JPH0363412B2 - - Google Patents

Info

Publication number
JPH0363412B2
JPH0363412B2 JP58196963A JP19696383A JPH0363412B2 JP H0363412 B2 JPH0363412 B2 JP H0363412B2 JP 58196963 A JP58196963 A JP 58196963A JP 19696383 A JP19696383 A JP 19696383A JP H0363412 B2 JPH0363412 B2 JP H0363412B2
Authority
JP
Japan
Prior art keywords
membrane
liquid
gas
ethylene
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58196963A
Other languages
Japanese (ja)
Other versions
JPS6090004A (en
Inventor
Junichi Matsura
Yoshiteru Kobayashi
Osamu Kidai
Yumiko Inagaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP19696383A priority Critical patent/JPS6090004A/en
Publication of JPS6090004A publication Critical patent/JPS6090004A/en
Publication of JPH0363412B2 publication Critical patent/JPH0363412B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は気体の選択分離膜に関する。詳しくは
気体分離の際に液体の炭化水素を多孔質基体に形
成したビストリメチルシリルアセチレンのプラズ
マ重合膜の上に支持させてなるオレフイン化合物
の分離に適した気体分離膜に関する。 従来気体混合物の分離膜としては各種の高分子
膜が知られているが、この様な固体の膜の場合に
はこれらに対する気体の透過係数が比較的小さい
という欠点があつた。気体の透過係数を大きくす
る為には膜が液状であることが望ましくこの様な
膜の場合には気体の拡散係数が大きくなり、従つ
て透過係数を大きくすることが可能である。又膜
の選択性能は、膜への気体の溶解度の差、膜中で
の気体の拡散速度の差によつて与えられるが、あ
る気体と選択的に可逆的相互作用を有する物質を
液状の膜に溶解し、この物質との相互作用を利用
して膜へのある気体の溶解度を大きくして選択性
能を高めることが可能である。従来液状の膜を用
いて気体混合物を分離した例として金属塩の水溶
液を用いて炭酸ガス、一酸化炭素、オレフイン類
等の分離膜が知られている。(例えば特公昭45−
1176、特公昭53−31842)又有機化合物の液膜の
例として塩化第一鉄のホルムアミド溶液を用いた
一酸化窒素の分離膜が知られている(AICh E
Journal Vol 16No.3 405ページ、1970年)。こ
れらの液膜の支持体として均質膜や多孔膜が用い
られているが、均質膜の場合には、この支持体の
部分が透過の律速段階にならない為には気体の透
過係数が非常に大きい素材の膜を非常に薄い膜厚
で使用する必要がある。又液体の支持体として多
孔膜を使用する場合には透過速度が大きくこの部
分が透過の律速段階にはならないかわりに膜の1
次側(流入側)と2次側(流出側)の圧力差が大
きい場合には、液膜が液適として漏出する可能性
がある。従つて膜の2次側に他の気体や液体を流
して1次側の圧力と均衡を保つて使用される。以
上の様に液膜はその支持体をどの様にするかが重
要な問題であるが、特に液体が有機化合物の場合
には支持体の膜が有機化合物に溶解したり、溶解
しなくても膨潤したり何らかの変化を生じ、良い
方法がない。しかるに気体と選択的に可逆的相互
作用を有する物質の中には各種の錯体など水に溶
けないが有機溶媒に可溶の物質が多く存在し、液
状の有機化合物を液膜として使用しうる良い方法
が望まれる。 本発明は、この様な液体の炭化水素を構成成分
とする、膜両面の圧力差の存在下にも使用しうる
気体分離膜を供するものである。詳しくは多孔質
の基体上にプラズマ重合法により多くの架橋構造
を有する薄膜層を形成し、その上に液状の炭化水
素を保持した気体分離膜に関する。 多くの架橋構造を有する膜は有機溶媒等の有機
化合物に浸かされず好適であること、しかも可能
な限り薄い膜厚の膜が望まれることからグロー放
電によるプラズマ重合がこの様な膜の形成方法と
して適していることに思い至り本発明に到達し
た。 次に本発明を詳細に説明する。 本発明は多孔質基体に形成したビストリメチル
シリルアセチレンのプラズマ重合膜の上に液体の
炭化水素を支持してなるオレフイン化合物用気体
分離膜である。 本発明に使用し得る炭化水素としては特に限定
しないが沸点が高く非揮発性の化合物が、蒸発し
て失われる量が少なく好ましい。他方、高沸点で
固体に近い高粘稠の炭化水素の場合には、その中
を透過する気体の拡散速度が低下し、それに伴
い、気体の透過速度を低下するので有機溶媒の揮
発性と気体の透過速度を考慮し最適の化合物が選
ばれる。この様な炭化水素の例としてヘキサン、
ヘプタン、オクタン、イソオクタン、ノナン、デ
カン、ドデカン、トリデカン、テトラデカン、ペ
ンタデカン、ヘキサデカンなどの脂肪族飽和炭化
水素、トルエン、キシレン、パラシメン、インデ
ン、スチレン、αメチルスチレン、メシチレン、
p−ジエチルベンゼン、プレニテン、イソジユレ
ン、n−ブチルベンゼン、ジフエニルメタン、ジ
フエニルエチレンなどの芳香族化合物、インデ
ン、メチルナフタリンなどの縮合多環炭化水素、
流動バラフイン、α−オレフイン、α−オレフイ
ンオリゴマー、液状ポリプロピレン、低分子量ポ
リブテン、ポリイソブチレン、液状ポリブタジエ
ン、液状ポリブタジエンの水添物、液状のポリブ
タジエン共重合体、液状のポリブタジエン共重合
体の水添物、液状ポリペンタジエン、液状ポリス
チレン、液状のポリスチレン共重合体、液状ポリ
ペンタジエン、などが例示される。 本発明の使用条件に於て液状の炭化水素を支持
する為に多孔質基体に形成したビストリメチルシ
リルアセチレンのプラズマ重合膜を使用するが、
プラズマ重合膜を形成する方法は物質をプラズマ
状態に励起し化学反応を進行させる方法であり、
特に低温プラズマ法が好ましく、中でも主として
ブロー放電を利用する薄膜製造技術が利用出来
る。 多孔質膜基体表面に形成するプラズマ重合膜の
厚みは0.001〜100μ、好ましくは0.01〜10μさらに
好ましくは0.1〜1μの範囲である。 その表面にプラズマ重合膜を形成して使用する
多孔質基体は100μ以下の孔性の孔を有する各種
の材料のものが使用出来る。これらの多孔質基体
のプラズマ重合膜を形成する表面は、孔があると
しても0.1μ以下の孔径を有する孔であることが望
ましく、プラズマ重合膜を形成する表面の孔径が
大きい場合には、この孔を覆う為に厚いプラズマ
重合層を形成することが必要である。プラズマ重
合層が厚いと気体透過のバリヤーとなる不都合で
ある。多孔質基体表面に形成するプラズマ重合層
厚みは、加圧下に於ても液体の有機化合物を保持
しうる限りに於て充分薄いことが好ましく、この
様な薄い膜厚を形成する為の多孔質基体の孔径は
充分小さいことが要求される。気体の透過速度が
大きければ孔がない方が好ましく、従つて本発明
でいう多孔質基体には表面に緻密層を有する非対
称膜が含まれる。 多孔質基体を構成する材料の種類は、特に限定
しないが、再生セルロース、セルロースエステ
ル、ポリカーボネート、ポリエステル、テフロ
ン、ナイロン、アセチルセルロース、ポリアクリ
ロニトリル、ポリビニルアルコール、ポリメチル
メタアクリレート、ポリスルホン、ポリエチレ
ン、ポリプロピレン、ポリビニルピリジン、ポリ
フエニレンオキサイド、ポリフエニレンオキサイ
ドスルホン酸、ポリベンズイミダゾール、ポリイ
ミダゾピロロン、ポリピペラジンアミド、ポリス
チレン、ポリアミノ酸、ポリウレタン、ポリアミ
ノ酸ポリウレタン共重合体、ポリシロキサン、ポ
リシロキサンポリカーボネート共重合体、ポリビ
ニルトリメチルシラン、コラーゲン、ポリイオン
コンブレツクス、ポリウレアポリアミド、ポリイ
ミド、ポリアミドイミド、スルホン化ポリフルフ
リルアルコール、ポリ塩化ビニルなどの有機高分
子、ガラス、アルミナ、シリカ、シリカアルミ
ナ、カーボン、金属などの無機物質があげられ
る。 これら多孔質基体の形状は平板状、管状、スパ
イラル状、中空糸状のいずれかの形態に於ても使
用することが出来る。多孔質基体の厚さは特に限
定しないが100μ〜1000μの範囲が好ましい。又こ
れらの多孔質基体は別の支持体に更に支持させて
使用することも出来る。 本発明の気体分離膜は、液体の炭化水素を多孔
質基体のプラズマ重合層を形成した面の上に支持
することにより本発明の気体分離膜は形成され
る。 エチレン、プロピレン等は石油化学の原料とし
て多くの製品の製造に用いられるが、廃ガス中に
含まれる未反応の原料を回収利用する為に本発明
の気体分離膜は有用である。 以下本発明の内容を実施例で示すが、これらの
実施例は単に例示目的で示されるものであり、そ
こに示されている特定物質、方法等に本発明を限
定するものと解してはならない。 実施例1及び比較例1 多孔質膜であるミリポアフイルターVSWP(商
標、日本ミリポアリミテツド社製。平均孔径
0.025μ)をベルジヤー型プラズマ重合反応器内の
基板上に設置し、反応器内を真空にひき、ビスト
リメチルシリルアセチレンを反応器内にフイード
しながら放電し、RF電力50W、圧力0.2mbarで
40分間反応し、ビストリメチルシリルアセチレン
の重合した薄膜をミリポアフイルター上に形成し
た複合膜を製膜した。この膜を膜装着用セル(有
効膜面積12.6cm2)に装着し、トルエン8mlを膜の
上にのせた。一方ヘリウム単独ガス又は、エチレ
ン単独ガスをそれぞれ蓄圧器に調整し、上記のト
ルエン液膜上(1次側)に1.2Kg/cm2(常圧より
若干加圧)で流し膜の2次側を真空にして、一定
時間に透過するヘリウム又はエチレンの透過速度
を測定した。測定結果を表−1に示す。
The present invention relates to a gas selective separation membrane. More specifically, the present invention relates to a gas separation membrane suitable for separating olefin compounds, in which a liquid hydrocarbon is supported on a plasma polymerized membrane of bistrimethylsilylacetylene formed on a porous substrate during gas separation. Various types of polymer membranes have been known as separation membranes for gas mixtures, but such solid membranes have a drawback in that their gas permeability coefficients are relatively small. In order to increase the gas permeability coefficient, it is desirable that the membrane be in a liquid state. In the case of such a membrane, the gas diffusion coefficient becomes large, and therefore the permeation coefficient can be increased. In addition, the selective performance of a membrane is given by the difference in solubility of gas in the membrane and the difference in the diffusion rate of gas in the membrane. It is possible to enhance the selectivity by increasing the solubility of a certain gas in the membrane by utilizing the interaction with this substance. BACKGROUND ART Conventionally, as an example of separating gas mixtures using a liquid membrane, membranes for separating carbon dioxide gas, carbon monoxide, olefins, etc. using an aqueous solution of a metal salt are known. (For example, special public service in 1977-
1176, Japanese Patent Publication No. 53-31842) Also, as an example of a liquid membrane for organic compounds, a membrane for separating nitric oxide using a formamide solution of ferrous chloride is known (AICh E
Journal Vol 16 No. 3 405 pages, 1970). Homogeneous membranes and porous membranes are used as supports for these liquid membranes, but in the case of homogeneous membranes, the gas permeation coefficient is extremely large so that this support does not become the rate-determining step for permeation. It is necessary to use a very thin film of the material. In addition, when a porous membrane is used as a liquid support, the permeation rate is large and this part does not become the rate-determining step for permeation.
If the pressure difference between the next side (inflow side) and the secondary side (outflow side) is large, there is a possibility that the liquid film will leak as a droplet. Therefore, it is used by flowing another gas or liquid to the secondary side of the membrane to maintain a balance with the pressure on the primary side. As mentioned above, an important issue for liquid films is how to support them, but especially when the liquid is an organic compound, the support film may or may not dissolve in the organic compound. It swells or undergoes some kind of change, and there is no good way to do it. However, among the substances that selectively and reversibly interact with gases, there are many substances such as various complexes that are insoluble in water but soluble in organic solvents, making it possible to use liquid organic compounds as liquid films. A method is desired. The present invention provides a gas separation membrane that includes such a liquid hydrocarbon as a constituent component and can be used even in the presence of a pressure difference between the two surfaces of the membrane. Specifically, the present invention relates to a gas separation membrane in which a thin film layer having many crosslinked structures is formed on a porous substrate by a plasma polymerization method, and a liquid hydrocarbon is retained on the thin film layer. Films with many cross-linked structures are suitable for not being immersed in organic compounds such as organic solvents, and the film is desired to be as thin as possible, so plasma polymerization using glow discharge is the preferred method for forming such films. This led to the realization that the present invention is suitable for the purpose of the present invention. Next, the present invention will be explained in detail. The present invention is a gas separation membrane for olefin compounds in which a liquid hydrocarbon is supported on a plasma polymerized membrane of bistrimethylsilylacetylene formed on a porous substrate. Hydrocarbons that can be used in the present invention are not particularly limited, but non-volatile compounds with a high boiling point are preferred since they are less likely to be lost through evaporation. On the other hand, in the case of highly viscous hydrocarbons with high boiling points and close to solids, the diffusion rate of gases passing through them decreases, and the rate of gas permeation decreases accordingly, so the volatility of organic solvents and gas The optimal compound is selected by considering the permeation rate. Examples of such hydrocarbons include hexane,
Aliphatic saturated hydrocarbons such as heptane, octane, isooctane, nonane, decane, dodecane, tridecane, tetradecane, pentadecane, hexadecane, toluene, xylene, paracymene, indene, styrene, alpha-methylstyrene, mesitylene,
Aromatic compounds such as p-diethylbenzene, prenitene, isodiylene, n-butylbenzene, diphenylmethane, and diphenylethylene; condensed polycyclic hydrocarbons such as indene and methylnaphthalene;
Liquid baraffin, α-olefin, α-olefin oligomer, liquid polypropylene, low molecular weight polybutene, polyisobutylene, liquid polybutadiene, hydrogenated liquid polybutadiene, liquid polybutadiene copolymer, hydrogenated liquid polybutadiene copolymer, Examples include liquid polypentadiene, liquid polystyrene, liquid polystyrene copolymer, and liquid polypentadiene. Under the conditions of use of the present invention, a plasma polymerized membrane of bistrimethylsilylacetylene formed on a porous substrate is used to support liquid hydrocarbons.
The method of forming a plasma polymerized film is to excite a substance to a plasma state and proceed with a chemical reaction.
A low-temperature plasma method is particularly preferred, and among them, a thin film manufacturing technique that mainly utilizes blow discharge can be used. The thickness of the plasma polymerized membrane formed on the surface of the porous membrane substrate is in the range of 0.001 to 100μ, preferably 0.01 to 10μ, and more preferably 0.1 to 1μ. The porous substrate on which the plasma polymerized film is formed can be made of various materials having pores of 100 μm or less. It is desirable that the surface of these porous substrates on which the plasma polymerized film is formed has pores with a pore size of 0.1μ or less, and if the pore size of the surface on which the plasma polymerized film is formed is large, It is necessary to form a thick plasma polymerized layer to cover the holes. A thick plasma polymerized layer has the disadvantage of acting as a barrier to gas permeation. The thickness of the plasma polymerized layer formed on the surface of the porous substrate is preferably thin enough to retain the liquid organic compound even under pressure. The pore size of the substrate is required to be sufficiently small. If the gas permeation rate is high, it is preferable to have no pores, and therefore, the porous substrate as used in the present invention includes an asymmetric membrane having a dense layer on the surface. The types of materials constituting the porous substrate are not particularly limited, but include regenerated cellulose, cellulose ester, polycarbonate, polyester, Teflon, nylon, acetyl cellulose, polyacrylonitrile, polyvinyl alcohol, polymethyl methacrylate, polysulfone, polyethylene, polypropylene, Polyvinylpyridine, polyphenylene oxide, polyphenylene oxide sulfonic acid, polybenzimidazole, polyimidazopyrrolone, polypiperazine amide, polystyrene, polyamino acid, polyurethane, polyamino acid polyurethane copolymer, polysiloxane, polysiloxane polycarbonate copolymer , polyvinyltrimethylsilane, collagen, polyion complex, polyurea polyamide, polyimide, polyamideimide, sulfonated polyfurfuryl alcohol, polyvinyl chloride, and other organic polymers; glass, alumina, silica, silica alumina, carbon, and inorganic materials such as metals. can be given. These porous substrates can be used in any of the shapes of a flat plate, a tube, a spiral, and a hollow fiber. The thickness of the porous substrate is not particularly limited, but is preferably in the range of 100μ to 1000μ. These porous substrates can also be used by being further supported by another support. The gas separation membrane of the present invention is formed by supporting a liquid hydrocarbon on the surface of a porous substrate on which a plasma polymerized layer is formed. Ethylene, propylene, etc. are used as petrochemical raw materials in the production of many products, and the gas separation membrane of the present invention is useful for recovering and utilizing unreacted raw materials contained in waste gas. The content of the present invention will be illustrated below with examples; however, these examples are merely for illustrative purposes, and should not be construed as limiting the present invention to the specific materials, methods, etc. shown therein. No. Example 1 and Comparative Example 1 Porous membrane Millipore Filter VSWP (trademark, manufactured by Nippon Millipore Limited. Average pore diameter)
0.025 μ) was placed on the substrate in a Bergier-type plasma polymerization reactor, the reactor was evacuated, and bistrimethylsilylacetylene was fed into the reactor while being discharged, and the RF power was 50 W and the pressure was 0.2 mbar.
A composite membrane was formed by reacting for 40 minutes and forming a polymerized thin film of bistrimethylsilylacetylene on a Millipore filter. This membrane was attached to a membrane attachment cell (effective membrane area: 12.6 cm 2 ), and 8 ml of toluene was placed on the membrane. On the other hand, helium gas or ethylene gas was adjusted to a pressure accumulator and flowed onto the above toluene liquid film (primary side) at 1.2 kg/cm 2 (slightly higher pressure than normal pressure) on the secondary side of the membrane. A vacuum was applied and the permeation rate of helium or ethylene permeated over a certain period of time was measured. The measurement results are shown in Table-1.

【表】 ヘリウムとエチレンのトルエンの溶解度の差に
よつてエチレンが高い選択性で透過した。又膜の
二次側(流出側)を真空にして膜を介して1Kg/
cm2以上の圧力差をつけてもトルエンの液滴が膜を
通過して漏出することはなかつた。 実施例 2 供給ガスとしてヘリウム又はエチレン単独ガス
のかわりにヘリウム36%、エチレン64%を含む混
合ガスを蓄圧器に調整し、トルエン液膜上(1次
側)に流す以外は実施例1と同様に実施した。結
果を表−2に示す。
[Table] Ethylene permeated with high selectivity due to the difference in solubility of helium and ethylene in toluene. Also, the secondary side (outflow side) of the membrane is evacuated and 1 kg/kg is passed through the membrane.
Even with a pressure difference of more than cm2 , toluene droplets did not leak through the membrane. Example 2 Same as Example 1 except that a mixed gas containing 36% helium and 64% ethylene was adjusted to the pressure accumulator instead of helium or ethylene alone as the supply gas, and flowed over the toluene liquid film (primary side). It was carried out in The results are shown in Table-2.

【表】 エチレンが高い選択性で透過し、トルエンの液
滴が膜を通過して膜の2次側へ漏出することはな
い。 実施例 3 液膜としてトルエンのかわりにα−メチルナフ
タレンを使用し供給ガスとしてヘリウム67.3%、
エチレン32.7%を含む混合ガスを蓄圧器に調整し
α−メチルナフタレン液膜上(1次側)に流す以
外は実施例1と同様に実施した。結果を表−3に
示す。
[Table] Ethylene permeates with high selectivity, and no toluene droplets pass through the membrane and leak to the secondary side of the membrane. Example 3 α-methylnaphthalene was used instead of toluene as the liquid film, and helium 67.3% was used as the supply gas.
The same procedure as in Example 1 was carried out except that a mixed gas containing 32.7% ethylene was adjusted to a pressure accumulator and flowed over the α-methylnaphthalene liquid film (primary side). The results are shown in Table-3.

【表】 エチレンが高い選択性で透過し、α−メチルナ
フタレンの液滴が膜を通電して膜の2次側へ漏出
することはなかつた。 実施例 4 液膜としてトルエンのかわりに流動パラフイン
を使用し、供給ガスとしてヘリウム61.2%、エチ
レン38.8%を含む混合ガスを蓄圧器に調整し、流
動パラフイン液膜上(1次側)に流す以外は実施
例1と同様に実施した。結果を表−4に示す。
[Table] Ethylene permeated with high selectivity, and droplets of α-methylnaphthalene did not leak to the secondary side of the membrane when current was passed through the membrane. Example 4 Liquid paraffin was used instead of toluene as the liquid film, and a mixed gas containing 61.2% helium and 38.8% ethylene was adjusted to the pressure accumulator as the supply gas, and the mixture was flowed over the liquid paraffin liquid film (primary side). was carried out in the same manner as in Example 1. The results are shown in Table 4.

【表】 エチレンが高い選択性で透過した流動パラフイ
ンの液滴が膜を通過して2次側へ漏出することは
なかつた。 比較例 2 多孔質膜であるミリポアフイルタVSWP(商
標、日本ミリポアリミテツド社製、平均孔径
0.025μ)を膜装着用セル(有効膜面積12.6cm2)に
装着する以外は実施例1と同様に実施したが、ト
ルエンが膜の2次側に流出したヘリウムとエチレ
ンの透過速度の測定はできなかつた。
[Table] Droplets of liquid paraffin through which ethylene permeated with high selectivity did not pass through the membrane and leak to the secondary side. Comparative Example 2 Porous membrane Millipore Filter VSWP (trademark, manufactured by Nippon Millipore Limited, average pore diameter
The procedure was carried out in the same manner as in Example 1, except that a membrane (effective membrane area: 12.6 cm 2 ) was attached to the cell (effective membrane area: 12.6 cm 2 ). I couldn't do it.

Claims (1)

【特許請求の範囲】[Claims] 1 多孔質基体に形成したビストリメチルシリル
アセチレンのプラズマ重合膜の上に液体の炭化水
素を支持してなるオレフイン化合物用気体分離
膜。
1. A gas separation membrane for olefin compounds, comprising a plasma polymerized membrane of bistrimethylsilylacetylene formed on a porous substrate and supporting a liquid hydrocarbon thereon.
JP19696383A 1983-10-22 1983-10-22 Gas separation membrane Granted JPS6090004A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19696383A JPS6090004A (en) 1983-10-22 1983-10-22 Gas separation membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19696383A JPS6090004A (en) 1983-10-22 1983-10-22 Gas separation membrane

Publications (2)

Publication Number Publication Date
JPS6090004A JPS6090004A (en) 1985-05-21
JPH0363412B2 true JPH0363412B2 (en) 1991-10-01

Family

ID=16366553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19696383A Granted JPS6090004A (en) 1983-10-22 1983-10-22 Gas separation membrane

Country Status (1)

Country Link
JP (1) JPS6090004A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60137416A (en) * 1983-12-23 1985-07-22 Agency Of Ind Science & Technol Permselective membrane for gas
JPS6118420A (en) * 1984-07-05 1986-01-27 Agency Of Ind Science & Technol Gas permselective membrane
DE3586677T2 (en) * 1984-11-29 1993-03-11 Asahi Chemical Ind METHOD FOR PRODUCING A SEMIPERMEABLED HOLLOW FIBER MEMBRANE ELEMENT AND A SEMIPERMEABLE HOLLOW FIBER MEMBRANE ELEMENT.
JP2521883B2 (en) * 1993-08-24 1996-08-07 工業技術院長 Manufacturing method of plasma-treated carbon dioxide separation membrane
FR3003564B1 (en) * 2013-03-19 2015-03-06 Arkema France METATHESIS METHOD COMPRISING THE EXTRACTION OF ETHYLENE FORMED USING A MEMBRANE

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5417381A (en) * 1977-06-20 1979-02-08 Bend Res Inc Method of separating ion from aqueous solution through separation membrane and its separation membrane
JPS5624018A (en) * 1979-06-25 1981-03-07 Toyota Central Res & Dev Lab Inc Gas separating member and production thereof
JPS57150423A (en) * 1981-03-13 1982-09-17 Mitsubishi Chem Ind Ltd Gas separating film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5417381A (en) * 1977-06-20 1979-02-08 Bend Res Inc Method of separating ion from aqueous solution through separation membrane and its separation membrane
JPS5624018A (en) * 1979-06-25 1981-03-07 Toyota Central Res & Dev Lab Inc Gas separating member and production thereof
JPS57150423A (en) * 1981-03-13 1982-09-17 Mitsubishi Chem Ind Ltd Gas separating film

Also Published As

Publication number Publication date
JPS6090004A (en) 1985-05-21

Similar Documents

Publication Publication Date Title
Jayaramulu et al. Hydrophobic metal–organic frameworks
Pan et al. Effective separation of propylene/propane binary mixtures by ZIF-8 membranes
Lundy et al. Analysis and construction of multilayer composite membranes for the separation of gas mixtures
US4673418A (en) Method for producing an integral, asymmetric membrane and the resultant membrane
RU2045509C1 (en) Process for recovering olefins from gaseous stock stream
CN102348494B (en) Structure provided with zeolite separation membrane, method for producing same, method for separating mixed fluids and device for separating mixed fluids
US4581043A (en) Composite dense membrane
US6039792A (en) Methods of forming and using porous structures for energy efficient separation of light gases by capillary condensation
Wu et al. Separation performance of Si-CHA zeolite membrane for a binary H2/CH4 mixture and ternary and quaternary mixtures containing impurities
Sadrzadeh et al. Pure and mixed gas permeation through a composite polydimethylsiloxane membrane
JP2020032325A (en) Selective combined gas permeable membrane with metal-organic framework layer and method for manufacturing the same
Sundet Morphology of the rejecting surface of aromatic polyamide membranes for desalination
JPH0363412B2 (en)
SA90100103B1 (en) A process for separating carbon dioxide
GB2169301A (en) Water-free hydrocarbon separation membrane and process
Yang et al. Novel dry poly [(1-trimethylsilyl)-1-propyne]-AgClO4 complex membranes for olefin/paraffin separations
US5614309A (en) Coated polypropylene or polyethylene useful for membranes
Kamada et al. Gas Permeation Properties of Conducting Polymer/Porous Media Composite Membranes I.
US4976856A (en) Process for preparing non-porous, selective membrane layers
JPS6219203B2 (en)
JPS5924843B2 (en) Method for producing gas selectively permeable composite membrane
JPH06277471A (en) Preparation of synthetic plasma film
JPH10180059A (en) Separation membrane for organic liquid mixture, device and method using the membrane
JPH0254133B2 (en)
WO2021192816A1 (en) Composite semipermeable membrane