JPS63194716A - Gas selective separating material - Google Patents

Gas selective separating material

Info

Publication number
JPS63194716A
JPS63194716A JP62027217A JP2721787A JPS63194716A JP S63194716 A JPS63194716 A JP S63194716A JP 62027217 A JP62027217 A JP 62027217A JP 2721787 A JP2721787 A JP 2721787A JP S63194716 A JPS63194716 A JP S63194716A
Authority
JP
Japan
Prior art keywords
gas
carbon monoxide
solvent
cupric
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62027217A
Other languages
Japanese (ja)
Other versions
JPH0218896B2 (en
Inventor
Junichi Matsuura
松浦 恂一
Tatsuki Oguchi
小口 達貴
Munehisa Okada
宗久 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP62027217A priority Critical patent/JPS63194716A/en
Priority to US07/154,043 priority patent/US4818255A/en
Publication of JPS63194716A publication Critical patent/JPS63194716A/en
Publication of JPH0218896B2 publication Critical patent/JPH0218896B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Industrial Gases (AREA)
  • Treating Waste Gases (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Gas Separation By Absorption (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

PURPOSE:To efficiently recover CO or the like, by mixing copper compd. with ascorbic acids in a solvent and using the mixture as an absorbent and a separating material of gas such as a permeable membrane. CONSTITUTION:Copper compd. such as Cu(NO3)2, Cu(CH3CO2)2, CuF2, CuI2 and Cu(BF4)2 is mixed with ascorbic acids such as L-ascorbic acid in the solvent incorporating N-contg. heterocyclic compd. such as N-methylimidazole. This mixture is used as the absorbent or a gas permeable membrane held with it on a supporting membrane and thereby CO is recovered with high yield from CO-contg. gas by selectively absorbing CO or selectively permeating CO.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は気体分離に有用な気体の選択分離材に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a selective gas separation material useful for gas separation.

詳しくは銅化合物とアスコルビン酸又はその誘導体を溶
媒、特に窒素含有複素環化合物を含む溶媒中で混合して
得られる気体の選択分離材に関する。
Specifically, the present invention relates to a gas selective separation material obtained by mixing a copper compound and ascorbic acid or a derivative thereof in a solvent, particularly a solvent containing a nitrogen-containing heterocyclic compound.

〔従来の技術〕[Conventional technology]

天然ガス、軽ナフサ、重質油などの炭化水素の水蒸気改
質又は部分酸化によシ生成するガスや転炉ガス、高炉ガ
ス、コークス炉ガスなどの製鉄副生ガスからの一酸化炭
素の除去又は濃縮精製に有用な分離技術はアンモニア合
成における原料ガスの精製や各種化学工業製品の合成用
原料の製造等、化学工業に$−込て重要な技術となって
いる。
Removal of carbon monoxide from gases produced by steam reforming or partial oxidation of hydrocarbons such as natural gas, light naphtha, and heavy oil, and from steelmaking byproduct gases such as converter gas, blast furnace gas, and coke oven gas. Separation technology useful for concentration and purification has become an important technology in the chemical industry, such as the purification of raw material gas in ammonia synthesis and the production of raw materials for synthesis of various chemical industry products.

一酸化炭素を含有する気体混合物から、これを分離濃縮
する方法として深冷分離法、吸収液法、吸着法、農法な
どの方法が実施されているがそれぞれ技術的問題点を有
している。
Methods for separating and concentrating carbon monoxide from a gas mixture containing it include a cryogenic separation method, an absorption liquid method, an adsorption method, and an agricultural method, but each method has its own technical problems.

深冷分離法は複雑な冷凍、熱回収システムから構成され
ておシ、操作温度が低温であるため装置材料として高級
材質を使用する必要があシ建設費が筒い。又低温操作の
ため動力消費量が大きくなる。更に装置内の閉そく事故
防止のためにガス中の不純物を前処理設備を設置して完
全に除く必要がある。
The cryogenic separation method consists of a complex refrigeration and heat recovery system, and because the operating temperature is low, it is necessary to use high-grade materials for the equipment, which reduces construction costs. Furthermore, power consumption increases due to low temperature operation. Furthermore, in order to prevent blockage accidents within the equipment, it is necessary to install pretreatment equipment to completely remove impurities from the gas.

吸収液法としては、古くから塩酸酸性塩化第−調水溶液
やアンモニア性第一銅水溶液を−飯化炭素の吸収液とし
て使用する方法が実施されてきたが、吸収液の強い腐蝕
性や沈澱物の生成、更には建設費が高すなどの難点があ
った。近年○08ORBプロセスと呼ばれる銅アルミニ
ウム塩化物のトルエン溶液を一酸化炭素の吸収液として
使用する吸収液法が開発され実用化されている。この方
法はガス中の不純物、特に前記の方法で前処理による除
去が必要とされる炭酸ガスが吸収されないために分離梢
製される一酸化炭素の純度が高いという長所を有する。
As for the absorption liquid method, the method of using hydrochloric acid acidic chloride aqueous solution or ammoniacal cuprous aqueous solution as an absorption liquid for hydride carbon has been practiced for a long time, but the absorption liquid has strong corrosivity and deposits. There were drawbacks such as the production of large amounts of water and the high construction costs. In recent years, an absorption liquid method called the ○08ORB process in which a toluene solution of copper aluminum chloride is used as an absorption liquid for carbon monoxide has been developed and put into practical use. This method has the advantage that impurities in the gas, especially carbon dioxide, which needs to be removed by pretreatment in the above method, are not absorbed, so that the separated carbon monoxide is of high purity.

しかし逆に水、硫化水素、アンモニアなどを含有する混
合ガスと接触すると吸収液中の塩化銅・塩化アルミニウ
ム錯体が、これらの不純物と不可逆的に反応し吸収液の
一酸化炭素吸収能が阻害される。又一酸化炭素の吸収液
からの脱離に加熱が必要である。
However, when it comes into contact with a mixed gas containing water, hydrogen sulfide, ammonia, etc., the copper chloride/aluminum chloride complex in the absorbent reacts irreversibly with these impurities, inhibiting the absorbent's ability to absorb carbon monoxide. Ru. Also, heating is required to remove carbon monoxide from the absorption liquid.

吸着法について言えは、最近ゼオライトを吸着割とする
吸着法が開発され転炉ガス等に対して実用機の運転が開
始されている。この方法は常温での操作及び小規模の装
置が可能であシ、又従来の吸収液法と比べると溶剤蒸発
の問題がなく、安定した接触操作が得られる反面、種類
の異なるガス間の吸着特性の差が小さく、転炉ガスのよ
うにガス中の一酸化炭素の濃度が高い場合はよいが、一
酸化炭素濃度が低い場合には高純度の一酸化炭素を一段
で得ることが困難と考えられる。又ゼオライトの場合、
炭酸ガスの方が一酸化炭素よ)吸着され易いので、これ
を前段で除去する必要がある。更に吸着は加圧下に脱着
は減圧下に行う心安があ勺動力費が太き込。
Regarding adsorption methods, an adsorption method using zeolite as an adsorbent has recently been developed, and practical equipment has started operating for converter gas and the like. This method allows operation at room temperature and small-scale equipment, and compared to the conventional absorption liquid method, there is no problem of solvent evaporation and stable contact operation can be obtained. It is good when the difference in properties is small and the concentration of carbon monoxide in the gas is high, such as in converter gas, but when the concentration of carbon monoxide is low, it may be difficult to obtain high-purity carbon monoxide in one step. Conceivable. Also, in the case of zeolite,
Since carbon dioxide (carbon monoxide) is more easily adsorbed, it is necessary to remove it in the first stage. Furthermore, it is safe to perform adsorption under pressure and desorption under reduced pressure, but the power cost increases.

最後に膜性について言えば従来気体混合物の分岐層とし
てq!r棟の高分子膜が検討されてbる。
Finally, regarding membrane properties, q! The polymer membrane of R building is being studied.

しかしこれらの通常の高分子膜のみをm−る場合は一酸
化炭素は他のガス例えば水素と比べて透過性が低重。従
って例えば水素を過剰に含有;するガス混合物から水素
を膜透過させて分離しfIA存ガス中の水素と一酸化炭
素の混合割合を変化する目的に用いる場合には実用的に
有用な方法であるが高濃度の一酸化炭素を得る目的罠は
  。
However, when using only these ordinary polymer membranes, carbon monoxide has low permeability compared to other gases such as hydrogen. Therefore, for example, this is a practically useful method when used for the purpose of separating hydrogen from a gas mixture that contains excess hydrogen by permeating it through a membrane and changing the mixing ratio of hydrogen and carbon monoxide in the fIA gas. The purpose of the trap is to obtain high concentrations of carbon monoxide.

選択性が低く適用不可能である。Selectivity is low and cannot be applied.

高分子膜では気体の透過係数が小さいが、膜が液状の場
合には気体の溶解係数、拡散係数が大きくなシ従って透
過係数を大きくすることが出来る。更にこの様な液状の
膜の中に、ある気体とのみ選択的に可逆的相互作用を有
する物質が含まれる場合にはその気体の透過性を更に上
げることが可能である。一方、膜の選択性能は膜への気
体相互の溶解度の差、狭巾での気体相互の拡散速度の差
によって与えられるので上記の如き特定の気体とのみ選
択的に可逆的相互作用を有する物質を狭巾に含む場合に
は、その気体のみの溶解度が犬きく;xb選択性H目も
飛緬的に犬きくすることが可能である。
A polymer membrane has a small gas permeability coefficient, but when the membrane is liquid, the gas solubility coefficient and diffusion coefficient are large, so the permeation coefficient can be increased. Furthermore, if such a liquid membrane contains a substance that selectively and reversibly interacts only with a certain gas, it is possible to further increase the permeability of that gas. On the other hand, the selective performance of a membrane is given by the difference in mutual solubility of gases in the membrane and the difference in the diffusion rate of gases in a narrow width. When it is included in a narrow width, the solubility of only that gas becomes extremely high; the xb selectivity can also be dramatically increased.

この様なある気体とのみ選択的に可逆的相互作用を有す
る物質を含有する膜につめては多くの例が知られておシ
、例えばアルカリ金属の重炭酸塩の水溶液による炭酸ガ
スの分M(特公昭/If −1776号公報)、硝酸銀
水溶液によるオレフィンの分離(特公昭j 3−3/?
4tλ号公報9、塩化第一鉄のホルムアミド溶液による
一酸化窒素の分離(A、工Oh Ff 、Tourna
l vol / 44 j4torベージ/97θ年)
などがあシこれらの合は水蒸気や、塩化水素ガスの透過
がおこシ他のガスと混入すると−う難点があった。
Many examples are known of such membranes containing substances that selectively and reversibly interact only with certain gases. (Special Publication Sho/If-1776), Separation of Olefins Using Silver Nitrate Aqueous Solution (Special Publication Sho J 3-3/?
4tλ Publication 9, Separation of Nitric Oxide by Formamide Solution of Ferrous Chloride (A, Engineering Oh Ff, Tourna
l vol / 44 j4tor page / 97θ year)
However, in these cases, water vapor and hydrogen chloride gas permeate through the gas, creating a problem if they mix with other gases.

以上のように、これまで各種の一酸化炭素の分離法が開
発されて込るが、それぞれに長所と欠点があシ問題点に
つbてはその改良が望まれて米だ。
As mentioned above, various methods of separating carbon monoxide have been developed, but each has its own advantages and disadvantages, and improvements in these problems are desired.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明者らは一酸化炭素に対する選択的吸収分離性能に
すぐれ、常温での吸収脱離が可能で、水、酸素などの不
純物に接触しても一酸化炭素の吸収能力が低下せず、腐
蝕性がなく化学的に温和でしかも安価に入手できる試薬
を用いた気体選択吸収液として有用な物質及びその物質
をm−た気体選択透過膜の開発を狙いとして研究を進め
、ここに新規の気体選択分離材を開発するに至った。
The present inventors have discovered that carbon monoxide has excellent selective absorption and separation performance, is capable of absorption and desorption at room temperature, does not reduce its absorption capacity for carbon monoxide even when it comes into contact with impurities such as water and oxygen, and is corrosion-resistant. We have carried out research with the aim of developing substances that are useful as gas selective absorption liquids using neutral, chemically mild, and inexpensively available reagents, and gas selective permeation membranes using such substances. We have developed a selective separation material.

〔問題点を解決するだめの手段〕[Failure to solve the problem]

次に本発明の内容を詳細に説明する。 Next, the content of the present invention will be explained in detail.

本発明は気体分離に有用な反応混合物に関する。詳しく
は銅化合物とアスコルビン酸又はその誘導体を溶媒、特
に窒素含有複素環化合物を含む溶媒中で混合して得られ
る気体選択分離材に関する。
The present invention relates to reaction mixtures useful in gas separation. Specifically, the present invention relates to a gas selective separation material obtained by mixing a copper compound and ascorbic acid or a derivative thereof in a solvent, particularly a solvent containing a nitrogen-containing heterocyclic compound.

本発明の気体選択分離材は、気体の中で特に一酸化炭素
の分離精製に有効であるが、オレフィン類の分離精製、
酸素の分離除去などに対しても効力を有すると考えられ
る。
The gas selective separation material of the present invention is particularly effective for the separation and purification of carbon monoxide among gases, but it is also effective for the separation and purification of olefins,
It is also thought to be effective in separating and removing oxygen.

はじめに本発明の気体高選択分離材の一成分として使用
する銅化合物について説明する。従来の一酸化炭素吸収
液では主に一価の銅塩が用いられてbたのに比べ、本発
明に訃いては一価の銅塩のみならず二価の銅塩も一価の
銅塩以上に、有効に出発原料として使用し得る点が重要
な特徴である。使用する銅化合物としては%に限定L 
ナイカHAOU1’80HKMIOAL D工OT工0
NARY4t th Edition  (MaGRA
W−H工LL BOOK OOMPANY )&−4t
7〜4t−g?ページ記載の銅化合物やHANDBOO
K of OHEM工STR’! and PHYS工
08J−7thEdition (OROPRB8S 
) B −709〜B−//2ページ記載の銅化合物が
例示される。特Kmましb銅化合物としては、塩化第一
銅、塩化第二銅、臭化第一銅、臭化第二鋼、沃化第一銅
、弗化第一銅、弗化第二銅、チオシアン酸第−銅、チオ
シアン酸第二銅、シアン化第−銅、シアン化第二銅、水
酸化第二銅、過塩素酸第二銅、過塩素酸第二銅、過沃素
酸第二銅、炭酸第二銅、硫酸第二銅、硝酸第二綱、リン
酸第二銅、タングステン酸第二銅、硼弗化第二銅、各種
の有機酸の銅塩例えば蟻酸第二銅、酢酸第二銅、プロピ
オン酸第二銅、シュウ酸第二銅、酒石酸第二銅、クエン
酸第二銅、安息香酸第二銅、パルミチン酸第二銅、ラウ
リルmi二銅、サリチル酸第二銅、オレイン酸第二銅、
ステアリン酸第二銅、アセチルアセトン第二銅、グリセ
リン誘導体及び上記銅化合物の水和物、アンモニア、ア
ミン類、ピリジン類及びイミダゾール類の配位化合物、
更には以上の銅化合物の酸素等との反応による酸化物が
あげられ、これらは単独で使用しても混合して使用して
もよい。
First, the copper compound used as a component of the highly selective gas separation material of the present invention will be explained. Conventional carbon monoxide absorption liquids mainly used monovalent copper salts, but the present invention uses not only monovalent copper salts but also divalent copper salts as well as monovalent copper salts. As mentioned above, an important feature is that it can be effectively used as a starting material. The copper compound used is limited to %L
Naica HAOU1'80HKMIOAL D-work OT work 0
NARY4t th Edition (MaGRA
W-H Engineering LL BOOK OOMPANY) &-4t
7-4t-g? Copper compounds and HANDBOO listed on the page
K of OHEM Engineering STR'! and PHYS Engineering 08J-7th Edition (OROPRB8S
) B-709 to B- // Copper compounds described on page 2 are exemplified. Special copper compounds include cuprous chloride, cupric chloride, cuprous bromide, steel bromide, cuprous iodide, cuprous fluoride, cupric fluoride, and thiocyanide. cupric acid, cupric thiocyanate, cupric cyanide, cupric cyanide, cupric hydroxide, cupric perchlorate, cupric perchlorate, cupric periodate, Cupric carbonate, cupric sulfate, class 2 nitrate, cupric phosphate, cupric tungstate, cupric borofluoride, copper salts of various organic acids such as cupric formate, cupric acetate Copper, cupric propionate, cupric oxalate, cupric tartrate, cupric citrate, cupric benzoate, cupric palmitate, cupric lauryl mi, cupric salicylate, cupric oleate di-copper,
cupric stearate, cupric acetylacetone, glycerin derivatives and hydrates of the above copper compounds, coordination compounds of ammonia, amines, pyridines and imidazoles,
Further examples include oxides produced by the reaction of the above-mentioned copper compounds with oxygen, etc., and these may be used alone or in combination.

で表わされる化合物を示し、9体、L体、DL体の込ず
れをも含む。具体的にはL−アスコルビン酸、L−アス
コルビルステアラード、L −アスコルビルパルミター
ト、L−アスコルビン酸シバルミタート、L−アスコル
ビン酸カリウム、L−アスコルビン酸ナトリウムなどが
例示される。これらは単独で使用しても混合して使用し
てもよい。
It shows a compound represented by the following, and also includes a mixture of 9-form, L-form, and DL-form. Specific examples include L-ascorbic acid, L-ascorbyl stearade, L-ascorbyl palmitate, L-ascorbyl civalmitate, potassium L-ascorbate, and sodium L-ascorbate. These may be used alone or in combination.

アスコルビン酸又はその誘導体と銅化合物との比率は特
に限定しないが、銅化合物に対するアスコルビン酸又は
その誘導体の比が小さい場合には気体高選択分離材の一
酸化炭素の吸収性対シてアスコルビン酸又はその誘導体
O0/モル〜10モルの範囲、好適にはO0!モル〜!
モルの範囲、最も好適には7モル〜3モルの範即が選ば
れる。
The ratio of ascorbic acid or its derivative to the copper compound is not particularly limited, but if the ratio of ascorbic acid or its derivative to the copper compound is small, the carbon monoxide absorption of the gas selective separation material will be affected by the ascorbic acid or the copper compound. The derivative O0/mol to 10 mol, preferably O0! Mol~!
A molar range is chosen, most preferably between 7 mol and 3 mol.

最後に本発明の銅化合物及びアスコルビン酸又はその誘
導体を溶解して反応するために使用する溶媒について述
べる。溶媒としては銅化合物及びアスコルビン酸又はそ
の溶媒を溶解し得る化合物なら何を使用してもよい。但
し好適にはイミダゾール類、ピリジン類などの窒素含有
複素環化合物又はエチレンジアミン又はジエチレントリ
アミン、トリエチレンテトラミン、テトラエチレンペン
タミン、ヘプタエチレンオクタミン、ノナエチレンデカ
ミン等のポリアルキレンボリア之ンが単独又は他の溶媒
と混合して使用される。
Finally, the solvent used to dissolve and react the copper compound of the present invention and ascorbic acid or its derivative will be described. As the solvent, any compound that can dissolve the copper compound and ascorbic acid or the solvent may be used. However, nitrogen-containing heterocyclic compounds such as imidazoles and pyridines, or polyalkyleneboryanines such as ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, heptaethyleneoctamine, and nonaethylenedecamine are preferably used alone or in combination with other compounds. It is used in combination with a solvent.

イミダゾール類として大有機化学(朝食書店、昭和4t
2年)/j巻 /73負〜2!7頁記載の化合物が、ピ
リジン類として同文献4巻2♂〜/、2ご頁記載の化合
物が、エチレンジアミン類として同文献4巻2♂頁〜j
r2頁記載の化又、上記イきダゾール類、ピリジン類、
エチレンジアミン類とともに使用し得る溶媒はこれらの
化合物及び銅化合物、アスコルビン酸又はその誘導体を
良く溶解し、かつ高沸点の常温における蒸気圧の低い溶
媒であれば何をm−てもよく、たとえばケトン、エステ
ル、エーテル、アルコール、アミン、アミド他の含窒素
化合物、含硫黄化合物、含リン化合物、含ノ・ロゲン化
合物を用いることができ、これらは単独で使用しても、
混合して使用してもよい。好適な溶媒としてジメチルス
ルホキシド、ジメチルホルムアミド、ジメチルアセトア
ミドなどが例示される。
Large organic chemistry as imidazoles (breakfast bookstore, Showa 4t)
2 years) / Vol. J / 73 Negative ~ The compounds described on page 2!7 are listed as pyridines from Vol. 4, page 2 of the same document, and the compounds described on page 2 are listed as ethylenediamines, Vol. 4 of the same document, p. 2 j
The compounds described on page r2, the above-mentioned idazoles, pyridines,
The solvent that can be used with ethylenediamines may be any solvent that can dissolve these compounds, copper compounds, ascorbic acid or derivatives thereof well, has a high boiling point, and has a low vapor pressure at room temperature, such as ketones, Esters, ethers, alcohols, amines, amides and other nitrogen-containing compounds, sulfur-containing compounds, phosphorus-containing compounds, and nitrogen-containing compounds can be used, and even if these are used alone,
May be used in combination. Examples of suitable solvents include dimethylsulfoxide, dimethylformamide, dimethylacetamide, and the like.

銅化合物とこれらの溶媒の比率は特に限定しないが通常
は0./〜3モル濃度の範囲で使用される。得られる溶
液は均一な溶液であることが望ましいが、不溶分を含む
スラリー状態においても使用可能である。上記溶媒中の
イミダゾール類、ピリジン類、エチレンジアミン類の溶
媒全体に対する容量比はO二/θ0〜10Q:θ範囲で
任意に選ぶことができる。銅化合物とアスコルビン酸又
はその誘導体を溶媒中で混合する温度は特に限定しな因
が通常θ〜、200℃の範囲で、不活性ガス気流下で行
うことが好ましい。
The ratio of the copper compound to these solvents is not particularly limited, but is usually 0. /~3 molar concentration range. Although it is desirable that the resulting solution be a homogeneous solution, it can also be used in the form of a slurry containing insoluble matter. The volume ratio of imidazoles, pyridines, and ethylenediamines in the above solvent to the entire solvent can be arbitrarily selected within the range of O2/θ0 to 10Q:θ. The temperature at which the copper compound and ascorbic acid or its derivatives are mixed in a solvent is not particularly limited, but is usually in the range of θ to 200°C, and is preferably carried out under an inert gas stream.

次に銅化合物とアスコルビン酸又はその誘導体を溶媒中
で混合して得られる反応混合物を用いて特定の気体特に
一酸化炭素を分離する方法を説明する。
Next, a method for separating a specific gas, particularly carbon monoxide, using a reaction mixture obtained by mixing a copper compound and ascorbic acid or a derivative thereof in a solvent will be explained.

第一の方法として上記反応混合物を含む溶液に気体混合
物を接触し、その中から特定の気体、特に一酸化炭素を
選択的に吸収し、次に圧力及び/又は温度を変えて吸収
した気体を放出する操作を繰返すことによって特定の気
体、特に一酸化炭素を分離することができる。この場合
、上記反応混合物に気体を吸収させる圧力は零よシ大き
いどのような圧力でもよいが選択性を上げる為には7気
圧以下の低い圧力が、気体の吸収速度を上げるためには
/気圧以上の筒い圧力で行うことが好ましい。通常Q〜
10気圧−の圧力、好ましくはθ、/〜3気圧の圧力で
行われる。
The first method is to bring a gas mixture into contact with a solution containing the reaction mixture, selectively absorb a specific gas, especially carbon monoxide, and then change the pressure and/or temperature to absorb the absorbed gas. By repeating the releasing operation, certain gases, especially carbon monoxide, can be separated. In this case, the pressure at which the reaction mixture absorbs the gas may be any pressure higher than zero, but in order to increase the selectivity, a low pressure of 7 atm or less is used, and in order to increase the rate of gas absorption, the pressure is lower than /atm. It is preferable to carry out the process at a pressure above the barrel pressure. Normal Q~
It is carried out at a pressure of 10 atm, preferably θ,/~3 atm.

又一旦吸収した気体を常温で放出させるには通常減圧下
に行われる。/気圧以下のどのような圧力でもよ込が、
気体の放出速度を大きくするためには可能なかぎり低重
圧力が、又動力消費量を小さくするためには高い圧力が
望ましい。
Further, in order to release the gas once absorbed at room temperature, it is usually carried out under reduced pressure. / At any pressure below atmospheric pressure,
In order to increase the rate of gas discharge, it is desirable to have as low a pressure as possible, and in order to reduce power consumption, it is desirable to have a high pressure.

通常はθ〜/気圧、望ましくはθ、/〜0.1気圧の圧
力で行われる。又気体を吸収させる場合の温度は特に制
限はないが低温の方が吸収し易くに冨i0o℃以下、好
ましくは!θ℃以下の温度が採用される。又気体を放出
させる場合の温度も特に制限はないが、この場合は両温
の方が放出速度を大きくする点で好ましい。通常は室温
以上、好ましくはjO℃〜300℃の温度が採用される
。このように高温で気体を放出させる場合は必ずしも減
圧下九行う必要はなく/気圧以上の圧力でも実流可能で
ある。勿論圧力と温度の両条件を賀えて吸収、放出を行
うこともでき、この場合、低温高圧で吸収させ、高温低
圧で放出させることが好まし込。
It is usually carried out at a pressure of θ~/atm, preferably θ/~0.1 atm. There is no particular limit to the temperature at which gas is absorbed, but it is easier to absorb gas at a low temperature, so the temperature is preferably below 0°C! A temperature below θ°C is adopted. There is also no particular restriction on the temperature at which the gas is released, but in this case, both temperatures are preferred in terms of increasing the release rate. Usually, a temperature of room temperature or higher, preferably from jO<0>C to 300<0>C is employed. When gas is released at high temperatures like this, it is not necessarily necessary to perform the process under reduced pressure; actual flow can also be performed at pressures higher than atmospheric pressure. Of course, absorption and release can be carried out under both pressure and temperature conditions; in this case, it is preferable to absorb at low temperature and high pressure and release at high temperature and low pressure.

史に第二の方法として銅化合物とシソ■訓閂又はその誘
導体を溶媒中で混合して得られる反応混合物を支持体と
なる膜に保持し、混合気体から特定の気体特に一酸化炭
素を選択的に吸収させ膜の他の面に>込て圧力を下けて
展を透過して特定の気体特に一酸化炭素な選択的に分離
することができる。この場合、該反応混合物を保持する
為に使用する支持体は気体を透過する性質を有する膜で
あればよく特に限定しない。
The second method in history is to mix a copper compound and perilla or its derivatives in a solvent, hold the reaction mixture on a membrane that serves as a support, and select a specific gas, especially carbon monoxide, from the mixed gas. It is possible to selectively separate certain gases, especially carbon monoxide, by absorbing the gas on the other side of the membrane, lowering the pressure, and permeating the membrane. In this case, the support used to hold the reaction mixture is not particularly limited as long as it is a membrane that is permeable to gas.

又、保持する方法につbても保持することによって気体
、特に一酸化炭素の選択的な透過が行われる方法であれ
ばよく特に限定されないが、体膜の上に一定の厚さを有
する液膜として保持する方法、支持体上に形成された液
晶などの配列した分子の中に溶解又は分散させて保持す
る方法などが例示される。
The holding method is not particularly limited as long as the holding allows selective permeation of gases, especially carbon monoxide; Examples include a method of holding as a film, and a method of holding by dissolving or dispersing in aligned molecules such as liquid crystal formed on a support.

支持体として使用される膜の材料の種類は特に限定され
ないが、再生セルロース、セルロースエステル、ポリカ
ーボネート、ポリエステル、テフロン、ナイロン、アセ
チルセルロース、ポリアクリロニトリル、ポリビニルア
ルコール、ポリメチルメタアクリレート、ポリスルホン
、ポリエチレン、ポリプロピレン、ポリビニルピリジン
、ポリフェニレンオキサイド、ポリフェニレンオキサイ
ドスルホン酸、ポリベンズイミダゾール、ポリイミダゾ
ピロロン、ポリビベ2ジンアミド、ポリスチレン、ボリ
アきノ酸、ポリウレタン、ポリアミノ酸ポリウレタン共
重合体、ボリシ四キサン、ボリシ四キサンポリカーボネ
ート共重合体、ポリトリメチルビニルシラン、コラーゲ
ン、ポリイオン錯体、ポリウレア、ボリアはド、ポリイ
ミド、ポリアミドイミド、ポリ塩化ビニル、スルホン化
ポリフルフリルアルコールなどの有機高分子、ガラス、
アルiす、シリカ、シリカアルきす、カーボン、金属な
どの無機物質があけられる。
The type of membrane material used as the support is not particularly limited, but includes regenerated cellulose, cellulose ester, polycarbonate, polyester, Teflon, nylon, acetyl cellulose, polyacrylonitrile, polyvinyl alcohol, polymethyl methacrylate, polysulfone, polyethylene, polypropylene. , polyvinylpyridine, polyphenylene oxide, polyphenylene oxide sulfonic acid, polybenzimidazole, polyimidazopyrrolone, polybibe didine amide, polystyrene, polyacinoic acid, polyurethane, polyamino acid polyurethane copolymer, polysiloxane, polysiloxane polycarbonate copolymer organic polymers such as polytrimethylvinylsilane, collagen, polyion complexes, polyurea, boria, polyimide, polyamideimide, polyvinyl chloride, sulfonated polyfurfuryl alcohol, glass,
Inorganic materials such as aluminum, silica, silica alkali, carbon, and metals can be used.

これら支持体の形状は平板状、管状、スパイラル状、中
空糸状の込ずれの形態に於ても使用することが出来る。
The shape of these supports may be flat, tubular, spiral, or hollow fiber.

これら支持体は全体が多孔ものであってもよい。全体の
厚さは特に限定されないが10〜/θ00μの範囲が好
ましい。この様な支持体は更に別の素材の支持体に重ね
て支持して使用することも出来る。
These supports may be entirely porous. The overall thickness is not particularly limited, but is preferably in the range of 10 to /θ00μ. Such a support can also be used by being superimposed on a support made of another material.

これら支持体に保持して使用する銅化合物とアスコルビ
ン酸又はその誘導体を溶媒中で混合して得られる反応混
合物の11111の厚さは数オングストローム以上の厚
みで使用することが出来、特に限定されない。但し、こ
れら反応混合物の液膜が無撹拌の状態に於て使用される
場合は、その厚みは薄い程大きい透過速度を得る為に好
数、平衡定数その他の条件によって異なるが大よそ0.
0ノ〜50000μ、更に好ましくは0./〜1ooo
oμの膜厚で使用される。又液膜を攪拌下に使用する場
合には、七〇膜厚は厚くても問題はないが支持体膜の表
面で拡散層として存在する実質的な膜厚は無攪拌の場合
の膜厚と同様であることが好ましい。
The thickness of the reaction mixture 11111 obtained by mixing the copper compound held on these supports and ascorbic acid or its derivative in a solvent is not particularly limited, and can be used at a thickness of several angstroms or more. However, when the liquid film of these reaction mixtures is used without stirring, the thickness should be approximately 0.0 mm, depending on the number, equilibrium constant, and other conditions, in order to obtain a higher permeation rate as the thinner the film is.
0~50000μ, more preferably 0. /~1ooo
It is used with a film thickness of oμ. In addition, when using a liquid film under stirring, there is no problem even if the film thickness is as thick as 70°, but the actual film thickness that exists as a diffusion layer on the surface of the support film is the same as the film thickness without stirring. Preferably, they are the same.

気体を分離する場合には種々の方法が考えられるが、銅
化合物とアスコルビン酸又はその誘導体を溶媒中で混合
して得られる反応混合物を支持体に保持した膜を使用し
て膜の両面に分離すべき気体の分圧差をつけて分離する
方法、又は、膜セルとは別に上記反応混合物溶液を溜め
た容器を置き、ここからポンプでこの液体を膜セルの支
持体膜の表面(膜の一次側)に導き循環する方法を用い
ることが出来る。後者の場合には膜面で例えば一酸化炭
素を吸収させた上記反応混合物溶液を別の容器に導き、
例えば減圧下に一酸化炭素を放出させることもできるし
、逆に溜めの容器に於て一酸化炭素を液体に吸収させ、
これを膜セルに於て膜の一次側を減圧することkよって
溶解あるいは結合した気体を連続的に解離、脱離させ膜
の2次側に導き、一酸化炭素を失った液体を溜めに導き
再び一酸化炭素を溶解させることも出来る。この場合膜
セルと溜めの温度を相違させ、一酸化炭素の取り出しを
容易にすることが出来る。膜セル部分の温度は例えばO
−一〇〇℃の範囲で使用出来る。
Various methods can be used to separate gases, but one method involves separating a reaction mixture obtained by mixing a copper compound and ascorbic acid or its derivatives in a solvent onto both sides of the membrane using a membrane holding the reaction mixture on a support. Alternatively, a container containing the reaction mixture solution is placed separately from the membrane cell, and a pump is used to pump this liquid onto the surface of the membrane cell's support membrane (the primary layer of the membrane). It is possible to use a method in which the material is guided to the side (side) and circulated. In the latter case, the reaction mixture solution, which has absorbed carbon monoxide, for example, at the membrane surface, is introduced into a separate container;
For example, carbon monoxide can be released under reduced pressure, or conversely, carbon monoxide can be absorbed into a liquid in a reservoir.
By reducing the pressure on the primary side of the membrane in the membrane cell, the dissolved or combined gas is continuously dissociated and desorbed and guided to the secondary side of the membrane, and the liquid that has lost carbon monoxide is guided to the reservoir. It is also possible to dissolve carbon monoxide again. In this case, the temperatures of the membrane cell and the reservoir can be made different to facilitate the extraction of carbon monoxide. The temperature of the membrane cell part is, for example, O
Can be used in the range of -100℃.

第三の方法として核反応混合物を粒子状の担体に保持す
ることもできる。担体としては前記支持膜と同じ材料を
使用できる。
As a third method, the nuclear reaction mixture can also be retained on a particulate carrier. The same material as the support membrane can be used as the carrier.

〔実施例〕〔Example〕

次に本発明を実施例により説明する。 Next, the present invention will be explained by examples.

比較例/〜J 三方コック及び三方コックを接続した三日のナス型フラ
スコ(コックで閉じた空間の内容積はダ9−)を用意し
、三方コックをガスビューレットに、三方コックを真空
ポンプ及び窒素供給ツインに接続した。又ガスビューレ
ットには更に真空ポンプ及び一酸化炭素供給ラインを接
続した。
Comparative Example/~J Prepare a three-way cock and a three-way eggplant-shaped flask (inner volume of the space closed by the cock is 9-9), connect the three-way cock to a gas burette, and use the three-way cock as a vacuum pump. and a nitrogen supply twin. A vacuum pump and a carbon monoxide supply line were also connected to the gas buret.

上記ナス型フラスコにテフロン回転子及び表/に記載し
た銅化合物を加え、フラスコ内を窒if換後、N−メチ
ルイミダゾール、2ydを添加して7時間撹拌下忙混合
して後−夜装置した。
A Teflon rotor and the copper compounds listed in Table 1 were added to the above eggplant-shaped flask, and after the inside of the flask was replaced with nitrogen, N-methylimidazole and 2yd were added and mixed under stirring for 7 hours. .

比較例/については銅化合物はtlは溶解したが比較例
=については銅化合物は一部不溶で残存し、更に比較例
3についてはかなり多くの銅化合物が不溶の状態で残存
した。
In Comparative Example /, the copper compound was dissolved in tl, but in Comparative Example =, some of the copper compound remained insoluble, and in Comparative Example 3, a considerable amount of the copper compound remained insoluble.

銅化合物及びN−メチルイミダゾールを混合して得られ
た均一溶液を含むナス型フラスコ内を真空ポンプで脱気
し、撹拌下にガスビューレットから一酸化炭素を導入し
、−0℃における一酸化炭素の吸収量を経時的に測定し
た。この際フラスコ内のテフロン回転子、銅化合物、N
−メチルイミダゾールの容積を除いた空間部分を埋める
に要する一酸化炭素の容量をガスビューレットの変化量
から差し引いて実際の一酸化炭素の吸収量として計算し
た。
The inside of the eggplant-shaped flask containing the homogeneous solution obtained by mixing the copper compound and N-methylimidazole was degassed using a vacuum pump, and carbon monoxide was introduced from a gas burette while stirring to cause monoxide at -0°C. The amount of carbon absorbed was measured over time. At this time, the Teflon rotor, copper compound, and N
- The amount of carbon monoxide required to fill the space excluding the volume of methylimidazole was subtracted from the amount of change in the gas burette to calculate the actual amount of absorbed carbon monoxide.

表/の結果に示す如く、比較例/〜3のいずれの銅化合
物についても銅化合物−Nメチルイミダゾールの混合液
は一酸化炭素の吸収能力を示さなかった。
As shown in the results in Table 1, the copper compound-N-methylimidazole mixture did not exhibit carbon monoxide absorption ability for any of the copper compounds of Comparative Examples 1 to 3.

実施例/〜! ′よシー酸化炭素の吸収量を経時的に測定した。Example/~! The amount of absorbed carbon oxide was measured over time.

銅化合瞼、L−7スコルビン酸、その他表λ記載の化合
物の所定量を比較例/〜3と同僚に混合し一夜放置した
。それぞれの組成の一酸化炭素吸収液につbて、一酸化
炭素の飽和吸収量及び銅化合物7モル尚シの一酸化炭素
吸収液のモル数を餞コに示す。
Predetermined amounts of copper compound eyelids, L-7 scorbic acid, and other compounds listed in Table λ were mixed with Comparative Examples/~3 and left overnight. For each composition of the carbon monoxide absorption solution, the saturated absorption amount of carbon monoxide and the number of moles of the carbon monoxide absorption solution containing 7 moles of copper compound are shown in the figure.

参考例/ 比較例/〜3で使用した内容積ダタ―のナス型フラスコ
にテフロン製回転子を入れ、内部を窒素置換後、沃化第
一銅コミリモル及びN−メチルイミダゾールコ―を添加
した。約一時間撹拌混合後、真空ポンプで脱気し、比較
例/〜3と同じ装置及び方法を用いて一酸化炭素の吸収
量を測定した。その結果沃化第一銅1モル当)0.16
モルに相当する一酸化炭素吸収量が得られた。
Reference Example/Comparative Example/A Teflon rotor was placed in an eggplant-shaped flask having an inner volume of data used in ~3, and after purging the inside with nitrogen, commimole of cuprous iodide and N-methylimidazole were added. After stirring and mixing for about one hour, the mixture was degassed using a vacuum pump, and the amount of carbon monoxide absorbed was measured using the same apparatus and method as in Comparative Examples/--3. The result was 0.16 (per mole of cuprous iodide)
A molar equivalent carbon monoxide uptake was obtained.

比較例グ 参考例/と同様に沃化第一銅、2ばリモル、及びN−メ
チルイミダゾール、2−を添加し、約一時間窒素雰囲気
下に撹拌混合した。次にフラスコ内を真空ポンプで一旦
脱気後酸素を導入して復圧し常圧とした。この状態で/
時間撹拌後真空ポンプで脱気し、比較例/〜3と同じ装
置及び方法を用いて一酸化炭素の吸収量を測定した。
Comparative Example In the same manner as in Reference Example, cuprous iodide, 2-barimole, and N-methylimidazole, 2- were added and mixed with stirring under a nitrogen atmosphere for about one hour. Next, the inside of the flask was once degassed using a vacuum pump, and then oxygen was introduced to restore the pressure to normal pressure. In this state/
After stirring for a period of time, the mixture was degassed using a vacuum pump, and the amount of carbon monoxide absorbed was measured using the same apparatus and method as in Comparative Examples/--3.

その結果沃化銅1モル尚シθ、73モルに相当する一酸
化炭素吸収しか得られなかった。参考例/との比較から
上記沃化第一銅とN−メチルイミダゾールの反応混合物
は酸素との接触によ如一酸化炭素吸収能力が低下するこ
とがわかる。
As a result, only 1 mole of copper iodide and 73 moles of carbon monoxide were absorbed. A comparison with Reference Example 1 shows that the carbon monoxide absorption capacity of the reaction mixture of cuprous iodide and N-methylimidazole is reduced by contact with oxygen.

実施例乙 沃化第一銅コミリモル、N−メチルイはダゾール2tl
d!のかわシに沃化第−銅へ?ミリモル、L−アスコル
ビン酸o、toミリモル、N−メチルイミダゾールコ、
デーを添加する以外は比較例Zと同様に行い一酸化炭素
の吸収量を迎j定した。
Example: cuprous iodide, mmol, N-methyl, dazol 2 tl
d! Towards copper iodide? mmol, L-ascorbic acid o, to mmol, N-methylimidazole,
The absorption amount of carbon monoxide was determined in the same manner as in Comparative Example Z, except that the amount of carbon monoxide was added.

その結来沃化第−組7モルi fi O,j 1モルの
一酸化炭素吸収量が得られた。実施例グに示す如く、酸
素を添加しない場合は沃化第一銅1モル尚シ0.!1モ
ルの一酸化炭素吸収量であシ、これとの比較からL−ア
スコルビン酸な加えた場合には酸素との接触による一酸
化炭素吸収能力の低下は起らないことがわかる。
As a result, an absorption amount of carbon monoxide of 7 moles of the iodide group i fi O,j of 1 mole was obtained. As shown in Example G, when no oxygen is added, 1 mol of cuprous iodide and 0. ! The amount of carbon monoxide absorbed is 1 mole, and a comparison with this shows that when L-ascorbic acid is added, the carbon monoxide absorption capacity does not decrease due to contact with oxygen.

〔発明の効果〕〔Effect of the invention〕

かくして得られた気体分離に有用な反応混合物は主とし
て一酸化炭素の分離に有利に使用出来る。例えば天然ガ
ス、軽ナフサ、重質油など一卸一 の炭化水素の水蒸気改質又は部分酸化で得られる合成ガ
ス、石炭のガス化及び製鉄の副生ガスとして得られる一
酸化炭素を含む混合ガス等から主として一酸化炭素を高
収率で分離し、各種の化学反尼に原料として使用するこ
とが出来る。
The thus obtained reaction mixture useful for gas separation can be used advantageously primarily for the separation of carbon monoxide. For example, synthesis gas obtained by steam reforming or partial oxidation of wholesale hydrocarbons such as natural gas, light naphtha, and heavy oil, and mixed gas containing carbon monoxide obtained as a byproduct gas from coal gasification and steel manufacturing. Mainly carbon monoxide can be separated in high yield from carbon monoxide, etc., and used as a raw material for various chemical reactions.

Claims (3)

【特許請求の範囲】[Claims] (1)銅化合物とアスコルビン酸類を溶媒中で混合して
得られる気体の選択分離材。
(1) A selective gas separation material obtained by mixing a copper compound and ascorbic acids in a solvent.
(2)溶媒が窒素含有複素環化合物を含む溶媒であるこ
とを特徴とする特許請求の範囲第1項に記載の気体の選
択分離材。
(2) The gas selective separation material according to claim 1, wherein the solvent is a solvent containing a nitrogen-containing heterocyclic compound.
(3)一酸化炭素を含む混合ガスから一酸化炭素を高収
率で分離しうる気体の選択分離材。
(3) A gas selective separation material capable of separating carbon monoxide from a mixed gas containing carbon monoxide in high yield.
JP62027217A 1987-02-10 1987-02-10 Gas selective separating material Granted JPS63194716A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP62027217A JPS63194716A (en) 1987-02-10 1987-02-10 Gas selective separating material
US07/154,043 US4818255A (en) 1987-02-10 1988-02-09 Material for gas separation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62027217A JPS63194716A (en) 1987-02-10 1987-02-10 Gas selective separating material

Publications (2)

Publication Number Publication Date
JPS63194716A true JPS63194716A (en) 1988-08-11
JPH0218896B2 JPH0218896B2 (en) 1990-04-27

Family

ID=12214932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62027217A Granted JPS63194716A (en) 1987-02-10 1987-02-10 Gas selective separating material

Country Status (1)

Country Link
JP (1) JPS63194716A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04219136A (en) * 1990-04-25 1992-08-10 Nippon Steel Corp Composition having air purifying power and production thereof
JP2003010627A (en) * 2001-06-27 2003-01-14 Ueno Seiyaku Oyo Kenkyusho:Kk Oxygen-absorbing agent
KR101362603B1 (en) * 2006-12-19 2014-02-12 제너럴 일렉트릭 캄파니 Method and system for using low btu fuel gas in a gas turbine
CN104474833A (en) * 2014-12-15 2015-04-01 重庆市荣冠科技有限公司 Desulfurization device
CN104474835A (en) * 2014-12-15 2015-04-01 重庆市荣冠科技有限公司 Convenient desulfurization device
CN104474841A (en) * 2014-12-15 2015-04-01 重庆市荣冠科技有限公司 Desulfurization filtering system
CN111100716A (en) * 2018-10-26 2020-05-05 苏州盖沃净化科技有限公司 Method and device for preparing natural gas

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04219136A (en) * 1990-04-25 1992-08-10 Nippon Steel Corp Composition having air purifying power and production thereof
JP2003010627A (en) * 2001-06-27 2003-01-14 Ueno Seiyaku Oyo Kenkyusho:Kk Oxygen-absorbing agent
KR101362603B1 (en) * 2006-12-19 2014-02-12 제너럴 일렉트릭 캄파니 Method and system for using low btu fuel gas in a gas turbine
CN104474833A (en) * 2014-12-15 2015-04-01 重庆市荣冠科技有限公司 Desulfurization device
CN104474835A (en) * 2014-12-15 2015-04-01 重庆市荣冠科技有限公司 Convenient desulfurization device
CN104474841A (en) * 2014-12-15 2015-04-01 重庆市荣冠科技有限公司 Desulfurization filtering system
CN111100716A (en) * 2018-10-26 2020-05-05 苏州盖沃净化科技有限公司 Method and device for preparing natural gas
CN111100716B (en) * 2018-10-26 2022-03-25 苏州盖沃净化科技有限公司 Method and device for preparing natural gas

Also Published As

Publication number Publication date
JPH0218896B2 (en) 1990-04-27

Similar Documents

Publication Publication Date Title
Mukhtar et al. CO2 capturing, thermo-kinetic principles, synthesis and amine functionalization of covalent organic polymers for CO2 separation from natural gas: A review
WO2021169763A1 (en) Layered fluorine-containing metal-organic framework material for adsorbing and separating ethynyl and ethylene, and preparation method therefor and application thereof
EP0098157B1 (en) Absorption process for producing oxygen and nitrogen and solutions therefor
US5300271A (en) Method for separation of carbon monoxide by highly dispersed cuprous compositions
EP0013804B1 (en) Improved carbonylation process recycling a portion of the reacted gas
EP0311903B1 (en) Molten salt hydrate membranes for the separation of gases
JP3411316B2 (en) Nitrogen adsorption and desorption composition and method for separating nitrogen
CN109107329B (en) Method for separating methane and nitrogen
EP0293737B1 (en) Ammonia separation using semipermeable membranes
Zhou et al. Sharply promoted CO2 diffusion in a mixed matrix membrane with hierarchical supra-nanostructured porous coordination polymer filler
Tsou et al. Silver-facilitated olefin/paraffin separation in a liquid membrane contactor system
BR112020006088A2 (en) hydrogen production methods and apparatus
Zarca et al. Novel solvents based on thiocyanate ionic liquids doped with copper (I) with enhanced equilibrium selectivity for carbon monoxide separation from light gases
Wang et al. CuAlCl 4 doped MIL-101 as a high capacity CO adsorbent with selectivity over N 2
US4818255A (en) Material for gas separation
JPS63194716A (en) Gas selective separating material
JP4612323B2 (en) Carbon monoxide gas adsorbent, adsorption method, and recovery method
JPS63218231A (en) Separation material of gas
CN111777769B (en) Metal organic framework material for efficiently separating mixed gas and preparation method and application thereof
CN114682231B (en) Cyano MOFs adsorbent for selectively adsorbing acetylene, preparation method and application
JPS63194715A (en) Gas separating material
Jiang et al. Enhanced natural gas purification by a mixed-matrix membrane with a soft MOF that has a CO2-adapted nanochannel
Patil et al. Facilitated transport of carbon monoxide: a review
JPH01194925A (en) Composition for separating gas
Dong et al. Carbon Dioxide Capture in Metal-Organic Frameworks

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term