WO2021192816A1 - Composite semipermeable membrane - Google Patents

Composite semipermeable membrane Download PDF

Info

Publication number
WO2021192816A1
WO2021192816A1 PCT/JP2021/007394 JP2021007394W WO2021192816A1 WO 2021192816 A1 WO2021192816 A1 WO 2021192816A1 JP 2021007394 W JP2021007394 W JP 2021007394W WO 2021192816 A1 WO2021192816 A1 WO 2021192816A1
Authority
WO
WIPO (PCT)
Prior art keywords
copolymer
porous support
composite semipermeable
semipermeable membrane
weight
Prior art date
Application number
PCT/JP2021/007394
Other languages
French (fr)
Japanese (ja)
Inventor
清彦 高谷
芳機 西口
雅美 尾形
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2021511683A priority Critical patent/JPWO2021192816A1/ja
Publication of WO2021192816A1 publication Critical patent/WO2021192816A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/107Organic support material
    • B01D69/1071Woven, non-woven or net mesh
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/28Polymers of vinyl aromatic compounds
    • B01D71/281Polystyrene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/40Polymers of unsaturated acids or derivatives thereof, e.g. salts, amides, imides, nitriles, anhydrides, esters
    • B01D71/401Polymers based on the polymerisation of acrylic acid, e.g. polyacrylate
    • B01D71/4011Polymethylmethacrylate

Definitions

  • a composite semipermeable membrane comprising a base material, a porous support arranged on the base material, and a separation functional layer arranged on the porous support.
  • the porous support contains a copolymer of a vinyl cyanide-based monomer and an aromatic vinyl-based monomer.
  • the following cyano group ratio represented by the absorption intensity of the infrared absorption spectrum measured by the Fourier transform infrared spectrophotometer is 0.20 or more and 0.
  • Cyan group ratio 2240 cm -1 absorption intensity / 1605 cm -1 absorption intensity
  • the porous support contains a copolymer of a vinyl cyanide-based monomer and an aromatic vinyl-based monomer, and the cyano group ratio of the porous support is 0.20 or more and 0.85 or less. Therefore, the composite semipermeable membrane has high water permeability (permeation flow velocity: Flux).
  • Support film (1-1-1) Base material
  • the base material include polyester-based polymers, polyamide-based polymers, polyolefin-based polymers, and mixtures and copolymers thereof.
  • a polyester-based polymer fabric having high mechanical and thermal stability is particularly preferable as the base material.
  • a non-woven fabric, a woven fabric, or a knitted fabric is preferable.
  • the non-woven fabric may be either a long-fiber non-woven fabric or a short-fiber non-woven fabric.
  • the long fiber non-woven fabric preferably has, for example, an average fiber length of 300 mm or more and an average fiber diameter of 3 to 30 ⁇ m.
  • 1605cm -1 Peak attributed to vibration of benzene nucleus
  • IR Traxer-100 manufactured by Shimadzu Corporation or the like can be used.
  • aromatic vinyl monomer examples include styrene, ⁇ -methylstyrene, p-methylstyrene, vinyltoluene, t-butylstyrene, o-ethylstyrene, o-chlorostyrene, o, p-dichlorostyrene and the like. Can be mentioned.
  • the aromatic vinyl-based monomer is preferably styrene and ⁇ -methylstyrene, and more preferably styrene.
  • the aromatic vinyl-based monomer contained in the copolymer may be one kind or two or more kinds.
  • the copolymer of the vinyl cyanide-based monomer and the aromatic vinyl-based monomer is preferably a copolymer of acrylonitrile and styrene.
  • the proportion of the vinyl cyanide-based monomer in the vinyl-based monomer constituting the vinyl-based copolymer is preferably 8% by weight or more and 20% by weight or less, and more preferably 10% by weight or more and 20% by weight or less. Is. When this ratio is 8% by weight or more, it is easy to obtain a porous support that can withstand the pressure at the time of practical use in water treatment or the like, which is preferable. Further, when this ratio is 20% by weight or less, the cyano group ratio can be easily set to 0.85 or less, which is preferable.
  • the thickness of the porous support can be measured by cross-sectional observation with a scanning electron microscope (SEM), an optical microscope, or the like.
  • SEM scanning electron microscope
  • a section sample is prepared by cutting the composite semipermeable membrane or the support membrane by a freeze-cutting method, and the section sample is cross-sectionally observed by SEM at a magnification of 100 to 500 times. Measure the thickness of any 10 points using a scale or caliper. It is advisable to measure the thickness at 10 points at intervals of 10 ⁇ m in the direction perpendicular to the thickness direction of the film (plane direction of the film). The same operation is performed on 5 section samples, and the arithmetic mean of 50 data is calculated to obtain the thickness of the porous support.
  • the sample Before observing with SEM, the sample is thinly coated with platinum or platinum-palladium or ruthenium tetroxide.
  • SEM an S-5500 scanning electron microscope manufactured by Hitachi High-Technologies Corporation can be used, and observation is performed at an acceleration voltage of 3 to 6 kV.
  • the thickness of the support membrane affects the strength of the composite semipermeable membrane and the packing density when it is used as an element.
  • the total thickness of the support membranes is preferably 30 ⁇ m or more, more preferably 80 ⁇ m or more, and preferably 300 ⁇ m or less, more preferably 200 ⁇ m or less. Is.
  • the separation functional layer can be formed, for example, by interfacial polycondensation of a polyfunctional amine and a polyfunctional acid halide.
  • a polyfunctional amine and a polyfunctional acid halide it is preferable that at least one of the polyfunctional amine and the polyfunctional acid halide contains a trifunctional or higher functional compound.
  • the manufacturing method includes, for example, a step of forming a support film and a step of forming a separation functional layer.
  • the composite semipermeable membrane of the present invention is not limited to the production method and the method for forming each layer described in the present specification.
  • the method for producing a composite semipermeable membrane includes, for example, the following steps (a) to (c).
  • (B) A step of forming a porous support containing the copolymer by bringing the solution into contact with a coagulation bath containing the non-solvent of the copolymer.
  • (C) A step of forming a separation functional layer on the porous support.
  • the manufacturing method including the steps represented by these (a) to (c) is divided into a support film forming step and a separating functional layer forming step, and details are shown below.
  • the good solvent examples include N-methyl-2-pyrrolidone (NMP), dimethyl sulfoxide (DMSO), dimethylacetamide (DMAC), dimethylformamide (DMF) and the like, and DMF is preferable. Further, the good solvent may be a mixed solvent, and a mixture of DMSO and DMF is preferably used as the mixed solvent.
  • NMP N-methyl-2-pyrrolidone
  • DMSO dimethyl sulfoxide
  • DMAC dimethylacetamide
  • DMF dimethylformamide
  • the good solvent may be a mixed solvent, and a mixture of DMSO and DMF is preferably used as the mixed solvent.
  • the copolymer solution By applying the copolymer solution to the base material, the copolymer solution is impregnated in the base material. By controlling the impregnation of the copolymer solution into the base material, the occurrence of defects can be suppressed.
  • the time from the application of the copolymer solution on the base material to the immersion in the coagulation bath can be controlled, or the copolymer can be controlled.
  • the viscosity can be adjusted by controlling the temperature or concentration of the solution, and these conditions can be combined.
  • the coagulation bath in the step (b) preferably contains a non-solvent having a lower solubility than a good solvent of the copolymer.
  • the non-solvent include water, hexane, pentane, benzene, toluene, methanol, ethanol, trichloroethylene, ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, butylene glycol, pentanediol, hexanediol, low molecular weight polyethylene glycol and the like. Glycols, aromatic hydrocarbons, aliphatic alcohols, or mixed solvents thereof and the like. Water is generally used as the non-solvent.
  • a method for producing a copolymer (vinyl-based copolymer) constituting the porous support will be described.
  • a method for producing a vinyl-based copolymer for example, any polymerization method such as emulsion polymerization, suspension polymerization, bulk polymerization and solution polymerization can be used.
  • a method for producing a vinyl-based copolymer two or more of these may be combined.
  • the method of charging each monomer and the initial batch charging or a part or all of the charged monomer is continuously or divided and polymerized in order to know the composition distribution of the copolymer. You may.
  • a suspension polymerization method or a bulk polymerization method is preferable, and the suspension polymerization method is most preferable in consideration of easiness of polymerization control and easiness of post-treatment.
  • suspension stabilizer used for suspension polymerization examples include inorganic suspension stabilizers such as clay, barium sulfate and magnesium hydroxide, polyvinyl alcohol, carboxymethyl cellulose, polyacrylamide, methyl methacrylate / acrylamide copolymer and the like.
  • examples include organic suspension stabilizers. Two or more of these may be used. Among these, an organic suspension stabilizer is preferable in terms of thermal coloration stability at the time of melting, and a methyl methacrylate / acrylamide copolymer is more preferable.
  • the initiator used for the polymerization is not particularly limited, and for example, peroxides, azo compounds, persulfates and the like are used.
  • peroxides include benzoyl peroxide, cumene hydroperoxide, dicumyl peroxide, diisopropylbenzene hydroperoxide, t-butyl hydroperoxide, t-butyl peroxyacetate, and t-butyl peroxybenzoate.
  • t-Butylisopropylcarbonate, di-t-butyl peroxide, t-butylperoctate, 1,1-bis (t-butylperoxy) 3,3,5-trimethylcyclohexane, 1,1-bis (t) -Butyl peroxy) Cyclohexane and t-butyl peroxy-2-ethylhexanoate and the like can be mentioned.
  • azo compound examples include azobisisobutyronitrile and azobis (2,4-dimethylvaleronitrile, 2-phenylazo-2,4-dimethyl-4-methoxyvaleronitrile, 2-cyano-2-propylazo).
  • Formamide 1,1'-azobiscyclohexane-1-carbonitrile, azobis (4-methoxy-2,4-dimethylvaleronitrile), dimethyl 2,2'-azobisisobutyrate, 1-t-butylazo-2
  • examples thereof include -cyanobutane and 2-t-butylazo-2-cyano-4-methoxy-4-methylpentane.
  • persulfate examples include potassium persulfate, sodium persulfate, ammonium persulfate and the like.
  • Two or more of these initiators may be used.
  • a redox-based initiator can also be used.
  • the polymerization temperature is not particularly limited, but from the viewpoint that the weight average molecular weight of the vinyl-based copolymer can be easily adjusted within the above range, and from the viewpoint of suspension stability. It is preferable to start the polymerization at 60 to 80 ° C., start the temperature rise when the polymerization rate reaches 50 to 70%, and finally reach 100 to 120 ° C.
  • the weight average molecular weight of the vinyl-based copolymer can be easily adjusted by using the above-mentioned initiator and chain transfer agent, setting the polymerization temperature within the above-mentioned preferable range, and the like.
  • the chain transfer agent examples include mercaptans such as n-octyl mercaptan, t-dodecyl mercaptan, n-dodecyl mercaptan, n-tetradecyl mercaptan and n-octadecyl mercaptan, and terpenes such as terpinolen.
  • mercaptans such as n-octyl mercaptan, t-dodecyl mercaptan, n-dodecyl mercaptan, n-tetradecyl mercaptan and n-octadecyl mercaptan
  • terpenes such as terpinolen.
  • the chain transfer agent two or more of these may be used.
  • n-octyl mercaptan and t-dodecyl mercaptan are preferably used as
  • the separation function layer formation step preferably includes the above step (c).
  • an aqueous solution containing the above-mentioned polyfunctional amine hereinafter, may be referred to as “polyfunctional amine aqueous solution”
  • water containing a polyfunctional acid halide and non-polyfunctional acid halide.
  • polyfunctional amine aqueous solution aqueous solution containing the above-mentioned polyfunctional amine
  • water containing a polyfunctional acid halide water containing a polyfunctional acid halide
  • non-polyfunctional acid halide non-polyfunctional acid halide
  • the concentration of the polyfunctional amine in the polyfunctional amine aqueous solution is preferably 0.1% by weight or more, more preferably 0.5% by weight or more, and preferably 15% by weight or less, more preferably 10% by weight. It is as follows. It is preferable that the concentration is in this range because sufficient water permeability and solute removal performance can be easily obtained.
  • Additives such as surfactants, alkaline compounds, acylation catalysts and antioxidants may be added to the polyfunctional amine aqueous solution as long as they do not interfere with the reaction between the polyfunctional amine and the polyfunctional acid halide. Can be added.
  • surfactant examples include sodium dodecylbenzenesulfonate, sodium dodecyl sulfate, sodium lauryl sulfate and the like.
  • water containing a polyfunctional acid halide and an immiscible organic solvent solution can be brought into contact with the porous support after contact with the polyfunctional amine aqueous solution to form a separation functional layer by intercondensation. preferable.
  • water-immiscible organic solvents are saturated hydrocarbons such as hexane, heptane, octane, nonane and decane; IP Solvent 1620, IP Clean LX IP Solvent 2028, Exxon Mobile's ISOPAR E, ISOPAR G, ISOPAR H , ISOPAR L and other isoparaffin solvents; examples thereof include naphthenic solvents such as Exol D30, Exol D40, Exol D60 and Exol D80 manufactured by Exxon Mobile.
  • the separation functional layer on the porous support by interfacial polycondensation After forming the separation functional layer on the porous support by interfacial polycondensation, it is preferable to drain the excess solvent.
  • the method of draining the liquid include a method of grasping the membrane in the vertical direction and naturally flowing down the excess organic solvent to remove the liquid, a method of drying and removing the organic solvent by blowing air with a blower, and a mixing of water and air.
  • a method of removing excess organic solvent with a fluid two fluids can be used.
  • the operating pressure when permeating the treated water is preferably 0.2 MPa or more and 4.1 MPa or less, for example.
  • the salt removability decreases, but as the temperature decreases, the membrane permeation flux also decreases. Therefore, for example, 5 ° C. or higher and 35 ° C. or lower are preferable.
  • aqueous solution 35 parts by weight of sodium hydroxide and 15,000 parts by weight of ion-exchanged water were added to obtain an aqueous solution of 0.6% by weight of a copolymer of methyl methacrylate and acrylamide. After stirring at 70 ° C. for 2 hours to saponify, the mixture was cooled to room temperature to obtain an aqueous solution of a medium for suspension polymerization.
  • Comparative Example 2 ⁇ Comparative Example 2, Examples 1 to 4>
  • B was used in Comparative Example 2
  • C was used in Example 1
  • D was used in Example 2
  • E was used in Example 3
  • F was used in Example 4 instead of the vinyl copolymer A.
  • the composite semipermeable membranes of Comparative Example 2 and Examples 1 to 4 were obtained in the same manner as in Comparative Example 1 except for the above.
  • Table 1 shows the membrane performance of the obtained composite semipermeable membrane. From Examples 1 to 4, a composite semipermeable membrane having high water permeability was obtained when the cyano group ratio of the porous support was 0.85 or less.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

The present invention relates to a composite semipermeable membrane which is provided with a base material, a porous supporting body that is arranged on the base material, and a separation functional layer that is arranged on the porous supporting body, wherein: the porous supporting body contains a copolymer of a vinyl cyanide monomer and an aromatic vinyl monomer; and with respect to a film that is obtained by dissolving the porous supporting body into a solvent and drying the resulting solution, the cyano group ratio shown below and expressed by the absorption intensity of the infrared absorption spectrum as measured by means of a Fourier transform infrared spectrophotometer is from 0.20 to 0.85. Cyano group ratio = (absorption intensity at 2,240 cm-1)/(absorption intensity at 1,605 cm-1)

Description

複合半透膜Composite semipermeable membrane
 本発明は、液状混合物の選択的分離に有用な複合半透膜およびその製造方法に関する。本発明によって得られる複合半透膜は、例えばかん水の淡水化や水道水の浄化に好適に用いることができる。 The present invention relates to a composite semipermeable membrane useful for selective separation of a liquid mixture and a method for producing the same. The composite semipermeable membrane obtained by the present invention can be suitably used for, for example, desalination of brackish water and purification of tap water.
 混合物の分離に関して、溶媒(例えば水)に溶解した物質(例えば塩類)を除くための技術には様々なものがある。近年、省エネルギーおよび省資源のためのプロセスとして膜分離法の利用が拡大している。膜分離法に使用される膜には、精密ろ過膜、限外ろ過膜、ナノろ過膜、逆浸透膜などがある。これらの膜は、例えば海水、かん水、有害物を含んだ水などから飲料水を得る場合や、工業用超純水の製造、排水処理、有価物の回収、水道水の浄化などに用いられている。 Regarding the separation of the mixture, there are various techniques for removing substances (for example, salts) dissolved in a solvent (for example, water). In recent years, the use of membrane separation methods has been expanding as a process for energy saving and resource saving. Membranes used in the membrane separation method include microfiltration membranes, ultrafiltration membranes, nanofiltration membranes, reverse osmosis membranes and the like. These films are used, for example, when obtaining drinking water from seawater, brackish water, water containing harmful substances, manufacturing ultrapure water for industrial use, wastewater treatment, recovery of valuable resources, purification of tap water, etc. There is.
 現在市販されているろ過膜、特に逆浸透膜およびナノろ過膜の大部分は、複合半透膜である。特許文献1には、基材および多孔質支持体を含む支持膜と、多孔質支持体上に設けられた分離機能層とを備える複合半透膜が開示されている。また、多孔質支持体に含まれる熱可塑性樹脂として、ポリスルホン、ポリアクリルアミド、ポリエ一テルスルホン、セルロースエステル、ポリアクリロニトリル、ポリ塩化ビニル等が開示されている。特許文献2には、支持体の材料としてポリアクリロニトリルをベースとした共重合体が開示されている。 Most of the filtration membranes currently on the market, especially reverse osmosis membranes and nanofiltration membranes, are composite semipermeable membranes. Patent Document 1 discloses a composite semipermeable membrane including a support membrane including a base material and a porous support, and a separation functional layer provided on the porous support. Further, as the thermoplastic resin contained in the porous support, polysulfone, polyacrylamide, polyethersulfone, cellulose ester, polyacrylonitrile, polyvinyl chloride and the like are disclosed. Patent Document 2 discloses a copolymer based on polyacrylonitrile as a material for a support.
国際公開第2014/192883号International Publication No. 2014/192883 米国特許出願公開第2012/181228号明細書U.S. Patent Application Publication No. 2012/181228
 本発明は、シアン化ビニル系単量体と芳香族ビニル系単量体との共重合体を含む多孔質支持体を備える複合半透膜において、透水性を向上させることを目的とする。 An object of the present invention is to improve water permeability in a composite semipermeable membrane provided with a porous support containing a copolymer of a vinyl cyanide-based monomer and an aromatic vinyl-based monomer.
 上記目的を達成するために、本発明は以下の構成を有する。
[1] 基材と、前記基材上に配置された多孔質支持体と、前記多孔質支持体上に配置された分離機能層とを備える複合半透膜であって、
 前記多孔質支持体が、シアン化ビニル系単量体と芳香族ビニル系単量体との共重合体を含み、
 前記多孔質支持体の溶媒への溶解および乾燥によって得られるフィルムについて、フーリエ変換赤外分光光度計により測定される赤外吸収スペクトルの吸収強度で表される下記シアノ基割合が0.20以上0.85以下である複合半透膜。
 シアノ基割合=2240cm-1の吸収強度/1605cm-1の吸収強度
[2] 前記シアノ基割合が0.40以上0.78以下である、前記[1]に記載の複合半透膜。
[3] 前記シアノ基割合が0.40以上0.62以下である、前記[2]に記載の複合半透膜。
[4] 前記共重合体の重量平均分子量Mwが、220,000以上1,000,000以下である、前記[1]~[3]のいずれか1に記載の複合半透膜。
[5] 前記共重合体の重量平均分子量Mwが、260,000以上1,000,000以下である、前記[4]に記載の複合半透膜。
In order to achieve the above object, the present invention has the following configuration.
[1] A composite semipermeable membrane comprising a base material, a porous support arranged on the base material, and a separation functional layer arranged on the porous support.
The porous support contains a copolymer of a vinyl cyanide-based monomer and an aromatic vinyl-based monomer.
For the film obtained by dissolving and drying the porous support in a solvent, the following cyano group ratio represented by the absorption intensity of the infrared absorption spectrum measured by the Fourier transform infrared spectrophotometer is 0.20 or more and 0. A composite semipermeable membrane of .85 or less.
Cyan group ratio = 2240 cm -1 absorption intensity / 1605 cm -1 absorption intensity [2] The composite semipermeable membrane according to the above [1], wherein the cyano group ratio is 0.40 or more and 0.78 or less.
[3] The composite semipermeable membrane according to the above [2], wherein the cyano group ratio is 0.40 or more and 0.62 or less.
[4] The composite semipermeable membrane according to any one of [1] to [3], wherein the weight average molecular weight Mw of the copolymer is 220,000 or more and 1,000,000 or less.
[5] The composite semipermeable membrane according to the above [4], wherein the weight average molecular weight Mw of the copolymer is 260,000 or more and 1,000,000 or less.
 多孔質支持体がシアン化ビニル系単量体と芳香族ビニル系単量体との共重合体を含み、かつ、多孔質支持体のシアノ基割合が0.20以上0.85以下であることで、複合半透膜は高い透水性能(透過流速:Flux)を有する。 The porous support contains a copolymer of a vinyl cyanide-based monomer and an aromatic vinyl-based monomer, and the cyano group ratio of the porous support is 0.20 or more and 0.85 or less. Therefore, the composite semipermeable membrane has high water permeability (permeation flow velocity: Flux).
 以下に本発明の実施の形態を詳細に説明するが、本発明は以下の説明に限定されるものではなく、本発明の要旨を逸脱しない範囲において、任意に変形して実施することができる。
 また、本明細書において、‘重量%’、‘重量部’及び‘重量ppm’とは、それぞれ‘質量%’、‘質量部’及び‘質量ppm’と同義であり、単にppmと表した場合には、重量ppmであることを意味する。
Hereinafter, embodiments of the present invention will be described in detail, but the present invention is not limited to the following description, and can be arbitrarily modified and carried out without departing from the gist of the present invention.
Further, in the present specification, "% by weight", "parts by weight" and "ppm by weight" are synonymous with "% by mass", "parts by mass" and "ppm by mass", respectively, and are simply expressed as ppm. Means that the weight is ppm.
 1.複合半透膜
 以下に述べる複合半透膜は、基材と、前記基材上に配置された多孔質支持体と、前記多孔質支持体上に配置された分離機能層とを備える。基材と多孔質支持体との複合体を以下「支持膜」と称する。
 分離機能層はイオンの分離性能を実質的に有し、支持膜は分離性能を実質的に有さないが、支持膜は複合半透膜に強度を与えることができる。
1. 1. Composite Semipermeable Membrane The composite semipermeable membrane described below includes a base material, a porous support arranged on the base material, and a separation functional layer arranged on the porous support. The complex of the base material and the porous support is hereinafter referred to as "support film".
The separation functional layer has substantially the ion separation performance, and the support membrane has substantially no separation performance, but the support membrane can impart strength to the composite semipermeable membrane.
 (1-1)支持膜
 (1-1-1)基材
 基材としては、例えばポリエステル系重合体、ポリアミド系重合体、ポリオレフィン系重合体、あるいはこれらの混合物や共重合体等が挙げられる。中でも、基材としては機械的、熱的に安定性の高いポリエステル系重合体の布帛が特に好ましい。布帛としては、不織布または織物もしくは編物が好ましい。不織布は、長繊維不織布または短繊維不織布のいずれであってもよい。長繊維不織布は、例えば300mm以上の平均繊維長と3~30μm平均繊維径を有することが好ましい。
(1-1) Support film (1-1-1) Base material Examples of the base material include polyester-based polymers, polyamide-based polymers, polyolefin-based polymers, and mixtures and copolymers thereof. Among them, a polyester-based polymer fabric having high mechanical and thermal stability is particularly preferable as the base material. As the cloth, a non-woven fabric, a woven fabric, or a knitted fabric is preferable. The non-woven fabric may be either a long-fiber non-woven fabric or a short-fiber non-woven fabric. The long fiber non-woven fabric preferably has, for example, an average fiber length of 300 mm or more and an average fiber diameter of 3 to 30 μm.
 基材の厚みは、好ましくは20μm以上200μm以下であり、より好ましくは40μm以上であり、さらに好ましくは120μm以下である。基材の厚みは、具体的には、ダイヤル式またはデジタル式のシックネスゲージによって、基材の任意の20箇所について測定される厚みの相加平均である。ただし、基材の厚みをシックネスゲージによって測定することが困難な場合、光学顕微鏡または走査型電子顕微鏡を用いて測定してもよい。 The thickness of the base material is preferably 20 μm or more and 200 μm or less, more preferably 40 μm or more, and further preferably 120 μm or less. The thickness of the substrate is specifically the arithmetic mean of the thickness measured at any 20 locations on the substrate by a dial or digital thickness gauge. However, if it is difficult to measure the thickness of the base material with a thickness gauge, it may be measured with an optical microscope or a scanning electron microscope.
 (1-1-2)多孔質支持体
 本発明において、多孔質支持体はシアン化ビニル系単量体と芳香族ビニル系単量体との共重合体(すなわちビニル系共重合体)を含む。
(1-1-2) Porous Support In the present invention, the porous support contains a copolymer of a vinyl cyanide-based monomer and an aromatic vinyl-based monomer (that is, a vinyl-based copolymer). ..
 多孔質支持体から作製されるフィルムについて測定されるシアノ基割合は、好ましくは0.85以下であり、より好ましくは0.78以下であり、さらに好ましくは0.62以下である。また、シアノ基割合は、好ましくは0.20以上、または0.40以上である。
 「多孔質支持体から作製されるフィルム」とは、多孔質支持体の溶媒への溶解および乾燥によって得られるフィルムのことをいい、具体的には、多孔質支持体を溶媒に溶解することで得られる溶液から溶媒を蒸発させる(つまり溶液を乾燥させる)ことで得られるフィルムである。
The cyano group ratio measured for the film made from the porous support is preferably 0.85 or less, more preferably 0.78 or less, still more preferably 0.62 or less. The cyano group ratio is preferably 0.20 or more, or 0.40 or more.
The "film made from a porous support" refers to a film obtained by dissolving and drying the porous support in a solvent, and specifically, by dissolving the porous support in a solvent. It is a film obtained by evaporating a solvent from the obtained solution (that is, drying the solution).
 このフィルムにおけるシアノ基割合は、多孔質支持体全体での平均的なシアノ基割合を表す。よって、以下では、「多孔質支持体から作製されるフィルムについて測定されるシアノ基割合」を「多孔質支持体のシアノ基割合」と呼ぶ。 The cyano group ratio in this film represents the average cyano group ratio in the entire porous support. Therefore, in the following, "the ratio of cyano groups measured for a film made from a porous support" will be referred to as "the ratio of cyano groups in a porous support".
 本発明者らは、鋭意検討を行った結果、多孔質支持体のシアノ基割合が上記範囲であることで、複合半透膜が高い透水性能を示すことを見出した。透水性能が向上する理由は明確ではないが、シアノ基の割合が比較的低いことで、多孔質支持体の疎水性が高くなり、界面重縮合による分離機能層形成時に多官能性アミンが充分に供給されやすくなり、分離機能層におけるひだが大きく成長するからであると考えられる。 As a result of diligent studies, the present inventors have found that the composite semipermeable membrane exhibits high water permeability when the ratio of cyano groups in the porous support is within the above range. The reason for the improvement in water permeability is not clear, but the relatively low proportion of cyano groups increases the hydrophobicity of the porous support, and the polyfunctional amine is sufficient when forming the separation functional layer by interfacial polycondensation. This is thought to be because it becomes easier to supply and the folds in the separation function layer grow larger.
 シアノ基割合の測定方法の詳細は以下のとおりである。まず、支持膜または複合半透膜を温水で洗浄し、室温で風乾させる。次に、溶媒によって多孔質支持体のみを溶解する。溶媒としてはアセトンまたはDMFが好ましい。得られた溶液を金属メッシュ(線径 0.03mm、300メッシュ)によってろ過することで基材および分離機能層を除去する。続いて、エバポレーターなどを用いて得られたろ液から溶媒を除去し、不溶物を得る。不溶物を10重量%程度となるように溶媒に再度溶解し、アプリケータを用いて得られた溶液をガラス基板上に15mil(381μm)の厚みで塗布する。ガラス基板を温度25℃、湿度50%の雰囲気下で12時間以上放置することで、溶媒を蒸発させ、フィルム状のサンプルを得る。得られたサンプルを60℃の真空乾燥機で5時間乾燥して溶媒を完全に除去し、乾燥後のサンプルをフーリエ変換赤外分光光度計(FT-IR)で透過法により吸光度分析する。得られた赤外吸収スペクトルに現れる下記ピークの吸収強度から、下記式(1)よりシアノ基割合を求めることができる。
 1605cm-1:ベンゼン核の振動に帰属されるピーク
 2240cm-1:-CN伸縮に帰属されるピーク
 シアノ基割合=2240cm-1の吸収強度/1605cm-1の吸収強度 (1)
 なお、FT-IRとしては、株式会社島津製作所製のIR Traxer-100などが使用できる。
The details of the method for measuring the cyano group ratio are as follows. First, the support membrane or the composite semipermeable membrane is washed with warm water and air-dried at room temperature. Next, only the porous support is dissolved by the solvent. Acetone or DMF is preferable as the solvent. The base material and the separating functional layer are removed by filtering the obtained solution through a metal mesh (wire diameter 0.03 mm, 300 mesh). Subsequently, the solvent is removed from the obtained filtrate using an evaporator or the like to obtain an insoluble matter. The insoluble matter is re-dissolved in a solvent so as to be about 10% by weight, and the solution obtained by using an applicator is applied on a glass substrate to a thickness of 15 mil (381 μm). The solvent is evaporated by leaving the glass substrate in an atmosphere of a temperature of 25 ° C. and a humidity of 50% for 12 hours or more to obtain a film-like sample. The obtained sample is dried in a vacuum dryer at 60 ° C. for 5 hours to completely remove the solvent, and the dried sample is subjected to absorbance analysis by a transmission method with a Fourier transform infrared spectrophotometer (FT-IR). From the absorption intensity of the following peaks appearing in the obtained infrared absorption spectrum, the cyano group ratio can be obtained from the following formula (1).
1605cm -1 : Peak attributed to vibration of benzene nucleus 2240cm -1 : Peak attributed to -CN expansion and contraction cyano group ratio = 2240cm -1 absorption intensity / 1605cm -1 absorption intensity (1)
As the FT-IR, IR Traxer-100 manufactured by Shimadzu Corporation or the like can be used.
 シアン化ビニル系単量体としては、例えば、アクリロニトリル、メタアクリロニトリルおよびエタアクリロニトリル等が挙げられる。シアン化ビニル系単量体は好ましくはアクリロニトリルである。共重合体に含まれるシアン化ビニル系単量体は1種であってもよいし、2種以上であってもよい。 Examples of the vinyl cyanide-based monomer include acrylonitrile, meta-acrylonitrile, and eta-acrylonitrile. The vinyl cyanide-based monomer is preferably acrylonitrile. The vinyl cyanide-based monomer contained in the copolymer may be one kind or two or more kinds.
 芳香族ビニル系単量体としては、例えば、スチレン、α-メチルスチレン、p-メチルスチレン、ビニルトルエン、t-ブチルスチレン、o-エチルスチレン、o-クロロスチレン、およびo,p-ジクロロスチレン等が挙げられる。芳香族ビニル系単量体は、好ましくはスチレンおよびα-メチルスチレンであり、より好ましくはスチレンである。共重合体に含まれる芳香族ビニル系単量体は1種であってもよいし、2種以上であってもよい。
 上記シアン化ビニル系単量体と芳香族ビニル系単量体との共重合体は、好ましくはアクリロニトリルとスチレンとの共重合体である。
Examples of the aromatic vinyl monomer include styrene, α-methylstyrene, p-methylstyrene, vinyltoluene, t-butylstyrene, o-ethylstyrene, o-chlorostyrene, o, p-dichlorostyrene and the like. Can be mentioned. The aromatic vinyl-based monomer is preferably styrene and α-methylstyrene, and more preferably styrene. The aromatic vinyl-based monomer contained in the copolymer may be one kind or two or more kinds.
The copolymer of the vinyl cyanide-based monomer and the aromatic vinyl-based monomer is preferably a copolymer of acrylonitrile and styrene.
 ビニル系共重合体を構成するビニル系単量体中のシアン化ビニル系単量体の割合は、好ましくは8重量%以上20重量%以下であり、より好ましくは10重量%以上20重量%以下である。この割合が8重量%以上であることで、水処理等における実用時の圧力に耐えられる多孔質支持体を得やすいため好ましい。また、この割合が20重量%以下であることで、シアノ基割合を0.85以下としやすいため好ましい。 The proportion of the vinyl cyanide-based monomer in the vinyl-based monomer constituting the vinyl-based copolymer is preferably 8% by weight or more and 20% by weight or less, and more preferably 10% by weight or more and 20% by weight or less. Is. When this ratio is 8% by weight or more, it is easy to obtain a porous support that can withstand the pressure at the time of practical use in water treatment or the like, which is preferable. Further, when this ratio is 20% by weight or less, the cyano group ratio can be easily set to 0.85 or less, which is preferable.
 ビニル系共重合体を構成するビニル系単量体中の芳香族ビニル系単量体の割合は、好ましくは80重量%以上92重量%以下であり、より好ましくは80重量%以上90重量%以下である。 The proportion of the aromatic vinyl-based monomer in the vinyl-based monomer constituting the vinyl-based copolymer is preferably 80% by weight or more and 92% by weight or less, and more preferably 80% by weight or more and 90% by weight or less. Is.
 多孔質支持体中のテトラヒドロフラン(THF)可溶分の重量平均分子量(Mw)は、多孔質支持体に含まれるシアン化ビニル系単量体と芳香族ビニル系単量体との共重合体の重量平均分子量(Mw)と同様の値となる。かかる重量平均分子量(Mw)の値は、好ましくは220,000以上であり、より好ましくは260,000以上であり、さらに好ましくは300,000以上である。Mwが220,000以上であることで、多孔質支持体の耐圧性を向上させることができる。また、Mwは好ましくは1,000,000以下である。Mwが1,000,000以下であることで、多孔質支持体の成形性が向上する。 The weight average molecular weight (Mw) of the tetrahydrofuran (THF) -soluble component in the porous support is the copolymer of the vinyl cyanide-based monomer and the aromatic vinyl-based monomer contained in the porous support. The value is the same as the weight average molecular weight (Mw). The value of such a weight average molecular weight (Mw) is preferably 220,000 or more, more preferably 260,000 or more, and further preferably 300,000 or more. When Mw is 220,000 or more, the pressure resistance of the porous support can be improved. Further, Mw is preferably 1,000,000 or less. When Mw is 1,000,000 or less, the moldability of the porous support is improved.
 多孔質支持体中のTHF可溶分の重量平均分子量(Mw)は、以下の方法で測定することができる。まず、所定の面積に切った支持膜または複合半透膜を温水でよく洗浄し、室温で風乾させる。次に、THFに接触させることで多孔質支持体のみを溶解し、得られた溶液を金属メッシュ(線径 0.03mm、メッシュ 300、関西金網株式会社製)にてろ過して基材および分離機能層を除去する。続いて、得られたろ液を、8800rpm(10,000G以上)で40分間遠心分離した後、上澄み液を分取する。得られた上澄み液を、ゲルパーミエーションクロマトグラフィー(GPC)でTHFを溶媒に、ポリスチレンを標準物質として測定し、重量平均分子量を求める。 The weight average molecular weight (Mw) of the THF-soluble component in the porous support can be measured by the following method. First, the support membrane or composite semipermeable membrane cut into a predetermined area is thoroughly washed with warm water and air-dried at room temperature. Next, only the porous support is dissolved by contacting with THF, and the obtained solution is filtered through a metal mesh (wire diameter 0.03 mm, mesh 300, manufactured by Kansai Wire Mesh Co., Ltd.) to separate the base material. Remove the functional layer. Subsequently, the obtained filtrate is centrifuged at 8800 rpm (10,000 G or more) for 40 minutes, and then the supernatant is separated. The obtained supernatant is measured by gel permeation chromatography (GPC) using THF as a solvent and polystyrene as a standard substance to determine the weight average molecular weight.
 多孔質支持体には、ビニル系共重合体の他に例えば他の熱可塑性樹脂が含まれていてもよい。熱可塑性樹脂とは、鎖状高分子であって、加熱すると外力によって変形または流動する性質を持つ物質である。他の熱可塑性樹脂としては、ビニル系共重合体との相溶性が高いものが好ましく、例えばポリ塩化ビニル、ポリメタクリル酸メチル、ポリメタクリル酸エチル、ポリエチレングリコール、ポリエチレンオキサイド、ポリカーボネート、ポリ乳酸、ポリビニルアセテート、ポリエチレンテレフタレート、ポリウレタン、スチレン系共重合体、ポリベンゾビスオキサゾール、ポリビニルイミダゾール及びポリフェニレンスルフィドなどが挙げられる。ここでスチレン系共重合体とは、例えばスチレン骨格を持つランダム共重合体、ブロック共重合及びグラフト共重合体などである。具体的な製品名としては例えば、日油株式会社製のモディパーCL430-G、CL130-Dや日本触媒株式会社製エポクロスRPS-1005、ポリイミレックスPSX0371などが挙げられる。 The porous support may contain, for example, another thermoplastic resin in addition to the vinyl-based copolymer. A thermoplastic resin is a chain polymer, which has the property of being deformed or fluidized by an external force when heated. As the other thermoplastic resin, those having high compatibility with vinyl-based copolymers are preferable, and for example, polyvinyl chloride, polymethylmethacrylate, polyethylmethacrylate, polyethylene glycol, polyethylene oxide, polycarbonate, polylactic acid, and polyvinyl chloride. Examples thereof include acetate, polyethylene terephthalate, polyurethane, styrene-based copolymer, polybenzobisoxazole, polyvinylimidazole and polyphenylene sulfide. Here, the styrene-based copolymer is, for example, a random copolymer having a styrene skeleton, a block copolymer, a graft copolymer, or the like. Specific product names include, for example, Modiper CL430-G and CL130-D manufactured by NOF CORPORATION, Epocross RPS-1005 manufactured by Nippon Shokubai Co., Ltd., Polyimide PSX0371 and the like.
 多孔質支持体の厚みは、好ましくは10μm以上100μm以下である。10μm以上であることで、基材が露出して欠点が生じることを抑制しやすく、100μm以下であることで、多孔質支持体の厚みによる抵抗で透水性能が低下することを抑制できる。 The thickness of the porous support is preferably 10 μm or more and 100 μm or less. When it is 10 μm or more, it is easy to suppress that the base material is exposed and defects occur, and when it is 100 μm or less, it is possible to suppress that the water permeability is deteriorated due to the resistance due to the thickness of the porous support.
 多孔質支持体の厚みは、多孔質支持体形成時に使用する材料を溶解する溶媒の種類、材料を含む溶液の粘度、溶液における材料の濃度、凝固浴温度、基材への溶液の塗布厚みなどで制御することができる。 The thickness of the porous support includes the type of solvent that dissolves the material used when forming the porous support, the viscosity of the solution containing the material, the concentration of the material in the solution, the coagulation bath temperature, the thickness of the solution applied to the substrate, etc. Can be controlled with.
 多孔質支持体の厚みは、走査型電子顕微鏡(SEM)や光学顕微鏡などによる断面観察によって測定することができる。SEMで測定する場合は、以下の方法で求めることができる。
 複合半透膜あるいは支持膜を凍結割断法で割断して切片サンプルを作製し、切片サンプルをSEMにて100~500倍で断面観察する。スケールやノギスを用いて任意の10点の厚みを測定する。膜の厚み方向に垂直な方向(膜の面方向)において、10μm間隔で10箇所の厚みを測定するとよい。同様の操作を5つの切片サンプルで行い、50個のデータの相加平均を算出し、多孔質支持体の厚みとする。なお、SEMで観察する前には、サンプルに白金または白金-パラジウムまたは四酸化ルテニウムを薄くコーティングする。また、SEMとしては、日立ハイテクノロジーズ製S-5500型走査型電子顕微鏡などが使用でき、3~6kVの加速電圧で観察する。
The thickness of the porous support can be measured by cross-sectional observation with a scanning electron microscope (SEM), an optical microscope, or the like. When measuring by SEM, it can be obtained by the following method.
A section sample is prepared by cutting the composite semipermeable membrane or the support membrane by a freeze-cutting method, and the section sample is cross-sectionally observed by SEM at a magnification of 100 to 500 times. Measure the thickness of any 10 points using a scale or caliper. It is advisable to measure the thickness at 10 points at intervals of 10 μm in the direction perpendicular to the thickness direction of the film (plane direction of the film). The same operation is performed on 5 section samples, and the arithmetic mean of 50 data is calculated to obtain the thickness of the porous support. Before observing with SEM, the sample is thinly coated with platinum or platinum-palladium or ruthenium tetroxide. As the SEM, an S-5500 scanning electron microscope manufactured by Hitachi High-Technologies Corporation can be used, and observation is performed at an acceleration voltage of 3 to 6 kV.
 また、支持膜および多孔質支持体の厚みは、基材と同様にシックネスゲージによって測定することもできる。分離機能層の厚みは基材や多孔質支持体と比較して非常に薄いので、複合半透膜の厚みを基材と多孔質支持体の合計の厚み(支持膜の厚み)とみなすことができる。従って、複合半透膜の厚みをシックネスゲージで測定し、複合半透膜の厚みから基材の厚みを減じることで、多孔質支持体の厚みを簡易的に算出することができる。シックネスゲージを用いる場合は、任意の20箇所について厚みを測定して、その相加平均を算出する。 The thickness of the support film and the porous support can also be measured by a thickness gauge as in the case of the base material. Since the thickness of the separating functional layer is very thin compared to the base material and the porous support, the thickness of the composite semipermeable membrane can be regarded as the total thickness of the base material and the porous support (thickness of the support membrane). can. Therefore, the thickness of the porous support can be easily calculated by measuring the thickness of the composite semipermeable membrane with a thickness gauge and subtracting the thickness of the base material from the thickness of the composite semipermeable membrane. When using a thickness gauge, the thickness is measured at any 20 points and the arithmetic mean is calculated.
 支持膜の厚み(基材と多孔質支持体厚みの合計)は、複合半透膜の強度およびそれをエレメントにしたときの充填密度に影響を与える。十分な機械的強度および充填密度を得るためには、支持膜の厚みの合計は好ましくは30μm以上であり、より好ましくは80μm以上であり、また、好ましくは300μm以下であり、より好ましくは200μm以下である。 The thickness of the support membrane (total thickness of the base material and the porous support) affects the strength of the composite semipermeable membrane and the packing density when it is used as an element. In order to obtain sufficient mechanical strength and packing density, the total thickness of the support membranes is preferably 30 μm or more, more preferably 80 μm or more, and preferably 300 μm or less, more preferably 200 μm or less. Is.
 (1-2)分離機能層
 分離機能層は、例えば多官能性アミンと多官能性酸ハロゲン化物との重縮合反応で得られたポリアミドを主成分とする薄膜を有することが好ましい。主成分とは分離機能層の成分のうち、50質量%以上を占める成分を指す。分離機能層においてポリアミドが占める割合は90質量%以上であってもよいし、分離機能層はポリアミドのみで構成されていてもよい。
(1-2) Separation Function Layer The separation function layer preferably has, for example, a thin film containing polyamide obtained by a polycondensation reaction of a polyfunctional amine and a polyfunctional acid halide as a main component. The main component refers to a component that occupies 50% by mass or more of the components of the separation functional layer. The ratio of polyamide in the separation functional layer may be 90% by mass or more, or the separation functional layer may be composed only of polyamide.
 分離機能層は、例えば多官能性アミンと多官能性酸ハロゲン化物との界面重縮合により形成することができる。
 ここで、多官能性アミン及び多官能性酸ハロゲン化物の少なくとも一方が、3官能以上の化合物を含むことが好ましい。
The separation functional layer can be formed, for example, by interfacial polycondensation of a polyfunctional amine and a polyfunctional acid halide.
Here, it is preferable that at least one of the polyfunctional amine and the polyfunctional acid halide contains a trifunctional or higher functional compound.
 多官能性アミンとは、一分子中に第一級アミノ基及び第二級アミノ基のうち少なくとも一方のアミノ基を2個以上有するアミンを意味する。
 多官能性アミンとしては例えば、ピペラジン、2,5-ジメチルピペラジン、2-メチルピペラジン、2,6-ジメチルピペラジン、2,3,5-トリメチルピペラジン、2,5-ジエチルピペラジン、2,3,5-トリエチルピペラジン、2-n-プロピルピペラジン、2,5-ジ-n-ブチルピペラジン及びエチレンジアミンなどの脂肪族多官能アミン;o-フェニレンジアミン、m-フェニレンジアミン、p-フェニレンジアミン、o-キシリレンジアミン、m-キシリレンジアミン、p-キシリレンジアミン、o-ジアミノピリジン、m-ジアミノピリジン及びp-ジアミノピリジン等の、2個のアミノ基がオルト位やメタ位、パラ位のいずれかの位置関係で芳香環に結合した多官能芳香族アミン;1,3,5-トリアミノベンゼン、1,2,4-トリアミノベンゼン、3,5-ジアミノ安息香酸、3-アミノベンジルアミン及び4-アミノベンジルアミンなどの多官能芳香族アミンなどが挙げられる。
The polyfunctional amine means an amine having two or more amino groups of at least one of a primary amino group and a secondary amino group in one molecule.
Examples of the polyfunctional amine include piperazine, 2,5-dimethylpiperazin, 2-methylpiperazin, 2,6-dimethylpiperazin, 2,3,5-trimethylpiperazin, 2,5-diethylpiperazin, 2,3,5. Aliphatic polyfunctional amines such as -triethylpiperazine, 2-n-propylpiperazine, 2,5-di-n-butylpiperazine and ethylenediamine; o-phenylenediamine, m-phenylenediamine, p-phenylenediamine, o-xylylene Two amino groups such as amine, m-xylylene diamine, p-xylylene diamine, o-diaminopyridine, m-diaminopyridine and p-diaminopyridine are in the ortho-, meta-position or para-position. Polyfunctional aromatic amines attached to the aromatic ring in relation; 1,3,5-triaminobenzene, 1,2,4-triaminobenzene, 3,5-diaminobenzoic acid, 3-aminobenzylamine and 4-amino Examples include polyfunctional aromatic amines such as benzylamine.
 中でも、多官能性アミンとしては膜の選択分離性や透過性、耐熱性を考慮すると、ピペラジン、m-フェニレンジアミン、p-フェニレンジアミン、1,3,5-トリアミノベンゼン、2-メチルピペラジンが好適に用いられる。これらの多官能性アミンは、単独で用いても、2種以上を併用してもよい。 Among them, as the polyfunctional amine, piperazine, m-phenylenediamine, p-phenylenediamine, 1,3,5-triaminobenzene, and 2-methylpiperazine are selected in consideration of the selective separability, permeability, and heat resistance of the membrane. It is preferably used. These polyfunctional amines may be used alone or in combination of two or more.
 多官能性酸ハロゲン化物とは、一分子中に少なくとも2個のハロゲン化カルボニル基を有する酸ハロゲン化物をいう。
 例えば、3官能酸ハロゲン化物としては、トリメシン酸クロリド、1,3,5-シクロヘキサントリカルボン酸トリクロリド及び1,2,4-シクロブタントリカルボン酸トリクロリドなどを挙げることができる。2官能酸ハロゲン化物としては、ビフェニルジカルボン酸ジクロリド、アゾベンゼンジカルボン酸ジクロリド、テレフタル酸クロリド、イソフタル酸クロリド及びナフタレンジカルボン酸クロリドなどの芳香族2官能酸ハロゲン化物、アジポイルクロリド及びセバコイルクロリドなどの脂肪族2官能酸ハロゲン化物並びにシクロペンタンジカルボン酸ジクロリド、シクロヘキサンジカルボン酸ジクロリド及びテトラヒドロフランジカルボン酸ジクロリドなどの脂環式2官能酸ハロゲン化物などを挙げることができる。
The polyfunctional acid halide refers to an acid halide having at least two carbonyl halide groups in one molecule.
For example, examples of the trifunctional acid halide include trimesic acid chloride, 1,3,5-cyclohexanetricarboxylic acid trichloride and 1,2,4-cyclobutanetricarboxylic acid trichloride. Examples of the bifunctional acid halide include aromatic bifunctional acid halides such as biphenyldicarboxylic acid dichloride, azobenzenedicarboxylic acid dichloride, terephthalic acid chloride, isophthalic acid chloride and naphthalenedicarboxylic acid chloride, adipoil chloride and sebacoil chloride. Examples thereof include aliphatic bifunctional acid halides and alicyclic bifunctional acid halides such as cyclopentanedicarboxylic acid dichloride, cyclohexanedicarboxylic acid dichloride and tetrahydrofuran dicarboxylic acid dichloride.
 多官能性アミンとの反応性を考慮すると、多官能性酸ハロゲン化物は、好ましくは多官能芳香族酸塩化物である。また、膜の選択分離性、耐熱性を考慮すると、多官能性酸ハロゲン化物は、好ましくは、一分子中に2~4個の塩化カルボニル基を有する多官能芳香族酸塩化物である。入手および取り扱いが容易であることから、多官能性酸ハロゲン化物は、特に好ましくは、トリメシン酸クロリド、テレフタル酸クロリド、またはイソフタル酸クロリドである。分離機能層形成においては、1種の多官能芳香族酸ハロゲン化物のみを用いてもよいし、2種類以上の多官能芳香族酸ハロゲン化物を組み合わせてもよい。 Considering the reactivity with the polyfunctional amine, the polyfunctional acid halide is preferably a polyfunctional aromatic acid chloride. Further, considering the selective separability and heat resistance of the film, the polyfunctional acid halide is preferably a polyfunctional aromatic acid chloride having 2 to 4 carbonyl chloride groups in one molecule. The polyfunctional acid halide is particularly preferably trimesic acid chloride, terephthalic acid chloride, or isophthalic acid chloride because it is easily available and handled. In forming the separation functional layer, only one kind of polyfunctional aromatic acid halide may be used, or two or more kinds of polyfunctional aromatic acid halides may be combined.
 分離機能層の厚みは、好ましくは0.01μm以上であり、より好ましくは0.1μm以上である。また、当該厚みは好ましくは1μm以下であり、より好ましくは0.5μm以下である。分離機能層の厚みの測定方法としては、走査型電子顕微鏡(SEM)または透過型電子顕微鏡(TEM)によって得られる断面画像を用いる方法、および原子間力顕微鏡(AFM)を用いる方法が挙げられる。
 分離機能層の孔径は、例えば2nm以下が好ましく、より好ましくは1nm以下である。
The thickness of the separating functional layer is preferably 0.01 μm or more, more preferably 0.1 μm or more. The thickness is preferably 1 μm or less, more preferably 0.5 μm or less. Examples of the method for measuring the thickness of the separation functional layer include a method using a cross-sectional image obtained by a scanning electron microscope (SEM) or a transmission electron microscope (TEM), and a method using an atomic force microscope (AFM).
The pore size of the separation function layer is, for example, preferably 2 nm or less, and more preferably 1 nm or less.
 2.複合半透膜の製造方法
 複合半透膜の製造方法について説明する。当該製造方法は、例えば、支持膜の形成工程および分離機能層の形成工程を含む。なお、本発明の複合半透膜は、本明細書に記載された製造方法および各層の形成方法に限定されない。
 複合半透膜の製造方法は、例えば、次の(a)~(c)で表される工程を含む。
(a)シアン化ビニル系単量体と芳香族ビニル系単量体との共重合体を良溶媒に溶解させた溶液を、基材上に配置する工程、
(b)前記共重合体の非溶媒を含有する凝固浴に前記溶液を接触させることで、前記共重合体を含む多孔質支持体を形成する工程、
(c)前記多孔質支持体上に分離機能層を形成する工程。
 これら(a)~(c)で表される工程を含む製造方法について、支持膜の形成工程、及び分離機能層の形成工程に分けて、詳細を以下に示す。
2. Method for manufacturing composite semipermeable membrane A method for manufacturing a composite semipermeable membrane will be described. The manufacturing method includes, for example, a step of forming a support film and a step of forming a separation functional layer. The composite semipermeable membrane of the present invention is not limited to the production method and the method for forming each layer described in the present specification.
The method for producing a composite semipermeable membrane includes, for example, the following steps (a) to (c).
(A) A step of arranging a solution in which a copolymer of a vinyl cyanide-based monomer and an aromatic vinyl-based monomer is dissolved in a good solvent on a substrate.
(B) A step of forming a porous support containing the copolymer by bringing the solution into contact with a coagulation bath containing the non-solvent of the copolymer.
(C) A step of forming a separation functional layer on the porous support.
The manufacturing method including the steps represented by these (a) to (c) is divided into a support film forming step and a separating functional layer forming step, and details are shown below.
 (2-1)支持膜の形成工程
 支持膜の形成工程は、上記工程(a)および(b)を含むことが好ましい。
(2-1) Support Film Forming Step The support film forming step preferably includes the above steps (a) and (b).
 上記工程(a)における共重合体(ビニル系共重合体)の化学構造について、好ましい態様は、上述したとおりである。 The preferred embodiment of the chemical structure of the copolymer (vinyl-based copolymer) in the above step (a) is as described above.
 上記工程(a)における溶液(以下、「共重合体溶液」と称することがある)中の共重合体濃度は、好ましくは10重量%以上であり、より好ましくは14重量%以上である。また、当該共重合体濃度は、好ましくは25重量%以下であり、より好ましくは22重量%以下である。共重合体濃度が10重量%以上25重量%以下であることで、実用に耐えうる強度をもった支持膜が得やすいため好ましい。 The copolymer concentration in the solution (hereinafter, may be referred to as "copolymer solution") in the above step (a) is preferably 10% by weight or more, and more preferably 14% by weight or more. The copolymer concentration is preferably 25% by weight or less, more preferably 22% by weight or less. When the copolymer concentration is 10% by weight or more and 25% by weight or less, a support film having strength enough to withstand practical use can be easily obtained, which is preferable.
 上記工程(a)における良溶媒は、好ましくはハンセン溶解度パラメータにおいて11.0以上17.0以下の極性項dPを有し、好ましくは7.0以上12.0以下の水素結合項dHを有する溶媒である。なお、良溶媒とは、ビニル系共重合体および熱可塑性樹脂を溶解させるものである。 The good solvent in the above step (a) preferably has a polar term dP of 11.0 or more and 17.0 or less in the Hansen solubility parameter, and preferably has a hydrogen bond term dH of 7.0 or more and 12.0 or less. Is. The good solvent is one that dissolves a vinyl-based copolymer and a thermoplastic resin.
 良溶媒としては、例えばN-メチル-2-ピロリドン(NMP)、ジメチルスルホキシド(DMSO)、ジメチルアセトアミド(DMAC)及びジメチルホルムアミド(DMF)などが挙げられ、好ましくはDMFが挙げられる。
 また、良溶媒は混合溶媒であってもよく、混合溶媒として好ましくは、DMSOとDMFとの混合物が用いられる。
Examples of the good solvent include N-methyl-2-pyrrolidone (NMP), dimethyl sulfoxide (DMSO), dimethylacetamide (DMAC), dimethylformamide (DMF) and the like, and DMF is preferable.
Further, the good solvent may be a mixed solvent, and a mixture of DMSO and DMF is preferably used as the mixed solvent.
 上記共重合体溶液には、ビニル系共重合体以外に例えば他の熱可塑性樹脂を含有してもよい。溶液が他の熱可塑性樹脂を含む場合、溶液中の他の熱可塑性樹脂の濃度は、ビニル系共重合体100重量部に対して好ましくは1.0~20.0重量部であり、より好ましくは3.0~15.0重量部である。 The copolymer solution may contain, for example, another thermoplastic resin in addition to the vinyl-based copolymer. When the solution contains another thermoplastic resin, the concentration of the other thermoplastic resin in the solution is preferably 1.0 to 20.0 parts by weight with respect to 100 parts by weight of the vinyl copolymer, more preferably. Is 3.0 to 15.0 parts by weight.
 上記共重合体溶液は、多孔質支持体の孔径、空孔率、親水性、弾性率などを調節するための添加剤を含有してもよい。孔径および空孔率を調節するための添加剤としては、水、アルコール類、ポリエチレングリコール、ポリビニルピロリドン、ポリビニルアルコール及びポリアクリル酸等の水溶性高分子またはその塩、さらに塩化リチウム、塩化ナトリウム、塩化カルシウム及び硝酸リチウム等の無機塩並びにホルムアミド等が例示されるが、添加剤はこれらに限定されるものではない。親水性や弾性率を調節するための添加剤としては、例えば種々の界面活性剤が挙げられる。
 これらの材料を混合することで、共重合体溶液を調製することができる。
The copolymer solution may contain an additive for adjusting the pore size, porosity, hydrophilicity, elastic modulus, etc. of the porous support. Additives for adjusting the pore size and porosity include water-soluble polymers such as water, alcohols, polyethylene glycol, polyvinylpyrrolidone, polyvinyl alcohol and polyacrylic acid or salts thereof, as well as lithium chloride, sodium chloride and chloride. Examples thereof include inorganic salts such as calcium and lithium nitrate, formamide, and the like, but the additives are not limited thereto. Examples of the additive for adjusting the hydrophilicity and elastic modulus include various surfactants.
By mixing these materials, a copolymer solution can be prepared.
 基材に共重合体溶液を配置する工程においては、例えば、スピンコーター、フローコーター、ロールコーター、スプレー、コンマコーター、バーコーター、グラビアコーター及びスリットダイコーターなどが利用できる。 In the step of arranging the copolymer solution on the base material, for example, a spin coater, a flow coater, a roll coater, a spray, a comma coater, a bar coater, a gravure coater, a slit die coater and the like can be used.
 共重合体溶液を塗布(配置)する際の溶液の温度は、好ましくは5~60℃の範囲内であり、より好ましくは10℃以上であり、また、より好ましくは40℃以下である。溶液の温度がこの範囲内であれば、共重合体が析出することなく、共重合体溶液が基材の繊維間にまで充分含浸したのち固化されやすい。その結果、アンカー効果により多孔質支持体が基材に強固に接合した支持膜を得ることができる。 The temperature of the solution when the copolymer solution is applied (arranged) is preferably in the range of 5 to 60 ° C, more preferably 10 ° C or higher, and more preferably 40 ° C or lower. When the temperature of the solution is within this range, the copolymer is not precipitated, and the copolymer solution is sufficiently impregnated between the fibers of the base material and then easily solidified. As a result, it is possible to obtain a support film in which the porous support is firmly bonded to the base material due to the anchor effect.
 基材に共重合体溶液を塗布することにより、基材中に共重合体溶液が含浸する。共重合体溶液の基材への含浸を制御することで、欠点の発生を抑制することができる。共重合体溶液の基材への含浸を制御するためには、例えば、基材上に共重合体溶液を塗布してから、凝固浴に浸漬させるまでの時間を制御すること、或いは共重合体溶液の温度または濃度を制御することにより粘度を調節することが挙げられ、これらの条件を組み合わせることも可能である。 By applying the copolymer solution to the base material, the copolymer solution is impregnated in the base material. By controlling the impregnation of the copolymer solution into the base material, the occurrence of defects can be suppressed. In order to control the impregnation of the copolymer solution into the base material, for example, the time from the application of the copolymer solution on the base material to the immersion in the coagulation bath can be controlled, or the copolymer can be controlled. The viscosity can be adjusted by controlling the temperature or concentration of the solution, and these conditions can be combined.
 上記工程(b)において、基材上に共重合体溶液を塗布(配置)してから、凝固浴に浸漬させるまでの時間は、例えば0.1~10秒間の範囲であることが好ましい。凝固浴に浸漬するまでの時間がこの範囲であれば、共重合体溶液が基材の繊維間にまで充分含浸したのち固化されやすい。なお、凝固浴に浸漬するまでの時間の好ましい範囲は、用いる共重合体溶液の粘度などによって適宜調節すればよい。 In the above step (b), the time from applying (arranging) the copolymer solution on the substrate to immersing it in the coagulation bath is preferably in the range of, for example, 0.1 to 10 seconds. If the time required for immersion in the coagulation bath is within this range, the copolymer solution is sufficiently impregnated between the fibers of the base material and then easily solidified. The preferable range of the time until immersion in the coagulation bath may be appropriately adjusted depending on the viscosity of the copolymer solution to be used.
 上記工程(b)における凝固浴としては、共重合体の良溶媒と比較して溶解度が小さい非溶媒を含むことが好ましい。
 非溶媒としては、例えば水、ヘキサン、ペンタン、ベンゼン、トルエン、メタノール、エタノール、トリクロルエチレン、エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ブチレングリコール、ペンタンジオール、ヘキサンジオール、低分子量のポリエチレングリコール等の脂肪族炭化水素、芳香族炭化水素、脂肪族アルコール、またはこれらの混合溶媒などが挙げられる。非溶媒としては、一般的には水が用いられる。
The coagulation bath in the step (b) preferably contains a non-solvent having a lower solubility than a good solvent of the copolymer.
Examples of the non-solvent include water, hexane, pentane, benzene, toluene, methanol, ethanol, trichloroethylene, ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, butylene glycol, pentanediol, hexanediol, low molecular weight polyethylene glycol and the like. Glycols, aromatic hydrocarbons, aliphatic alcohols, or mixed solvents thereof and the like. Water is generally used as the non-solvent.
 凝固浴の温度は、好ましくは-20℃以上、より好ましくは0℃以上であり、また、好ましくは50℃以下、より好ましくは40℃以下である。温度を50℃以下とすることで、熱運動による凝固浴面の振動を抑制でき、膜形成後の膜表面の平滑性が向上しやすい。また、温度を-20℃以上とすることで、相分離に十分な凝固速度となり、製膜性が向上しやすい。 The temperature of the coagulation bath is preferably −20 ° C. or higher, more preferably 0 ° C. or higher, and preferably 50 ° C. or lower, more preferably 40 ° C. or lower. By setting the temperature to 50 ° C. or lower, vibration of the coagulation bath surface due to thermal motion can be suppressed, and the smoothness of the film surface after film formation is likely to be improved. Further, when the temperature is set to −20 ° C. or higher, the solidification rate becomes sufficient for phase separation, and the film forming property is likely to be improved.
 次に、上記で得られた支持膜を、支持膜中に残存する溶媒を除去するために水で洗浄することが好ましい。このときの水の温度は例えば25~90℃が好ましい。 Next, it is preferable to wash the support film obtained above with water in order to remove the solvent remaining in the support film. The temperature of water at this time is preferably, for example, 25 to 90 ° C.
 次に、多孔質支持体を構成する共重合体(ビニル系共重合体)の製造方法について説明する。
 ビニル系共重合体の製造方法としては、例えば乳化重合、懸濁重合、塊状重合および溶液重合等のいずれの重合方法においても製造することができる。ビニル系共重合体の製造方法としては、これらの2種以上を組み合わせてもよい。また、各単量体の仕込み方法については特に制限はなく、初期一括仕込み、あるいは共重合体の組成分布を知るために仕込み単量体の一部または全部を連続的または分割して仕込み重合してもよい。ビニル系共重合体の製造方法としては、懸濁重合法または塊状重合法が好ましく、重合制御の容易さ、後処理の容易さを考慮すると、懸濁重合法が最も好ましい。
Next, a method for producing a copolymer (vinyl-based copolymer) constituting the porous support will be described.
As a method for producing a vinyl-based copolymer, for example, any polymerization method such as emulsion polymerization, suspension polymerization, bulk polymerization and solution polymerization can be used. As a method for producing a vinyl-based copolymer, two or more of these may be combined. Further, there is no particular limitation on the method of charging each monomer, and the initial batch charging or a part or all of the charged monomer is continuously or divided and polymerized in order to know the composition distribution of the copolymer. You may. As a method for producing a vinyl-based copolymer, a suspension polymerization method or a bulk polymerization method is preferable, and the suspension polymerization method is most preferable in consideration of easiness of polymerization control and easiness of post-treatment.
 懸濁重合に用いられる懸濁安定剤としては、例えば粘土、硫酸バリウム及び水酸化マグネシウム等の無機系懸濁安定剤、ポリビニルアルコール、カルボキシメチルセルロース、ポリアクリルアミド、メタクリル酸メチル/アクリルアミド共重合体等の有機系懸濁安定剤などが挙げられる。これらを2種以上用いてもよい。これらの中でも、溶融時の熱着色安定性の面で有機系懸濁安定剤が好ましく、メタクリル酸メチル/アクリルアミド共重合体がより好ましい。 Examples of the suspension stabilizer used for suspension polymerization include inorganic suspension stabilizers such as clay, barium sulfate and magnesium hydroxide, polyvinyl alcohol, carboxymethyl cellulose, polyacrylamide, methyl methacrylate / acrylamide copolymer and the like. Examples include organic suspension stabilizers. Two or more of these may be used. Among these, an organic suspension stabilizer is preferable in terms of thermal coloration stability at the time of melting, and a methyl methacrylate / acrylamide copolymer is more preferable.
 重合に用いる開始剤は特に制限はなく、例えば過酸化物、アゾ系化合物または過硫酸塩などが使用される。 The initiator used for the polymerization is not particularly limited, and for example, peroxides, azo compounds, persulfates and the like are used.
 過酸化物の具体例としては、ベンゾイルパーオキサイド、クメンハイドロパーオキサイド、ジクミルパーオキサイド、ジイソプロピルベンゼンハイドロパーオキサイド、t-ブチルハイドロパーオキサイド、t-ブチルパーオキシアセテート、t-ブチルパーオキシベンゾエート、t-ブチルイソプロピルカルボネート、ジ-t-ブチルパーオキサイド、t-ブチルパーオクテート、1,1-ビス(t-ブチルパーオキシ)3,3,5-トリメチルシクロヘキサン、1,1-ビス(t-ブチルパーオキシ)シクロヘキサン及びt-ブチルパーオキシ-2-エチルヘキサノエートなどが挙げられる。 Specific examples of peroxides include benzoyl peroxide, cumene hydroperoxide, dicumyl peroxide, diisopropylbenzene hydroperoxide, t-butyl hydroperoxide, t-butyl peroxyacetate, and t-butyl peroxybenzoate. t-Butylisopropylcarbonate, di-t-butyl peroxide, t-butylperoctate, 1,1-bis (t-butylperoxy) 3,3,5-trimethylcyclohexane, 1,1-bis (t) -Butyl peroxy) Cyclohexane and t-butyl peroxy-2-ethylhexanoate and the like can be mentioned.
 アゾ系化合物の具体例としては、アゾビスイソブチロニトリル、アゾビス(2,4-ジメチルバレロニトリル、2-フェニルアゾ-2,4-ジメチル-4-メトキシバレロニトリル、2-シアノ-2-プロピルアゾホルムアミド、1,1’-アゾビスシクロヘキサン-1-カーボニトリル、アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、ジメチル2,2’-アゾビスイソブチレート、1-t-ブチルアゾ-2-シアノブタン及び2-t-ブチルアゾ-2-シアノ-4-メトキシ-4-メチルペンタンなどが挙げられる。 Specific examples of the azo compound include azobisisobutyronitrile and azobis (2,4-dimethylvaleronitrile, 2-phenylazo-2,4-dimethyl-4-methoxyvaleronitrile, 2-cyano-2-propylazo). Formamide, 1,1'-azobiscyclohexane-1-carbonitrile, azobis (4-methoxy-2,4-dimethylvaleronitrile), dimethyl 2,2'-azobisisobutyrate, 1-t-butylazo-2 Examples thereof include -cyanobutane and 2-t-butylazo-2-cyano-4-methoxy-4-methylpentane.
 過硫酸塩の具体例としては、過硫酸カリウム、過硫酸ナトリウム及び過硫酸アンモニウムなどが挙げられる。 Specific examples of persulfate include potassium persulfate, sodium persulfate, ammonium persulfate and the like.
 これらの開始剤を2種以上用いてもよい。また、開始剤はレドックス系を用いることもできる。 Two or more of these initiators may be used. In addition, a redox-based initiator can also be used.
 ビニル系共重合体を懸濁重合により製造する場合、重合温度に特に制限はないが、ビニル系共重合体の重量平均分子量を前述の範囲に調整しやすいという観点、懸濁安定性の観点から60~80℃で重合を開始し、重合率が50~70%となった時点で昇温を開始し、最終的に100~120℃にすることが好ましい。 When the vinyl-based copolymer is produced by suspension polymerization, the polymerization temperature is not particularly limited, but from the viewpoint that the weight average molecular weight of the vinyl-based copolymer can be easily adjusted within the above range, and from the viewpoint of suspension stability. It is preferable to start the polymerization at 60 to 80 ° C., start the temperature rise when the polymerization rate reaches 50 to 70%, and finally reach 100 to 120 ° C.
 ビニル系共重合体の重量平均分子量は、前述の開始剤や連鎖移動剤を用いること、重合温度を前述の好ましい範囲にすることなどにより、容易に調整可能である。 The weight average molecular weight of the vinyl-based copolymer can be easily adjusted by using the above-mentioned initiator and chain transfer agent, setting the polymerization temperature within the above-mentioned preferable range, and the like.
 連鎖移動剤の具体例としては、n-オクチルメルカプタン、t-ドデシルメルカプタン、n-ドデシルメルカプタン、n-テトラデシルメルカプタン及びn-オクタデシルメルカプタンなどのメルカプタン並びにテルピノレンなどのテルペンなどが挙げられる。連鎖移動剤としては、これらを2種以上用いてもよい。これらのなかでも、連鎖移動剤としてはn-オクチルメルカプタン、t-ドデシルメルカプタンが好ましく用いられる。 Specific examples of the chain transfer agent include mercaptans such as n-octyl mercaptan, t-dodecyl mercaptan, n-dodecyl mercaptan, n-tetradecyl mercaptan and n-octadecyl mercaptan, and terpenes such as terpinolen. As the chain transfer agent, two or more of these may be used. Among these, n-octyl mercaptan and t-dodecyl mercaptan are preferably used as the chain transfer agent.
 (2-2)分離機能層の形成工程
 分離機能層の形成工程は、上記工程(c)を含むことが好ましい。
 分離機能層の形成工程の一例として、前述の多官能性アミンを含有する水溶液(以下、「多官能性アミン水溶液」と称することがある)と、多官能性酸ハロゲン化物を含有する水と非混和性の有機溶媒溶液とを用い、多孔質支持体の表面で界面重縮合を行うことにより、ポリアミド骨格を形成することが挙げられる。
(2-2) Separation Function Layer Formation Step The separation function layer formation step preferably includes the above step (c).
As an example of the step of forming the separation functional layer, an aqueous solution containing the above-mentioned polyfunctional amine (hereinafter, may be referred to as “polyfunctional amine aqueous solution”), water containing a polyfunctional acid halide, and non-polyfunctional acid halide. It is possible to form a polyamide skeleton by performing interfacial polycondensation on the surface of the porous support using an admixable organic solvent solution.
 多官能性アミン水溶液における多官能性アミンの濃度は、好ましくは0.1重量%以上、より好ましくは0.5重量%以上であり、また、好ましくは15重量%以下、より好ましくは10重量%以下である。濃度がこの範囲であると十分な透水性能と溶質除去性能を得やすいため好ましい。 The concentration of the polyfunctional amine in the polyfunctional amine aqueous solution is preferably 0.1% by weight or more, more preferably 0.5% by weight or more, and preferably 15% by weight or less, more preferably 10% by weight. It is as follows. It is preferable that the concentration is in this range because sufficient water permeability and solute removal performance can be easily obtained.
 多官能性アミン水溶液には、多官能性アミンと多官能性酸ハロゲン化物との反応を妨害しないものであれば、例えば界面活性剤、アルカリ性化合物、アシル化触媒及び酸化防止剤などの添加剤を加えることができる。 Additives such as surfactants, alkaline compounds, acylation catalysts and antioxidants may be added to the polyfunctional amine aqueous solution as long as they do not interfere with the reaction between the polyfunctional amine and the polyfunctional acid halide. Can be added.
 界面活性剤としては、例えば、ドデシルベンゼンスルホン酸ナトリウム、ドデシル硫酸ナトリウム及びラウリル硫酸ナトリウムなどが挙げられる。 Examples of the surfactant include sodium dodecylbenzenesulfonate, sodium dodecyl sulfate, sodium lauryl sulfate and the like.
 アルカリ性化合物としては、例えば、水酸化ナトリウム、リン酸三ナトリウム及びトリエチルアミンなどが挙げられる。 Examples of the alkaline compound include sodium hydroxide, trisodium phosphate, triethylamine and the like.
 界面重縮合を多孔質支持体上で行うために、まず、上述の多官能性アミン水溶液を多孔質支持体に接触させることが好ましい。接触は、多孔質支持体表面上に均一にかつ連続的に行うことが好ましい。
 接触の方法としては、具体的には、例えば、多官能性アミン水溶液を多孔質支持体上にコーティングする方法や支持膜を多官能性アミン水溶液に浸漬する方法を挙げることができる。
In order to carry out interfacial polycondensation on the porous support, it is preferable that the above-mentioned polyfunctional amine aqueous solution is first brought into contact with the porous support. The contact is preferably carried out uniformly and continuously on the surface of the porous support.
Specific examples of the contact method include a method of coating a polyfunctional amine aqueous solution on a porous support and a method of immersing a support membrane in the polyfunctional amine aqueous solution.
 多孔質支持体と多官能性アミン水溶液との接触時間は、好ましくは1秒以上、より好ましくは3秒以上であり、また、好ましくは10分以下、より好ましくは3分以下である。 The contact time between the porous support and the polyfunctional amine aqueous solution is preferably 1 second or longer, more preferably 3 seconds or longer, and preferably 10 minutes or shorter, more preferably 3 minutes or shorter.
 多官能性アミン水溶液を多孔質支持体に接触させた後は、多孔質支持体上に液滴が残らないように十分に液切りすることが好ましい。十分に液切りすることで、複合半透膜形成後に液滴残存部分が欠点となって複合半透膜の除去性能が低下することを抑制できる。 After the polyfunctional amine aqueous solution is brought into contact with the porous support, it is preferable to sufficiently drain the liquid so that no droplets remain on the porous support. By sufficiently draining the liquid, it is possible to prevent the residual portion of the droplet from becoming a defect after the formation of the composite semipermeable membrane and deteriorating the removal performance of the composite semipermeable membrane.
 液切りの方法としては、例えば、多官能性アミン水溶液接触後の支持膜を垂直方向に把持して過剰の水溶液を自然流下させる方法や、エアーノズルから窒素などの気流を吹き付け、強制的に液切りする方法などを用いることができる。また、液切り後、膜面を乾燥させて水溶液の水分を一部除去することもできる。 As a method of draining the liquid, for example, a method of vertically grasping the support film after contact with the polyfunctional amine aqueous solution to allow the excess aqueous solution to flow down naturally, or a method of blowing an air flow such as nitrogen from an air nozzle to forcibly liquid the liquid. A cutting method or the like can be used. Further, after draining the liquid, the film surface can be dried to remove a part of the water content of the aqueous solution.
 次いで、多官能性アミン水溶液接触後の多孔質支持体上に、多官能性酸ハロゲン化物を含む水と非混和性の有機溶媒溶液を接触させ、界面重縮合により分離機能層を形成することが好ましい。 Next, water containing a polyfunctional acid halide and an immiscible organic solvent solution can be brought into contact with the porous support after contact with the polyfunctional amine aqueous solution to form a separation functional layer by intercondensation. preferable.
 水と非混和性の有機溶媒溶液中の多官能性酸ハロゲン化物濃度は、好ましくは0.01重量%以上、より好ましくは0.05重量%以上であり、また、好ましくは3重量%以下、より好ましくは2重量%以下である。多官能性酸ハロゲン化物濃度が0.01重量%以上であることで十分な反応速度が得やすくなり、また、3重量%以下であることで副反応の発生を十分に抑制することができる。 The concentration of the polyfunctional acid halide in the organic solvent solution immiscible with water is preferably 0.01% by weight or more, more preferably 0.05% by weight or more, and preferably 3% by weight or less. More preferably, it is 2% by weight or less. When the concentration of the polyfunctional acid halide is 0.01% by weight or more, a sufficient reaction rate can be easily obtained, and when it is 3% by weight or less, the occurrence of side reactions can be sufficiently suppressed.
 水と非混和性の有機溶媒は、多官能性酸ハロゲン化物を溶解し、支持膜を破壊しないものが望ましく、多官能性アミン化合物および多官能性酸ハロゲン化物に対して不活性であるものであればよい。水と非混和性の有機溶媒としては例えば、炭化水素系溶媒が挙げられ、単体であっても、混合物であってもよい。
 水と非混和性の有機溶媒の例として、ヘキサン、ヘプタン、オクタン、ノナン及びデカン等の飽和炭化水素;IPソルベント1620、IPクリーンLXIPソルベント2028、エクソンモービル社製のISOPAR E、ISOPAR G、ISOPAR H、ISOPAR L等のイソパラフィン系溶媒;エクソンモービル社製のエクソールD30、エクソールD40、エクソールD60、エクソールD80等のナフテン系溶媒等が挙げられる。
The organic solvent immiscible with water is preferably one that dissolves the polyfunctional acid halide and does not destroy the support film, and is inactive against the polyfunctional amine compound and the polyfunctional acid halide. All you need is. Examples of the organic solvent immiscible with water include hydrocarbon solvents, which may be simple substances or mixtures.
Examples of water-immiscible organic solvents are saturated hydrocarbons such as hexane, heptane, octane, nonane and decane; IP Solvent 1620, IP Clean LX IP Solvent 2028, Exxon Mobile's ISOPAR E, ISOPAR G, ISOPAR H , ISOPAR L and other isoparaffin solvents; examples thereof include naphthenic solvents such as Exol D30, Exol D40, Exol D60 and Exol D80 manufactured by Exxon Mobile.
 水と非混和性の有機溶媒溶液には、他の多官能性アミン反応性モノマーや他の有機溶媒、アシル化触媒、界面活性剤、可溶化剤、錯化剤などが含まれていてもよい。例えば、他の多官能性アミン反応性モノマーとしては、ハロゲン化スルホニルおよび酸無水物から選択される少なくとも1つ、好ましくは2~4のアミン反応性官能基を含む化合物、少なくとも1つのカルボキシ基と少なくとも1つのハロゲン化アシルを含む化合物が挙げられる。他の有機溶媒としては、ベンゼン、トルエン、アセトン、酢酸エチルなどが挙げられる。アシル化触媒としては、DMFなどが挙げられる。 The organic solvent solution immiscible with water may contain other polyfunctional amine-reactive monomers, other organic solvents, acylation catalysts, surfactants, solubilizers, complexing agents and the like. .. For example, other polyfunctional amine-reactive monomers include at least one selected from sulfonyl halides and acid anhydrides, preferably a compound containing 2-4 amine-reactive functional groups, at least one carboxy group. Examples include compounds containing at least one acyl halide. Examples of other organic solvents include benzene, toluene, acetone, ethyl acetate and the like. Examples of the acylation catalyst include DMF and the like.
 多官能性酸ハロゲン化物を含む水と非混和性の有機溶媒溶液を多孔質支持体へ接触させる方法としては、例えば多官能性アミン水溶液を多孔質支持体にコーティングする方法と同様の方法が挙げられる。 Examples of the method of contacting the porous support with water containing a polyfunctional acid halide and an immiscible organic solvent solution include the same method as the method of coating the porous support with an aqueous solution of a polyfunctional amine. Be done.
 界面重縮合工程においては、多孔質支持体上を架橋ポリアミド薄膜で十分に覆い、かつ、多官能性酸ハロゲン化物溶液を多孔質支持体上に残存させておくことが好ましい。このため、界面重縮合を実施する時間は、好ましくは0.1秒以上3分以下であり、より好ましくは0.1秒以上1分以下である。界面重縮合を実施する時間が0.1秒以上3分以下であることで、多孔質支持体上を架橋ポリアミド薄膜で十分に覆いやすく、かつ多官能性酸ハロゲン化物溶液を多孔質支持体上に保持しやすい。 In the interfacial polycondensation step, it is preferable that the porous support is sufficiently covered with a crosslinked polyamide thin film and the polyfunctional acid halide solution remains on the porous support. Therefore, the time for performing the interfacial polycondensation is preferably 0.1 seconds or more and 3 minutes or less, and more preferably 0.1 seconds or more and 1 minute or less. When the interfacial polycondensation is performed for 0.1 seconds or more and 3 minutes or less, it is easy to sufficiently cover the porous support with the crosslinked polyamide thin film, and the polyfunctional acid halide solution is applied on the porous support. Easy to hold.
 界面重縮合によって多孔質支持体上に分離機能層を形成した後は、余剰の溶媒を液切りすることが好ましい。液切りの方法としては、例えば、膜を垂直方向に把持して過剰の有機溶媒を自然流下して除去する方法及び送風機で風を吹き付けることで有機溶媒を乾燥除去する方法、水とエアーの混合流体(2流体)で過剰の有機溶媒を除去する方法等を用いることができる。 After forming the separation functional layer on the porous support by interfacial polycondensation, it is preferable to drain the excess solvent. Examples of the method of draining the liquid include a method of grasping the membrane in the vertical direction and naturally flowing down the excess organic solvent to remove the liquid, a method of drying and removing the organic solvent by blowing air with a blower, and a mixing of water and air. A method of removing excess organic solvent with a fluid (two fluids) can be used.
 さらに、25℃以上90℃以下の純水で1分間以上洗浄処理する工程を付加することが好ましい。 Further, it is preferable to add a step of washing with pure water of 25 ° C. or higher and 90 ° C. or lower for 1 minute or longer.
3.複合半透膜の利用
 本発明の複合半透膜は、例えばスパイラル型の複合半透膜エレメントとして好適に用いられる。さらに、このエレメントを直列または並列に接続して圧力容器に収納した複合半透膜モジュールとすることもできる。
 また、上記の複合半透膜やそのエレメント、モジュールは、それらに原水を供給するポンプや、その原水を前処理する装置などと組み合わせて、流体分離装置を構成することができる。この分離装置を用いることにより、原水から飲料水などを目的とした透過水と膜を透過しなかった濃縮水とに分離して、目的にあった水を得ることができる。
3. 3. Utilization of Composite Semipermeable Membrane The composite semipermeable membrane of the present invention is preferably used as, for example, a spiral type composite semipermeable membrane element. Further, the elements can be connected in series or in parallel to form a composite semipermeable membrane module housed in a pressure vessel.
Further, the above-mentioned composite semipermeable membrane, its elements, and modules can be combined with a pump for supplying raw water to them, a device for pretreating the raw water, and the like to form a fluid separation device. By using this separation device, it is possible to separate raw water into permeated water for drinking water and concentrated water that has not permeated the membrane, and obtain water suitable for the purpose.
 流体分離装置の操作圧力は高い方が塩除去性は向上するが、運転に必要なエネルギーも増加すること、また、本発明の複合半透膜の耐久性を考慮すると、複合半透膜に被処理水を透過する際の操作圧力は、例えば0.2MPa以上、4.1MPa以下が好ましい。
 供給水温度は、高くなると塩除去性が低下するが、低くなるにしたがい膜透過流束も減少するので、例えば5℃以上、35℃以下が好ましい。
 また、供給水のpHは、高くなると海水などの高塩濃度の供給水の場合、マグネシウムなどのスケールが発生する恐れがあり、また、高pH運転による膜の劣化が懸念されるため、中性領域での運転が好ましい。
The higher the operating pressure of the fluid separator, the better the salt removal property, but the energy required for operation also increases, and considering the durability of the composite semipermeable membrane of the present invention, the composite semipermeable membrane is covered. The operating pressure when permeating the treated water is preferably 0.2 MPa or more and 4.1 MPa or less, for example.
As the supply water temperature increases, the salt removability decreases, but as the temperature decreases, the membrane permeation flux also decreases. Therefore, for example, 5 ° C. or higher and 35 ° C. or lower are preferable.
In addition, if the pH of the supply water becomes high, scales such as magnesium may be generated in the case of supply water with a high salt concentration such as seawater, and there is a concern that the membrane may deteriorate due to high pH operation. Operation in the area is preferred.
 複合半透膜によって処理される原水としては、例えば海水、かん水、排水等の500mg/L~100g/LのTDS(Total Dissolved Solids:総溶解固形分)を含有する液状混合物等が挙げられる。一般に、TDSは総溶解固形分量を指し、「質量/体積」で表されるか、1Lを1kgと見なして「重量比」で表される。定義によれば、0.45μmのフィルターで濾過した溶液を39.5~40.5℃の温度で蒸発させ残留物の重さから算出できるが、より簡便には実用塩分から換算する。 Examples of the raw water treated by the composite semipermeable membrane include a liquid mixture containing 500 mg / L to 100 g / L of TDS (Total Dissolved Solids) such as seawater, brackish water, and wastewater. Generally, TDS refers to the total amount of dissolved solids and is represented by "mass / volume" or by "weight ratio" with 1 L as 1 kg. According to the definition, a solution filtered through a 0.45 μm filter is evaporated at a temperature of 39.5 to 40.5 ° C. and can be calculated from the weight of the residue, but more simply it is converted from the practical salt content.
 以下に実施例によって本発明をさらに詳細に説明するが、本発明はこれらの実施例により何ら限定されるものではない。 The present invention will be described in more detail below with reference to Examples, but the present invention is not limited to these Examples.
 <1.シアノ基割合の測定>
 70℃の純水で1時間以上洗浄した複合半透膜(面積 0.1m)を25℃で風乾し、25℃のアセトン200mLに20時間浸漬させることで、多孔質支持体を溶解し、溶液を得た。次に、得られた溶液を、金属メッシュ(線径 0.03mm、300メッシュ、関西金網株式会社製)にてろ過して基材および分離機能層を除去した。続いて、エバポレーターを用いて得られたろ液からアセトンを除去し、不溶物を得た。不溶物を25℃の真空乾燥機で5時間乾燥した後、不溶物を再度アセトンに10重量%となるように溶解した。
 得られた溶液をガラス基板上にアプリケータを用いて15mil(381μm)の厚みで塗布し、温度25℃、湿度50%の雰囲気下で12時間以上放置することでフィルム状のサンプルを得た。得られたサンプルを60℃の真空乾燥機で5時間乾燥してアセトンを完全に除去し、乾燥後のサンプルをフーリエ変換赤外分光光度計(FT-IR)で吸光度分析した(透過法)。
 得られた赤外吸収スペクトルに現れる下記ピークの吸収強度を用いて、式(1)からシアノ基割合を求めた。
 1605cm-1:ベンゼン核の振動に帰属されるピーク
 2240cm-1:-CN伸縮に帰属されるピーク
 シアノ基割合=2240cm-1の吸収強度/1605cm-1の吸収強度 (1)
 FT-IR:株式会社島津製作所製 IR Traxer-100
 測定条件:アポダイズ関数 Happ-Genzel、分解能 4cm-1、スキャン回数 32回、測定範囲 600~4000cm-1
 解析条件:2200、2600、3800cm-1の3点を吸収強度ゼロとしてベースライン補正した後、ピークの吸収強度を読み取った。
<1. Measurement of cyano group ratio>
A composite semipermeable membrane (area 0.1 m 2 ) washed with pure water at 70 ° C. for 1 hour or more is air-dried at 25 ° C. and immersed in 200 mL of acetone at 25 ° C. for 20 hours to dissolve the porous support. A solution was obtained. Next, the obtained solution was filtered through a metal mesh (wire diameter 0.03 mm, 300 mesh, manufactured by Kansai Wire Mesh Co., Ltd.) to remove the base material and the separating functional layer. Subsequently, acetone was removed from the filtrate obtained using an evaporator to obtain an insoluble matter. The insoluble material was dried in a vacuum dryer at 25 ° C. for 5 hours, and then the insoluble material was dissolved again in acetone so as to be 10% by weight.
The obtained solution was applied onto a glass substrate to a thickness of 15 mil (381 μm) using an applicator, and left to stand in an atmosphere of a temperature of 25 ° C. and a humidity of 50% for 12 hours or more to obtain a film-like sample. The obtained sample was dried in a vacuum dryer at 60 ° C. for 5 hours to completely remove acetone, and the dried sample was subjected to absorbance analysis using a Fourier transform infrared spectrophotometer (FT-IR) (transmission method).
The cyano group ratio was determined from the formula (1) using the absorption intensity of the following peaks appearing in the obtained infrared absorption spectrum.
1605cm -1 : Peak attributed to vibration of benzene nucleus 2240cm -1 : Peak attributed to -CN expansion and contraction cyano group ratio = 2240cm -1 absorption intensity / 1605cm -1 absorption intensity (1)
FT-IR: IR Tracer-100 manufactured by Shimadzu Corporation
Measurement conditions: Apodizing function Happ-Genzel, resolution 4 cm -1 , number of scans 32, measurement range 600-4000 cm -1
Analytical conditions: After baseline correction with 3 points of 2200, 2600, 3800 cm -1 as zero absorption intensity, the absorption intensity of the peak was read.
 <2.複合半透膜厚みの測定>
 70℃の純水で5分間洗浄した複合半透膜を25℃で風乾させた。乾燥したサンプルを、デジタルシックネスゲージ(株式会社テクロック製 SMD-565J-L)にて、任意の20箇所について厚みを測定して、その相加平均を、複合半透膜厚みとして算出した。なお上述の通り、分離機能層の厚みは基材や多孔質支持体と比較して非常に薄いので、複合半透膜の厚みを基材と多孔質支持体の合計の厚み(支持膜の厚み)とみなすことができる。複合半透膜厚みの測定値は、表1において「支持膜厚み」として示す。
<2. Measurement of composite semipermeable membrane thickness>
The composite semipermeable membrane washed with pure water at 70 ° C. for 5 minutes was air-dried at 25 ° C. The thickness of the dried sample was measured at any 20 points with a digital thickness gauge (SMD-565J-L manufactured by Teclock Co., Ltd.), and the arithmetic mean thereof was calculated as the composite semipermeable membrane thickness. As described above, since the thickness of the separation functional layer is very thin as compared with the base material and the porous support, the thickness of the composite semipermeable membrane is the total thickness of the base material and the porous support (thickness of the support film). ) Can be regarded as. The measured value of the composite semipermeable membrane thickness is shown as "support membrane thickness" in Table 1.
 <3.支持膜の純水透過係数の測定>
 作製した支持膜を70℃の純水で5分間洗浄した。次に、直径4.3cmの円形に切り抜き、切り抜いたサンプルを撹拌型ウルトラホルダー(アドバンテック東洋株式会社製 UHP-43K)にセットした(有効ろ過面積:10.9cm)。続いて、セル内に25℃の純水を入れ、キャップを取り付けた後、窒素で100kPaとなるように昇圧した。最後に、一定時間における純水透過量を測定し、以下の式から純水透過係数(×10-9/m・s・Pa, 25℃)を算出した。
 純水透過係数=純水透過量÷(膜面積×採水時間×供給圧力)
<3. Measurement of pure water permeability coefficient of support membrane>
The prepared support membrane was washed with pure water at 70 ° C. for 5 minutes. Next, it was cut out into a circle with a diameter of 4.3 cm, and the cut out sample was set in a stirring type ultra holder (UHP-43K manufactured by Advantech Toyo Co., Ltd.) (effective filtration area: 10.9 cm 2 ). Subsequently, pure water at 25 ° C. was put into the cell, a cap was attached, and the pressure was increased to 100 kPa with nitrogen. Finally, the amount of pure water permeated over a certain period of time was measured, and the pure water permeation coefficient (× 10-9 m 3 / m 2 · s · Pa, 25 ° C.) was calculated from the following formula.
Pure water permeability coefficient = Pure water permeability ÷ (Membrane area x Water sampling time x Supply pressure)
 <4.多孔質支持体中のTHF可溶分の重量平均分子量Mwの測定>
 70℃の純水で1時間以上洗浄した複合半透膜(面積 0.1m)を風乾し、25℃のTHF(200ml)に4時間浸漬させることで、多孔質支持体部分を溶解し、樹脂溶液を得た。なお、浸漬時は250ml容器を使用した。次に、得られた溶液を、金属メッシュ(線径 0.03mm、300メッシュ、関西金網株式会社製)にてろ過して基材および機能層を除去した。続いて、得られたろ液を、遠心分離機(KUBOTA 6900)で8800r.p.m(12,300G)、5℃で40分間遠心分離した後、上澄み液を分取した。得られた上澄み液について、GPCを用いて以下の条件で測定し、重量平均分子量(Mw)を算出した。なお、検量線はポリスチレンを用いた。
  溶媒:テトラヒドロフラン
  装置:Waters社製 2695セパレーションモジュール
  カラム:東ソー株式会社製 TSKgel SuperIIZM-M、SuperIIZM-N、SuperHZ-L(計3本)
  カラム温度:40℃
  溶媒流量:0.35ml/分
  検出器:Waters社製 2414示差屈折率検出器
<4. Measurement of weight average molecular weight Mw of THF-soluble matter in porous support>
A composite semipermeable membrane (area 0.1 m 2 ) washed with pure water at 70 ° C. for 1 hour or more is air-dried and immersed in THF (200 ml) at 25 ° C. for 4 hours to dissolve the porous support portion. A resin solution was obtained. A 250 ml container was used for immersion. Next, the obtained solution was filtered through a metal mesh (wire diameter 0.03 mm, 300 mesh, manufactured by Kansai Wire Mesh Co., Ltd.) to remove the base material and the functional layer. Subsequently, the obtained filtrate was subjected to a centrifuge (KUBOTA 6900) at 8800 r. p. After centrifuging at m (12,300 G) at 5 ° C. for 40 minutes, the supernatant was separated. The obtained supernatant was measured using GPC under the following conditions, and the weight average molecular weight (Mw) was calculated. Polystyrene was used as the calibration curve.
Solvent: Tetrahydrofuran Equipment: Waters 2695 Separation module Column: Tosoh Corporation TSKgel SuperIIZM-M, SuperIIZM-N, SuperHZ-L (3 in total)
Column temperature: 40 ° C
Solvent flow rate: 0.35 ml / min Detector: Waters 2414 differential refractive index detector
 <5.膜性能評価>
 以下に示す方法で、複合半透膜の性能を評価した。
 (塩除去性(NaCl Rej.))
 複合半透膜に、温度25℃、pH7に調製した原水(NaCl濃度 500ppm)を操作圧力0.50MPaで供給して膜ろ過処理を3時間行ない、その後の供給水および透過水の電気伝導度を東亜ディーケーケー株式会社製マルチ水質計(MM60R)で測定した。次に、事前に作成した検量線を用いて、この電導度を換算しNaCl濃度を算出した。このNaCl濃度から、次の式により塩除去性すなわちNaCl除去率を求めた。
 NaCl除去率(%)=100×{1-(透過水中のNaCl濃度/供給水中のNaCl濃度)}
<5. Membrane performance evaluation>
The performance of the composite semipermeable membrane was evaluated by the method shown below.
(Salt removability (NaCl Rej.))
Raw water (NaCl concentration 500 ppm) prepared at a temperature of 25 ° C. and pH 7 is supplied to the composite semipermeable membrane at an operating pressure of 0.50 MPa to perform a membrane filtration treatment for 3 hours, and then the electrical conductivity of the supplied water and the permeated water is measured. It was measured with a multi-water quality meter (MM60R) manufactured by DKK-TOA CORPORATION. Next, using the calibration curve prepared in advance, this conductivity was converted to calculate the NaCl concentration. From this NaCl concentration, the salt removability, that is, the NaCl removal rate was determined by the following formula.
NaCl removal rate (%) = 100 × {1- (NaCl concentration in permeated water / NaCl concentration in feed water)}
 (膜透過流束(Flux))
 前項の試験において、一定時間における膜透過水量を測定し、膜面1平方メートルあたり、1日あたりの透水量(立方メートル)に換算し、膜透過流束(m/m/日)として表した。
(Membrane Permeation Flux (Flux))
In the test in the previous section, the amount of water permeated through the membrane was measured over a certain period of time, converted into the amount of water permeated per day (cubic meter) per square meter of membrane surface, and expressed as the membrane permeation flux (m 3 / m 2 / day). ..
 各実施例、比較例に使用した材料を以下に示す。 The materials used in each example and comparative example are shown below.
 (製造例1)懸濁重合用媒体(メタクリル酸メチル/アクリルアミド共重合体)
 メタクリル酸メチル20重量部、アクリルアミド80重量部、過硫酸カリウム0.3重量部及びイオン交換水1800重量部を反応器中に仕込み、反応器中の気相を窒素ガスで置換した。よく撹拌しながら70℃に保ち、重合率が99%に到達した時点で重合を終了し、メタクリル酸メチルとアクリルアミドの共重合体の水溶液を得た。この水溶液に、水酸化ナトリウム35重量部とイオン交換水15000重量部を加え、0.6重量%のメタクリル酸メチルとアクリルアミドとの共重合体の水溶液を得た。70℃で2時間撹拌してケン化させた後、室温まで冷却し、懸濁重合用の媒体の水溶液を得た。
(Production Example 1) Suspension polymerization medium (methyl methacrylate / acrylamide copolymer)
20 parts by weight of methyl methacrylate, 80 parts by weight of acrylamide, 0.3 part by weight of potassium persulfate and 1800 parts by weight of ion-exchanged water were charged into the reactor, and the gas phase in the reactor was replaced with nitrogen gas. The temperature was maintained at 70 ° C. with good stirring, and when the polymerization rate reached 99%, the polymerization was terminated to obtain an aqueous solution of a copolymer of methyl methacrylate and acrylamide. To this aqueous solution, 35 parts by weight of sodium hydroxide and 15,000 parts by weight of ion-exchanged water were added to obtain an aqueous solution of 0.6% by weight of a copolymer of methyl methacrylate and acrylamide. After stirring at 70 ° C. for 2 hours to saponify, the mixture was cooled to room temperature to obtain an aqueous solution of a medium for suspension polymerization.
 (製造例2)ビニル系共重合体(A)
 20Lのステンレス製オートクレーブに、製造例1で製造したメタクリル酸メチル/アクリルアミド共重合体水溶液6重量部、純水150重量部を入れて400rpmで撹拌し、系内を窒素ガスで置換した。次に、スチレン72重量部、アクリロニトリル28重量部の合計100重量部とt-ドデシルメルカプタン0.40重量部、2,2’-アゾビスイソブチロニトリル0.4重量部の混合溶液を撹拌下の系内に添加し、60℃に昇温して重合を開始した。重合開始後、30分かけて反応温度を65℃まで昇温した後、3時間かけて100℃の温度まで昇温した。その後、系内を室温まで冷却し、重合物の分離、洗浄および乾燥をすることでビニル系共重合体Aを得た。このビニル系共重合体Aの重量平均分子量Mwは、270,000であった。
(Production Example 2) Vinyl-based copolymer (A)
In a 20 L stainless steel autoclave, 6 parts by weight of the methyl methacrylate / acrylamide copolymer aqueous solution produced in Production Example 1 and 150 parts by weight of pure water were placed and stirred at 400 rpm, and the inside of the system was replaced with nitrogen gas. Next, a mixed solution of 72 parts by weight of styrene and 28 parts by weight of acrylonitrile, 0.40 parts by weight of t-dodecyl mercaptan, and 0.4 parts by weight of 2,2'-azobisisobutyronitrile was stirred. Was added to the system, and the temperature was raised to 60 ° C. to initiate polymerization. After the start of polymerization, the reaction temperature was raised to 65 ° C. over 30 minutes and then to 100 ° C. over 3 hours. Then, the inside of the system was cooled to room temperature, and the polymer was separated, washed and dried to obtain a vinyl copolymer A. The weight average molecular weight Mw of this vinyl-based copolymer A was 270,000.
 (製造例3)ビニル系共重合体(B)
 スチレン76重量部、アクリロニトリル24重量部、t-ドデシルメルカプタン0重量部に変更したこと以外は、製造例2と同様にしてビニル系共重合体Bを得た。このビニル系共重合体Bの重量平均分子量Mwは、340,000であった。
(Production Example 3) Vinyl-based copolymer (B)
A vinyl-based copolymer B was obtained in the same manner as in Production Example 2 except that it was changed to 76 parts by weight of styrene, 24 parts by weight of acrylonitrile, and 0 parts by weight of t-dodecyl mercaptan. The weight average molecular weight Mw of this vinyl-based copolymer B was 340,000.
 (製造例4)ビニル系共重合体(C)
 スチレン80重量部、アクリロニトリル20重量部に変更したこと以外は、製造例3と同様にしてビニル系共重合体Cを得た。このビニル系共重合体Cの重量平均分子量Mwは、260,000であった。
 (製造例5)ビニル系共重合体(D)
 スチレン82重量部、アクリロニトリル18重量部に変更したこと以外は、製造例3と同様にしてビニル系共重合体Dを得た。このビニル系共重合体Dの重量平均分子量Mwは、280,000であった。
 (製造例6)ビニル系共重合体(E)
 スチレン85重量部、アクリロニトリル15重量部に変更したこと以外は、製造例3と同様にしてビニル系共重合体Eを得た。このビニル系共重合体Eの重量平均分子量Mwは、330,000であった。
 (製造例7)ビニル系共重合体(F)
 スチレン90重量部、アクリロニトリル10重量部に変更したこと以外は、製造例3と同様にしてビニル系共重合体Fを得た。このビニル系共重合体Fの重量平均分子量Mwは、310,000であった。
(Production Example 4) Vinyl-based copolymer (C)
A vinyl copolymer C was obtained in the same manner as in Production Example 3 except that the styrene was changed to 80 parts by weight and the acrylonitrile was changed to 20 parts by weight. The weight average molecular weight Mw of this vinyl-based copolymer C was 260,000.
(Production Example 5) Vinyl-based copolymer (D)
A vinyl copolymer D was obtained in the same manner as in Production Example 3 except that the styrene was changed to 82 parts by weight and the acrylonitrile was changed to 18 parts by weight. The weight average molecular weight Mw of this vinyl-based copolymer D was 280,000.
(Production Example 6) Vinyl-based copolymer (E)
A vinyl copolymer E was obtained in the same manner as in Production Example 3 except that the styrene was changed to 85 parts by weight and the acrylonitrile was changed to 15 parts by weight. The weight average molecular weight Mw of this vinyl-based copolymer E was 330,000.
(Production Example 7) Vinyl-based copolymer (F)
A vinyl copolymer F was obtained in the same manner as in Production Example 3 except that the styrene was changed to 90 parts by weight and the acrylonitrile was changed to 10 parts by weight. The weight average molecular weight Mw of this vinyl-based copolymer F was 310,000.
 <比較例1>
 製造例2で得られたビニル系共重合体Aを16重量%となるようにDMFに加え、メカニカルスターラーで攪拌しながら70℃で3時間加熱保持することで共重合体溶液を調製した。
 調製した共重合体溶液は25℃まで冷却し、金属メッシュ(線径 0.03mm、300 メッシュ、関西金網株式会社製)を用いてろ過した。その後、抄紙法で製造されたポリエステル繊維からなる不織布(厚み:約90μm、通気度:1.0cc/cm/sec)上に樹脂溶液(共重合体溶液)を120μmの厚みで塗布した。塗布してから3秒後に20℃の純水中に浸漬して相分離させ、続いて70℃の純水で5分間洗浄することによって支持膜を得た。
<Comparative example 1>
The vinyl-based copolymer A obtained in Production Example 2 was added to DMF so as to be 16% by weight, and the copolymer solution was prepared by heating and holding at 70 ° C. for 3 hours while stirring with a mechanical stirrer.
The prepared copolymer solution was cooled to 25 ° C. and filtered using a metal mesh (wire diameter 0.03 mm, 300 mesh, manufactured by Kansai Wire Mesh Co., Ltd.). Then, a resin solution (copolymer solution) was applied to a thickness of 120 μm on a non-woven fabric (thickness: about 90 μm, air permeability: 1.0 cc / cm 2 / sec) made of polyester fibers produced by the papermaking method. Three seconds after the coating, the film was immersed in pure water at 20 ° C. for phase separation, and then washed with pure water at 70 ° C. for 5 minutes to obtain a support film.
 得られた支持膜を、純水で調製したm-フェニレンジアミン(m-PDA)の2.0重量%水溶液中に10秒間浸漬した後、膜面が鉛直になるようにゆっくりと引き上げた。エアーノズルから窒素を吹き付け多孔質支持体表面から余分な水溶液を取り除いた後、膜面が水平となるように支持膜を置き、トリメシン酸クロリド0.07重量%を含む25℃のn-デカン溶液を多孔質支持体表面が完全に濡れるように塗布した。
 30秒間静置した後、多孔質支持体から余分な溶液を除去するために多孔質支持体面を1分間鉛直に保持して液切りし、送風機を使い25℃の空気を吹き付けて乾燥させた。その後、70℃の純水で5分間洗浄することで、複合半透膜を得た。得られた複合半透膜の膜性能を表1に示す。
The obtained support film was immersed in a 2.0 wt% aqueous solution of m-phenylenediamine (m-PDA) prepared with pure water for 10 seconds, and then slowly pulled up so that the film surface became vertical. After removing excess aqueous solution from the surface of the porous support by blowing nitrogen from the air nozzle, the support film is placed so that the film surface is horizontal, and a 25 ° C. n-decane solution containing 0.07% by weight of trimesic acid chloride is placed. Was applied so that the surface of the porous support was completely wet.
After allowing to stand for 30 seconds, the surface of the porous support was held vertically for 1 minute to drain the liquid in order to remove excess solution from the porous support, and the mixture was dried by blowing air at 25 ° C. using a blower. Then, it was washed with pure water at 70 degreeC for 5 minutes to obtain a composite semipermeable membrane. Table 1 shows the membrane performance of the obtained composite semipermeable membrane.
<比較例2、実施例1~4>
 比較例1において、ビニル系共重合体Aの代わりに比較例2ではBを、実施例1ではCを、実施例2ではDを、実施例3ではEを、実施例4ではFを用いた以外は、比較例1と同様にして、比較例2及び実施例1~4の複合半透膜をそれぞれ得た。得られた複合半透膜の膜性能を表1に示す。
 実施例1~4より、多孔質支持体のシアノ基割合が0.85以下であることで、透水性の高い複合半透膜が得られた。
<Comparative Example 2, Examples 1 to 4>
In Comparative Example 1, B was used in Comparative Example 2, C was used in Example 1, D was used in Example 2, E was used in Example 3, and F was used in Example 4 instead of the vinyl copolymer A. The composite semipermeable membranes of Comparative Example 2 and Examples 1 to 4 were obtained in the same manner as in Comparative Example 1 except for the above. Table 1 shows the membrane performance of the obtained composite semipermeable membrane.
From Examples 1 to 4, a composite semipermeable membrane having high water permeability was obtained when the cyano group ratio of the porous support was 0.85 or less.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 本発明を詳細にまた特定の実施形態を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は、2020年3月25日出願の日本特許出願(特願2020-053880)に基づくものであり、その内容はここに参照として取り込まれる。 Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention. This application is based on a Japanese patent application filed on March 25, 2020 (Japanese Patent Application No. 2020-053880), the contents of which are incorporated herein by reference.
 本発明の複合半透膜は、特に、かん水の淡水化や水道水の浄化に好適に用いることができる。 The composite semipermeable membrane of the present invention can be particularly suitably used for desalination of brackish water and purification of tap water.

Claims (5)

  1.  基材と、前記基材上に配置された多孔質支持体と、前記多孔質支持体上に配置された分離機能層とを備える複合半透膜であって、
     前記多孔質支持体が、シアン化ビニル系単量体と芳香族ビニル系単量体との共重合体を含み、
     前記多孔質支持体の溶媒への溶解および乾燥によって得られるフィルムについて、フーリエ変換赤外分光光度計により測定される赤外吸収スペクトルの吸収強度で表される下記シアノ基割合が0.20以上0.85以下である複合半透膜。
     シアノ基割合=2240cm-1の吸収強度/1605cm-1の吸収強度
    A composite semipermeable membrane comprising a base material, a porous support arranged on the base material, and a separation functional layer arranged on the porous support.
    The porous support contains a copolymer of a vinyl cyanide-based monomer and an aromatic vinyl-based monomer.
    For the film obtained by dissolving and drying the porous support in a solvent, the following cyano group ratio represented by the absorption intensity of the infrared absorption spectrum measured by the Fourier transform infrared spectrophotometer is 0.20 or more and 0. A composite semipermeable membrane of .85 or less.
    Cyan group ratio = 2240 cm -1 absorption intensity / 1605 cm -1 absorption intensity
  2.  前記シアノ基割合が0.40以上0.78以下である、請求項1に記載の複合半透膜。 The composite semipermeable membrane according to claim 1, wherein the cyano group ratio is 0.40 or more and 0.78 or less.
  3.  前記シアノ基割合が0.40以上0.62以下である、請求項2に記載の複合半透膜。 The composite semipermeable membrane according to claim 2, wherein the cyano group ratio is 0.40 or more and 0.62 or less.
  4.  前記共重合体の重量平均分子量Mwが、220,000以上1,000,000以下である、請求項1~3のいずれか1項に記載の複合半透膜。 The composite semipermeable membrane according to any one of claims 1 to 3, wherein the weight average molecular weight Mw of the copolymer is 220,000 or more and 1,000,000 or less.
  5.  前記共重合体の重量平均分子量Mwが、260,000以上1,000,000以下である、請求項4に記載の複合半透膜。 The composite semipermeable membrane according to claim 4, wherein the weight average molecular weight Mw of the copolymer is 260,000 or more and 1,000,000 or less.
PCT/JP2021/007394 2020-03-25 2021-02-26 Composite semipermeable membrane WO2021192816A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021511683A JPWO2021192816A1 (en) 2020-03-25 2021-02-26

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020053880 2020-03-25
JP2020-053880 2020-03-25

Publications (1)

Publication Number Publication Date
WO2021192816A1 true WO2021192816A1 (en) 2021-09-30

Family

ID=77890218

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/007394 WO2021192816A1 (en) 2020-03-25 2021-02-26 Composite semipermeable membrane

Country Status (2)

Country Link
JP (1) JPWO2021192816A1 (en)
WO (1) WO2021192816A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019147133A (en) * 2018-02-28 2019-09-05 東レ株式会社 Composite semipermeable membrane
WO2019168134A1 (en) * 2018-02-28 2019-09-06 東レ株式会社 Composite semipermeable membrane and production method for composite semipermeable membrane

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019147133A (en) * 2018-02-28 2019-09-05 東レ株式会社 Composite semipermeable membrane
WO2019168134A1 (en) * 2018-02-28 2019-09-06 東レ株式会社 Composite semipermeable membrane and production method for composite semipermeable membrane

Also Published As

Publication number Publication date
JPWO2021192816A1 (en) 2021-09-30

Similar Documents

Publication Publication Date Title
US11421061B2 (en) Zwitterion-containing membranes
JP6402627B2 (en) Composite semipermeable membrane
Buonomenna et al. New PVDF membranes: The effect of plasma surface modification on retention in nanofiltration of aqueous solution containing organic compounds
KR101985351B1 (en) Composite semipermeable membrane, composite semipermeable membrane element, and method for manufacturing composite semipermeable membrane
WO2016002821A1 (en) Composite semipermeable membrane
JP7010216B2 (en) Composite semipermeable membrane and its manufacturing method
KR20140138651A (en) Complex semi-permeable membrane
CN107708846B (en) Water treatment membrane and method for manufacturing the same
JP6197969B1 (en) Composite semipermeable membrane
JP6787488B2 (en) Method for manufacturing composite semipermeable membrane and composite semipermeable membrane
JP5287353B2 (en) Composite semipermeable membrane
WO2021192816A1 (en) Composite semipermeable membrane
JP2020121263A (en) Composite semipermeable membrane
CN108430612B (en) Composite semipermeable membrane
JP6702181B2 (en) Composite semipermeable membrane
JP2020121264A (en) Composite semipermeable membrane
JP2020054997A (en) Composite semipermeable membrane
WO2020066521A1 (en) Composite semipermeable membrane and method for manufacturing same
JP2022101942A (en) Composite semipermeable membrane
JP2000176263A (en) Composite semipermeable membrane and its production
JP2019147133A (en) Composite semipermeable membrane
JP2020049467A (en) Composite semipermeable membrane
JP2021069989A (en) Composite semipermeable membrane
JP2021069988A (en) Composite semipermeable membrane, and filtration method using composite semipermeable membrane
Ramesh Synthesis and Application of Brush Membranes for Organic Solvent Nanofiltration

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021511683

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21777053

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21777053

Country of ref document: EP

Kind code of ref document: A1