JPH0254134B2 - - Google Patents

Info

Publication number
JPH0254134B2
JPH0254134B2 JP59138040A JP13804084A JPH0254134B2 JP H0254134 B2 JPH0254134 B2 JP H0254134B2 JP 59138040 A JP59138040 A JP 59138040A JP 13804084 A JP13804084 A JP 13804084A JP H0254134 B2 JPH0254134 B2 JP H0254134B2
Authority
JP
Japan
Prior art keywords
membrane
gas
triazole
dimethylpyrazole
carbon monoxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59138040A
Other languages
Japanese (ja)
Other versions
JPS6118420A (en
Inventor
Junichi Matsura
Yoshiteru Kobayashi
Osamu Kidai
Yumiko Inagaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP13804084A priority Critical patent/JPS6118420A/en
Priority to US06/683,516 priority patent/US4662905A/en
Publication of JPS6118420A publication Critical patent/JPS6118420A/en
Publication of JPH0254134B2 publication Critical patent/JPH0254134B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は気体との選択透過膜に関する。詳しく
は特定の反応生成物をそれ単独又は溶液として支
持体となる膜に保持させた、気体特に一酸化炭素
の透過に適した気体選択透過膜に関する。 〔従来の技術〕 従来気体混合物の分離膜として各種の高分子膜
が知られているが、これらの膜は気体の透過係数
が比較的小さく、より透過係数の高い材料が望ま
れている。膜が液状の場合には一般に気体の拡散
係数が大きくなり、従つて透過係数を大きくする
ことが出来る。更にこの様な液状の膜の中に、あ
る気体とのみ選択的に可逆的相互作用を有する物
質が含まれる場合には、その気体の透過性を更に
上げることが可能である。一方膜の選択性能は膜
への気体相互の溶解度の差、膜中での気体相互の
拡散速度の差によつて与えられるので上記の如き
特定の気体とのみ選択的に可逆的相互作用を有す
る物質を膜中に含む場合には、その気体のみの溶
解度が大きくなり選択性能も飛躍的に大きくする
ことが可能である。 この様にある気体とのみ選択的に可逆的相互作
用を有する物質を含有する膜については多くの例
が知られており、例えばアルカリ金属の重炭酸塩
の水溶液による炭酸ガスの分離(特公昭45−
1176)、硝酸銀水溶液によるオレフインの分離
(特公昭53−31842)、塩化第一鉄のホルムアミド
溶液による一酸化窒素の分離(A.I Ch E
Journal vol16No.3 405ページ1970年)などがあ
り、これらの液体膜は支持体となる膜に保持して
使用される。又一酸化炭素の分離については塩化
銅の塩酸水溶液が知られているが、この場合には
濃厚な塩酸水溶液を使用しなければならない難点
がある。又、透過の二次例(流出側)を減圧にす
る場合、水蒸気や塩化水素ガスの透過がおこり他
のガスと混入するという難点がある。 〔発明が解決しようとする問題点〕 本発明者らは、この様なある気体と選択的に可
逆的相互作用を有する物質、特に一酸化炭素と選
択的に可逆的相互作用を有する物質を検討した結
果、無機銅化合物と1,2,4−トリアゾールま
たは3,5−ジメチルピラゾールとの反応生成物
を保持した膜が一酸化炭素の透過を著しく促進し
非常に高い一酸化炭素選択分離性能と一酸化炭素
の高い透過速度を示すことを見出し本発明に到達
した。 〔問題点を解決するための手段〕 すなわち本発明の要旨は無機銅化合物と1,
2,4−トリアゾールまたは3,5−ジメチルピ
ラゾールとの反応生成物を支持体となる膜に保持
させた気体選択透過膜にある。 以下本発明を詳細に説明する。 本発明で使用する無機銅化合物としては化学大
辞典(昭和37年共立出版株式会社発行)第9巻第
57頁「むきかごうぶつ」の項に記載されている内
容の無機化合物の中で銅を含む化合物を意味し、
そのような無機銅化合物の中で特に限定しない
が、塩化第1銅、塩化第2銅、酸化第1銅、酸化
第2銅、臭化第1銅、臭化第2銅、シアン化第1
銅、シアン化第2銅、チオシアン酸銅、フツ化
銅、ヨウ化銅、硫化銅、硫酸銅などが例示され、
これらは単独又は混合物としても使用できる。こ
れらの中でもヨウ化第1銅、チオシアン酸第1
銅、塩化第1銅などは特に適した無機銅化合物で
ある。 無機銅化合物、1,2,4−トリアゾールまた
は3,5−ジメチルピラゾールは市販品の場合、
そのまま用いてもよいし、さらに精製してもよ
い。 1,2,4−トリアゾールまたは3,5−ジメ
チルピラゾールは溶媒を用いて溶解またはスラリ
ー状にして使用するのが好ましい。 この場合も溶媒への溶解度が高い程促進輸送に
は有利である。 溶媒としてはケトン、エステル、エーテル、ア
ルコール、アミン、アミド、他の含窒素化合物、
含硫黄化合物、含リン化合物、含ハロゲン化合物
を用いることができる。アセトン、酢酸エチル、
アセトニトリル、メタノール、エタノール、など
は1,2,4−トリアゾールまたは3,5−ジメ
チルピラゾールを良く溶解するという点では適切
であるが、透過の2次側を減圧にする場合はこれ
ら化合物は蒸気圧が高いため、蒸気となつて透過
し他のガスと混入するという難点を有するので、
この場合には氷点下で行うことが望ましい。一
方、例えば、アセトフエノン、N−メチル2−ピ
ロリドン、γ−ブチロラクトン、エチレングリコ
ール、テトラエチレングリコールジメチルエステ
ル、ポリエチレングリコール、グリセリン、ジメ
チルスルホキシド、ベンゾニトリル等の蒸気圧の
比較的低い溶媒を用いる場合には、室温で十分で
ある。 さらに高温で行なう場合には、室温では固体で
あるベンゾフエノンなどを溶媒として用いること
ができる。 無機銅化合物と1,2,4−トリアゾールまた
は3,5−ジメチルピラゾールとの比はそれらが
液体の場合は通常1,2,4−トリアゾールまた
は3,5−ジメチルピラゾール /銅化合物>
0.1(モル比)以上が選ばれるが、高透過性、高選
択性を付与するためには0.1<1,2,4−トリ
アゾールまたは3,5−ジメチルピラゾール/無
機銅化合物<100(モル比)が望ましく、0.5<1,
2,4−トリアゾールまたは3,5−ジメチルピ
ラゾール/無機銅化合物<50(モル比)が特に望
ましい。 1,2,4−トリアゾールまたは3,5−ジメ
チルピラゾールと溶媒の比は通常1,2,4−ト
リアゾールまたは3,5−ジメチルピラゾール/
溶媒>0.001以上が選ばれる。 反応の温度は一般に0〜200℃で製造すること
ができ、不活性ガス気流下で行うのが好ましい。 溶媒を使用する場合には溶媒に1,2,4−ト
リアゾールまたは3,5−ジメチルピラゾールを
溶解させた後、無機銅化合物を添加するのが望ま
しい。また、減圧や析出などの方法で固形分(反
応生成物)を取り出したのち、再度溶解可能な溶
媒に溶解させてもよい。 次にこうして得られた無機銅化合物と1,2,
4−トリアゾールまたは3,5−ジメチルピラゾ
ールとの反応生成物を保持する為に使用する支持
体は気体を透過する性質を有する膜であればよく
特に限定しない。又、保持する方法についても保
持することによつて気体、特に一酸化炭素の選択
的な透過が行われる方法であればよく特に限定さ
れないが、例えば液状のこれら反応生成物、又は
溶媒に溶解した反応生成物の溶液を多孔性の支持
体の孔に充満させる方法、支持体膜の上に形成し
た架橋性の高分子の網目に包埋させる方法、支持
体膜の上に一定の厚さを有する液膜として保持す
る方法、支持体上に形成された配列した分子の中
に保持する方法などが例示される。 支持体として使用される膜の材料の種類は特に
限定されないが、再生セルロース、セルロースエ
ステル、ポリカーボネート、ポリエステル、テフ
ロン、ナイロン、アセチルセルロース、ポリアク
リロニトリル、ポリビニルアルコール、ポリメチ
ルメタアクリレート、ポリスルホン、ポリエチレ
ン、ポリプロピレン、ポリビニルピリジン、ポリ
フエニレンオキサイド、ポリフエニレンオキサイ
ドスルホン酸、ポリベンズイミダゾール、ポリイ
ミダピロロン、ポリピペラジンアミド、ポリスチ
レン、ポリアミノ酸、ポリウレタン、ポリアミノ
酸ポリウレタン共重合体、ポリシロキサン、ポリ
シロキサンポリカーボネート共重合体、ポリトリ
メチルビニルシラン、コラーゲン、ポリイオン錯
体、ポリウレア、ポリアミド、ポリイミド、ポリ
アミドイミド、ポリ塩化ビニル、スルホン化ポリ
フルフリルアルコールなどの有機高分子、ガラ
ス、アルミナ、シリカ、シリカアルミナ、カーボ
ン、金属などの無機物質があげられる。 これら支持体の形状は平板状、管状、スパイラ
ル状、中空糸状のいずれの形態に於ても使用する
ことが出来る。これら支持体は全体が多孔質であ
つても表面のみ緻密層を有する異方性膜であつて
も、均質な膜であつてもよい。又表面に蒸着、コ
ーテイング、重合などの方法によつて他の素材の
薄膜が被覆されたものであつてもよい。全体の厚
さは特に限定されないが10〜1000μの範囲が好ま
しい。この様な支持体は更に別の素材の支持体に
重ねて支持して使用することも出来る。 これら支持体に保持して使用する無機銅化合物
と1,2,4−トリアゾールまたは3,5−ジメ
チルピラゾールとの反応生成物の層の厚さは数オ
ングストローム以上の厚みで使用することが出
来、特に限定されない。但し、これら反応生成物
の液膜が無撹拌の状態に於て使用される場合は、
その厚みは薄い程大きい透過速度を得る為に好ま
しい。又あまり薄い場合には分離を目的とする以
外の気体の透過速度も大きくなり分離性が低下し
て好ましくない。最も適した膜厚は気体とこれら
反応生成物との結合及び解離の速度定数、平衡定
数その他の条件によつて異なるが大よそ0.01〜
50000μ、更に好ましくは0.1〜10000μの膜厚で使
用される。又液膜を撹拌下に使用する場合には、
その膜厚は厚くても問題はないが支持体膜の表面
で拡散層として存在する実質的な膜厚は無撹拌の
場合の膜厚と同様であることが好ましい。 無機銅化合物と1,2,4−トリアゾールまた
は3,5−ジメチルピラゾールとの反応生成物を
支持体に保持した膜を使用して気体を分離する場
合には種々の方法が考えられるが、通常のポリマ
ーのフイルムによつて気体を分離する場合のよう
に膜の両面に分離すべき気体の分圧差をつけて使
用する。又、膜セルとは別に無機銅化合物と1,
2,4−トリアゾールまたは3,5−ジメチルピ
ラゾールとの反応生成物又はその溶液を溜めた容
器を置き、ここからポンプでこの液体を膜セルの
支持体膜の表面(膜の一次側)に導き循環する方
法を用いることも出来る。この場合には溜めの容
器に於て例えば一酸化炭素を十分液体に吸収さ
せ、これを膜セルに於て膜の2次側を減圧にする
ことによつて溶解あるいは結合した気体を連続的
に解離、脱着させ膜の2次側に導き、一酸化炭素
を失つた液体を溜めに導き再び一酸化炭素を溶解
させる操作を連続的に行うことにより一酸化炭素
を高選択的、連続的に取り出す方法を使用するこ
とも出来る。この場合膜セルと溜めの温度を相違
させ、一酸化炭素の取り出しを容易にすることが
出来る。膜セル部分の温度は特に限定されないが
例えば0〜200℃の範囲で使用することが出来る。 無機銅化合物と1,2,4−トリアゾールまた
は3,5−ジメチルピラゾールとの反応生成物又
はその溶液を支持体となる膜に支持する、他の方
法として多孔質の支持体の孔に上記反応生成物又
はその溶液を充填する方法、及び上記反応生成物
又はその溶液を支持体の無孔性の膜中に溶解又は
分散させて保持する方法などが考えられる。 上記反応生成物を保持する方法の中には液晶な
どの規則的分子配列した成分中に溶解又は分散さ
せる方法も含まれる。 〔発明の効果〕 かくして得られた気体分離膜は主として一酸化
炭素の分離に有利に使用出来る。例えば天然ガ
ス、軽ナフサ、重質油などの炭化水素の水蒸気改
質又は部分酸化で得られる合成ガス、石炭のガス
化及び製鉄の副生ガスとして得られる一酸化炭素
を含む混合ガス等から主として一酸化炭素を高収
率で分離し、各種の化学反応に原料として使用す
ることが出来る。 〔実施例〕 次に本発明を実施例により説明する。 実施例 1 乾燥窒素気流下に1,2,4−トリアゾール
(市販品をそのまま使用)3.10gをフラスコに採
り、そこへN−メチルピロリドン(市販品を脱
水、脱酸素したもの)を15ml添加し、撹拌した。
しばらくすると均一な溶液となつた。 これにチオシアン酸第1銅(市販品をそのまま
使用)を1.82g添加し撹拌した。しばらくすると
ほぼ均一な溶液となつた。 一方、気体透過測定用セルにポリトリメチルビ
ニルシランの非対称膜を装着し、スキン層側を一
次側にした。この膜の窒素透過速度は9.0×10-5
cm3/cm2・sec・cmHgであつた。 この膜上に不活性ガス気流下、上の均一溶液を
12.5ml添加し撹拌した。一次側、二次側ともに減
圧にしたのち、一次側には、1Kg/cm2の気体を流
し、二次側は真空にして各種気体の透過性をガス
クロマトグラフイー法により測定した。測定ガス
は純ガスを用いた。 結果は表−1に示す。表からわかるように一酸
化炭素の透過度は他のガスに比べ非常に大きく、
一酸化炭素ガスのみが選択的に透過促進されたこ
とがわかる。 又、この方法によるとNメチルイミダゾールの
液滴は実験操作中、1滴も二次側には透らずNメ
チルイミダゾールの蒸気圧も低いため、その蒸気
も透つていないという利点を有する。(トラツプ
管をつけて実験したが1滴もたまつていなかつ
た。) 比較例 1 1,2,4−トリアゾールとチオシアン酸第1
銅との反応生成物の溶液のかわりに、N−メチル
ピロリドン12.5mlのみを使用し実施例1と同様に
各種の流体の透過速度を測定した。結果を表−1
に示す。 実施例 2 1,2,4−トリアゾールのかわりに、3,5
−ジメチルピラゾールを4.32g使用した以外は実
施例1と全く同じ方法により各種の気体の透過速
度を測定した。 用いたポリトリメチルビニルシラン膜の窒素透
過速度は3.72×10-4cm3/cm2・sec・cmHgであつ
た。 比較例2及び3 ヨウ化銅()もしくは塩化銅()と3,5
−ジメチル−1−アリルピラゾールとの反応生成
物を用いて実施例1の方法に準じて、同様に各種
の気体の透過速度を測定した。結果を表−1に示
す。
[Industrial Application Field] The present invention relates to a selectively permeable membrane for gas. More specifically, the present invention relates to a gas selective permeation membrane suitable for the permeation of gases, particularly carbon monoxide, in which a specific reaction product is retained either alone or as a solution on a membrane serving as a support. [Prior Art] Various polymer membranes are conventionally known as separation membranes for gas mixtures, but these membranes have relatively low gas permeability coefficients, and materials with higher permeability coefficients are desired. When the membrane is liquid, the gas diffusion coefficient generally increases, and therefore the permeability coefficient can be increased. Furthermore, when such a liquid membrane contains a substance that selectively and reversibly interacts only with a certain gas, it is possible to further increase the permeability of that gas. On the other hand, the selective performance of a membrane is given by the difference in the solubility of gases in the membrane and the difference in the rate of diffusion of gases in the membrane, so it selectively and reversibly interacts only with the above-mentioned specific gases. When a substance is included in the membrane, the solubility of only that gas increases, and the selectivity can be dramatically increased. Many examples are known of membranes containing substances that selectively and reversibly interact only with certain gases, such as the separation of carbon dioxide gas using an aqueous solution of alkali metal bicarbonate (Special Publication No. 45). −
1176), Separation of olefins using an aqueous solution of silver nitrate (Special Publication No. 53-31842), Separation of nitric oxide using a formamide solution of ferrous chloride (AI Ch E
Journal vol 16 No. 3 405 pages 1970), and these liquid membranes are used by being held on a membrane that serves as a support. Furthermore, for the separation of carbon monoxide, an aqueous solution of copper chloride in hydrochloric acid is known, but this method has the disadvantage that a concentrated aqueous solution of hydrochloric acid must be used. Further, when the pressure is reduced in the secondary case of permeation (outflow side), there is a problem that water vapor and hydrogen chloride gas permeate and become mixed with other gases. [Problems to be Solved by the Invention] The present inventors have studied substances that have selective reversible interactions with certain gases, particularly substances that have selective reversible interactions with carbon monoxide. As a result, a membrane retaining the reaction product of an inorganic copper compound and 1,2,4-triazole or 3,5-dimethylpyrazole significantly promoted the permeation of carbon monoxide and achieved extremely high carbon monoxide selective separation performance. It was discovered that carbon monoxide exhibits a high permeation rate, and the present invention was achieved. [Means for solving the problem] That is, the gist of the present invention is to provide an inorganic copper compound and 1.
It is a gas selective permeation membrane in which a reaction product with 2,4-triazole or 3,5-dimethylpyrazole is retained on a membrane serving as a support. The present invention will be explained in detail below. The inorganic copper compound used in the present invention is described in Kagaku Daijiten (published by Kyoritsu Shuppan Co., Ltd. in 1960), Volume 9.
Means a compound containing copper among the inorganic compounds described in the section of "Peeling baskets" on page 57,
Examples of such inorganic copper compounds include, but are not limited to, cuprous chloride, cupric chloride, cuprous oxide, cupric oxide, cuprous bromide, cupric bromide, and cuprous cyanide.
Examples include copper, cupric cyanide, copper thiocyanate, copper fluoride, copper iodide, copper sulfide, copper sulfate, etc.
These can be used alone or as a mixture. Among these, cuprous iodide, cuprous thiocyanate,
Copper, cuprous chloride, and the like are particularly suitable inorganic copper compounds. If the inorganic copper compound, 1,2,4-triazole or 3,5-dimethylpyrazole is a commercially available product,
It may be used as is or may be further purified. 1,2,4-triazole or 3,5-dimethylpyrazole is preferably used in the form of a solution or slurry using a solvent. In this case as well, the higher the solubility in the solvent, the more advantageous it is to facilitated transport. As solvents, ketones, esters, ethers, alcohols, amines, amides, other nitrogen-containing compounds,
Sulfur-containing compounds, phosphorus-containing compounds, and halogen-containing compounds can be used. acetone, ethyl acetate,
Acetonitrile, methanol, ethanol, etc. are suitable in that they dissolve 1,2,4-triazole or 3,5-dimethylpyrazole well, but when reducing the pressure on the secondary side of permeation, these compounds have a low vapor pressure. Because of its high gas content, it has the disadvantage that it passes through as vapor and mixes with other gases.
In this case, it is desirable to carry out the process at below freezing temperature. On the other hand, when using a solvent with relatively low vapor pressure, such as acetophenone, N-methyl 2-pyrrolidone, γ-butyrolactone, ethylene glycol, tetraethylene glycol dimethyl ester, polyethylene glycol, glycerin, dimethyl sulfoxide, benzonitrile, etc. , room temperature is sufficient. When carrying out the reaction at a higher temperature, benzophenone, which is solid at room temperature, can be used as a solvent. When the inorganic copper compound and 1,2,4-triazole or 3,5-dimethylpyrazole are liquid, the ratio is usually 1,2,4-triazole or 3,5-dimethylpyrazole/copper compound>
0.1 (molar ratio) or more is selected, but in order to provide high permeability and high selectivity, 0.1<1,2,4-triazole or 3,5-dimethylpyrazole/inorganic copper compound<100 (molar ratio) is desirable, and 0.5<1,
2,4-triazole or 3,5-dimethylpyrazole/inorganic copper compound <50 (molar ratio) is particularly preferred. The ratio of 1,2,4-triazole or 3,5-dimethylpyrazole to the solvent is usually 1,2,4-triazole or 3,5-dimethylpyrazole/
Solvent>0.001 or more is selected. The reaction temperature can generally be 0 to 200°C, and it is preferable to carry out the reaction under an inert gas stream. When a solvent is used, it is desirable to dissolve 1,2,4-triazole or 3,5-dimethylpyrazole in the solvent and then add the inorganic copper compound. Alternatively, the solid content (reaction product) may be taken out by a method such as reduced pressure or precipitation, and then dissolved in a solvent that can dissolve it again. Next, the inorganic copper compound thus obtained and 1,2,
The support used for holding the reaction product with 4-triazole or 3,5-dimethylpyrazole is not particularly limited as long as it is a membrane having gas permeable properties. Furthermore, the holding method is not particularly limited as long as the holding allows selective permeation of gases, particularly carbon monoxide, but for example, these reaction products in liquid form or dissolved in a solvent A method in which a reaction product solution is filled into the pores of a porous support, a method in which it is embedded in a crosslinkable polymer network formed on a support membrane, and a method in which a solution of a reaction product is embedded in a cross-linked polymer network formed on a support membrane, Examples include a method of retaining it as a liquid film, a method of retaining it in arranged molecules formed on a support, and the like. The type of membrane material used as the support is not particularly limited, but includes regenerated cellulose, cellulose ester, polycarbonate, polyester, Teflon, nylon, acetyl cellulose, polyacrylonitrile, polyvinyl alcohol, polymethyl methacrylate, polysulfone, polyethylene, polypropylene. , polyvinylpyridine, polyphenylene oxide, polyphenylene oxide sulfonic acid, polybenzimidazole, polyimidapyrrolone, polypiperazine amide, polystyrene, polyamino acid, polyurethane, polyamino acid polyurethane copolymer, polysiloxane, polysiloxane polycarbonate copolymer Organic polymers such as coalescence, polytrimethylvinylsilane, collagen, polyion complexes, polyurea, polyamide, polyimide, polyamideimide, polyvinyl chloride, and sulfonated polyfurfuryl alcohol; inorganic materials such as glass, alumina, silica, silica alumina, carbon, and metals. Substances can be given. These supports can be used in any of the shapes of a flat plate, a tube, a spiral, and a hollow fiber. These supports may be entirely porous, may be an anisotropic film having a dense layer only on the surface, or may be a homogeneous film. Alternatively, the surface may be coated with a thin film of another material by a method such as vapor deposition, coating, or polymerization. The overall thickness is not particularly limited, but is preferably in the range of 10 to 1000μ. Such a support can also be used by being superimposed on a support made of another material. The layer of the reaction product of the inorganic copper compound and 1,2,4-triazole or 3,5-dimethylpyrazole held on these supports can have a thickness of several angstroms or more, Not particularly limited. However, if the liquid film of these reaction products is used without stirring,
The thinner the thickness, the more preferable it is in order to obtain a higher transmission rate. In addition, if it is too thin, the permeation rate of gases other than those intended for separation will increase, resulting in a decrease in separability, which is not preferable. The most suitable film thickness varies depending on the rate constants of binding and dissociation between the gas and these reaction products, the equilibrium constant, and other conditions, but is approximately 0.01~
It is used at a film thickness of 50,000μ, more preferably 0.1 to 10,000μ. In addition, when using a liquid film under stirring,
Although there is no problem even if the film is thick, it is preferable that the substantial film thickness existing as a diffusion layer on the surface of the support film is the same as the film thickness in the case of no stirring. Various methods can be used to separate gases using a membrane in which the reaction product of an inorganic copper compound and 1,2,4-triazole or 3,5-dimethylpyrazole is supported on a support. When gases are separated using a polymer film, a partial pressure difference between the gases to be separated is applied to both sides of the membrane. In addition, apart from the membrane cell, an inorganic copper compound and 1,
A container containing the reaction product or its solution with 2,4-triazole or 3,5-dimethylpyrazole is placed, and a pump is used to guide this liquid to the surface of the support membrane (primary side of the membrane) of the membrane cell. A circular method can also be used. In this case, carbon monoxide, for example, is sufficiently absorbed into the liquid in a reservoir container, and the dissolved or combined gas is continuously removed by reducing the pressure on the secondary side of the membrane in the membrane cell. Carbon monoxide is extracted continuously and highly selectively by dissociating and desorbing it, leading it to the secondary side of the membrane, leading the liquid that has lost carbon monoxide to a reservoir, and dissolving carbon monoxide again. You can also use the method In this case, the temperatures of the membrane cell and the reservoir can be made different to facilitate the extraction of carbon monoxide. Although the temperature of the membrane cell portion is not particularly limited, it can be used, for example, in the range of 0 to 200°C. Another method of supporting the reaction product of an inorganic copper compound and 1,2,4-triazole or 3,5-dimethylpyrazole or its solution on a membrane serving as a support is to apply the above reaction to the pores of a porous support. Possible methods include a method of filling the product or its solution, and a method of dissolving or dispersing the reaction product or its solution in a nonporous membrane of the support and retaining the solution. The method of retaining the reaction product includes a method of dissolving or dispersing it in a component having regularly arranged molecules such as liquid crystal. [Effects of the Invention] The gas separation membrane thus obtained can be advantageously used mainly for separating carbon monoxide. For example, it mainly consists of synthetic gas obtained by steam reforming or partial oxidation of hydrocarbons such as natural gas, light naphtha, and heavy oil, and mixed gas containing carbon monoxide obtained as a byproduct gas of coal gasification and steel manufacturing. Carbon monoxide can be separated in high yield and used as a raw material for various chemical reactions. [Example] Next, the present invention will be explained with reference to an example. Example 1 3.10 g of 1,2,4-triazole (commercially available product used as is) was placed in a flask under a stream of dry nitrogen, and 15 ml of N-methylpyrrolidone (commercially available product, dehydrated and deoxidized) was added thereto. , stirred.
After a while, the solution became homogeneous. To this was added 1.82 g of cuprous thiocyanate (a commercially available product was used as is) and the mixture was stirred. After a while, the solution became almost homogeneous. On the other hand, an asymmetric membrane of polytrimethylvinylsilane was attached to the cell for gas permeation measurement, and the skin layer side was set as the primary side. The nitrogen permeation rate of this membrane is 9.0×10 -5
cm 3 /cm 2・sec・cmHg. The above homogeneous solution is poured onto this membrane under a stream of inert gas.
12.5 ml was added and stirred. After reducing the pressure on both the primary and secondary sides, a gas of 1 kg/cm 2 was passed through the primary side, and the secondary side was evacuated, and the permeability of various gases was measured by gas chromatography. Pure gas was used as the measurement gas. The results are shown in Table-1. As can be seen from the table, the permeability of carbon monoxide is extremely large compared to other gases.
It can be seen that the permeation of only carbon monoxide gas was selectively promoted. Furthermore, this method has the advantage that not a single droplet of N-methylimidazole passes through to the secondary side during the experimental operation, and since the vapor pressure of N-methylimidazole is low, its vapor also does not pass through. (I experimented with a trap tube attached, but not a single drop was collected.) Comparative example 1 1,2,4-triazole and thiocyanic acid No. 1
The permeation rates of various fluids were measured in the same manner as in Example 1, using only 12.5 ml of N-methylpyrrolidone instead of the solution of the reaction product with copper. Table 1 shows the results.
Shown below. Example 2 3,5 instead of 1,2,4-triazole
The permeation rates of various gases were measured in the same manner as in Example 1, except that 4.32 g of -dimethylpyrazole was used. The nitrogen permeation rate of the polytrimethylvinylsilane membrane used was 3.72×10 −4 cm 3 /cm 2 ·sec·cmHg. Comparative Examples 2 and 3 Copper iodide () or copper chloride () and 3,5
The permeation rate of various gases was similarly measured according to the method of Example 1 using the reaction product with -dimethyl-1-allylpyrazole. The results are shown in Table-1.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 無機銅化合物と1,2,4−トリアゾールま
たは3,5−ジメチルピラゾールとの反応生成物
をプラズマ重合によらない製膜方法により形成さ
れた支持体となる膜に保持された一酸化炭素分離
用気体選択透過膜。
1 Carbon monoxide separation held on a support membrane formed from a reaction product of an inorganic copper compound and 1,2,4-triazole or 3,5-dimethylpyrazole by a membrane-forming method that does not involve plasma polymerization. Gas selective permeation membrane for use.
JP13804084A 1983-12-23 1984-07-05 Gas permselective membrane Granted JPS6118420A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP13804084A JPS6118420A (en) 1984-07-05 1984-07-05 Gas permselective membrane
US06/683,516 US4662905A (en) 1983-12-23 1984-12-19 Selective gas separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13804084A JPS6118420A (en) 1984-07-05 1984-07-05 Gas permselective membrane

Publications (2)

Publication Number Publication Date
JPS6118420A JPS6118420A (en) 1986-01-27
JPH0254134B2 true JPH0254134B2 (en) 1990-11-20

Family

ID=15212616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13804084A Granted JPS6118420A (en) 1983-12-23 1984-07-05 Gas permselective membrane

Country Status (1)

Country Link
JP (1) JPS6118420A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61209003A (en) * 1985-03-08 1986-09-17 Osaka Soda Co Ltd Composite membrane
JPH0733114U (en) * 1993-12-06 1995-06-20 廣子 堤 Ring

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5912707A (en) * 1982-06-30 1984-01-23 ベンド・リサ−チ・インコ−ポレ−テツド Membrane for producing oxygen and production of oxygen
JPS6090004A (en) * 1983-10-22 1985-05-21 Agency Of Ind Science & Technol Gas separation membrane

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5912707A (en) * 1982-06-30 1984-01-23 ベンド・リサ−チ・インコ−ポレ−テツド Membrane for producing oxygen and production of oxygen
JPS6090004A (en) * 1983-10-22 1985-05-21 Agency Of Ind Science & Technol Gas separation membrane

Also Published As

Publication number Publication date
JPS6118420A (en) 1986-01-27

Similar Documents

Publication Publication Date Title
CA1110273A (en) Carbonylation process
RU2721915C2 (en) Membranes for reverse osmosis of hydrocarbons and a method for production thereof
JP3242121B2 (en) High pressure promoting membrane for selective separation and its use
US5135547A (en) Facilitated liquid membranes for olefin/paraffin gas separations and related process
KR20070051298A (en) Ionic polymer membranes
US20120310018A1 (en) Zeolitic imidazolate framework membranes and methods of making and using same for separation of c2- and c3+ hydrocarbons and separation of propylene and propane mixtures
EP1708981A1 (en) Process for the separation of olefins and paraffins
Yoshikawa et al. Selective separation of water–ethanol mixture through synthetic polymer membranes having carboxylic acid as a functional group
US5131928A (en) High pressure facilitated membranes for selective separation and process for the use thereof
Yamasaki et al. Pervaporation of benzene/cyclohexane and benzene/n‐hexane mixtures through PVA membranes
JP2829268B2 (en) Method for the separation of acidic gases from gas mixtures
US6004374A (en) Carbonaceous adsorbent membranes for gas dehydration
US4818255A (en) Material for gas separation
JPS63218231A (en) Separation material of gas
JPH0254134B2 (en)
Bhave et al. Gas separations with inorganic membranes
JPH0254133B2 (en)
JPH0217213B2 (en)
JPS63194716A (en) Gas selective separating material
JPH0363414B2 (en)
JPH0255099B2 (en)
JPS63194715A (en) Gas separating material
US5049259A (en) Membrane process for drying liquid hydrocarbons
JPH0363412B2 (en)
JPS61268338A (en) Selective separation of gas

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term