体がポリエチレン、ポリプロピレ
ン又はポリエチレンテレフタレートである特許請
求の範囲第1項記載の方法。 3 親水性不飽和単量体がアクリル酸、メタクリ
ル酸、2ヒドロキシエチルメタクリレート、2ヒ
ドロキシエチルアクリレート、アクリルアミド、
メタクリルアミド、2アクリルアミド−2−メチ
ルプロパンスルホン酸、N、Nジメチルアミノエ
チルメタクリレート又はN、Nジメチルアミノエ
チルアクリレートである特許請求の範囲第1項記
載の方法。 4 イオン化ガスプラズマが100〜10-4トールの
真空下20〜200ワツトで1〜3600秒間照射して得
られるものである特許請求の範囲第1項記載の方
法。 5 イオン化ガスプラズマが10-1〜10-4トールの
真空下40〜100ワツトで10〜1800秒間照射して得
られるものである特許請求の範囲第1項記載の方
法。 6 イオン化ガスプラズマの存在下での重合の重
合率が5重量%以下である特許請求の範囲第1項
記載の方法。 7 イオン化ガスプラズマの不存在下での後重合
が60℃以下で行なわれる特許請求の範囲第1項記
載の方法。 8 グラフト重合の重合率がフイルムを形成する
疎水性重合体に対し少なくとも0.1重量%である
特許請求の範囲第1項記載の方法。
[Claims] 1. A film made of a hydrophobic polymer and a gas of a hydrophilic unsaturated monomer and/or a gas of an aqueous solution of the monomer are treated with ionized gas plasma under deoxidation, and then immersing the film in an aqueous solution of the monomer in the absence of the plasma;
1. A method for producing a hydrophilic film in which a hydrophilic unsaturated monomer is graft-polymerized onto the film. 2. The method according to claim 1, wherein the hydrophobic polymer is polyethylene, polypropylene or polyethylene terephthalate. 3 The hydrophilic unsaturated monomer is acrylic acid, methacrylic acid, 2hydroxyethyl methacrylate, 2hydroxyethyl acrylate, acrylamide,
2. The method according to claim 1, which is methacrylamide, 2-acrylamido-2-methylpropanesulfonic acid, N,N dimethylaminoethyl methacrylate or N,N dimethylaminoethyl acrylate. 4. The method according to claim 1, wherein the ionized gas plasma is obtained by irradiation at 20 to 200 Watts for 1 to 3,600 seconds under a vacuum of 100 to 10 -4 Torr. 5. The method according to claim 1, wherein the ionized gas plasma is obtained by irradiation at 40 to 100 Watts for 10 to 1800 seconds under a vacuum of 10 -1 to 10 -4 Torr. 6. The method according to claim 1, wherein the polymerization rate in the polymerization in the presence of ionized gas plasma is 5% by weight or less. 7. The method according to claim 1, wherein the postpolymerization in the absence of ionized gas plasma is carried out at 60° C. or lower. 8. The method according to claim 1, wherein the polymerization rate of the graft polymerization is at least 0.1% by weight based on the hydrophobic polymer forming the film.
JP15443782A 1982-09-03 1982-09-03 Hydrophilic film and its production Granted JPS5943010A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15443782A JPS5943010A (en) 1982-09-03 1982-09-03 Hydrophilic film and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15443782A JPS5943010A (en) 1982-09-03 1982-09-03 Hydrophilic film and its production

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP13821791A Division JPH0742342B2 (en) 1991-05-13 1991-05-13 Hydrophilized film

Publications (2)

Publication Number Publication Date
JPS5943010A JPS5943010A (en) 1984-03-09
JPH0413368B2 true JPH0413368B2 (en) 1992-03-09

Family

ID=15584168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15443782A Granted JPS5943010A (en) 1982-09-03 1982-09-03 Hydrophilic film and its production

Country Status (1)

Country Link
JP (1) JPS5943010A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6259637A (en) * 1985-09-11 1987-03-16 Mitsui Petrochem Ind Ltd Improvement of adhesiveness
JPH0730137B2 (en) * 1986-05-09 1995-04-05 出光興産株式会社 Water absorbing material

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5319384A (en) * 1976-08-06 1978-02-22 Toray Industries Method of modification of surface
JPS5361789A (en) * 1976-11-11 1978-06-02 Toray Industries Fiber treating

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5319384A (en) * 1976-08-06 1978-02-22 Toray Industries Method of modification of surface
JPS5361789A (en) * 1976-11-11 1978-06-02 Toray Industries Fiber treating

Also Published As

Publication number Publication date
JPS5943010A (en) 1984-03-09

Similar Documents

Publication Publication Date Title
JP2001081667A (en) Polymeric sheet
JP5196234B2 (en) Anion exchange membrane and method for producing the same
Choi et al. Electrochemical properties of polyethylene membrane modified with carboxylic acid group
EP0014459B1 (en) Process for production of separators for use in cells
JPH0967457A (en) Production of hydrophilic silicone rubber film
JPH02228334A (en) Hydroxylation of hydrophobic polymer surface
JPS6145351B2 (en)
JPH0413368B2 (en)
JPS596469B2 (en) Manufacturing method for battery diaphragm with excellent dimensional stability
JPH0742342B2 (en) Hydrophilized film
JPH06184334A (en) Method for using amino group which is formed on polymer material by electrically treating it in nitrogen atmosphere and is used for accelerating graft reaction
JPH0561297B2 (en)
JPH041774B2 (en)
JPS59160504A (en) Hydrophilic separating membrane and its production
JPH0254376B2 (en)
JPS597725B2 (en) Surface modification method
JPH07279052A (en) Method for improving polypropylene-based base material
JPS6020941A (en) Grafting onto polyfluoroolefin molding
US4379200A (en) Novel method of producing ion exchange membrane
JPS6034980B2 (en) Method for producing graft membranes with excellent dimensional stability using radiation graft polymerization method
JPH0373572B2 (en)
JPS58205545A (en) Uranium adsorbent containing both amidoxime group and neutral hydrophilic group and its production
JPS6031323B2 (en) Method for producing water-soluble vinyl polymer
JPH04146271A (en) Method for subjecting polyester fiber to graft polymerization treatment
CN113201164B (en) Preparation method of medical polymer material surface antifouling coating