JPS61268338A - Selective separation of gas - Google Patents

Selective separation of gas

Info

Publication number
JPS61268338A
JPS61268338A JP60109362A JP10936285A JPS61268338A JP S61268338 A JPS61268338 A JP S61268338A JP 60109362 A JP60109362 A JP 60109362A JP 10936285 A JP10936285 A JP 10936285A JP S61268338 A JPS61268338 A JP S61268338A
Authority
JP
Japan
Prior art keywords
membrane
gas
copper compound
liquid
liquid composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60109362A
Other languages
Japanese (ja)
Inventor
Munehisa Okada
宗久 岡田
Yoshiteru Kobayashi
芳照 小林
Tatsuki Oomiyama
大宮山 達貴
Junichi Matsuura
松浦 恂一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP60109362A priority Critical patent/JPS61268338A/en
Publication of JPS61268338A publication Critical patent/JPS61268338A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Gas Separation By Absorption (AREA)

Abstract

PURPOSE:To obtain a gas selective separation membrane selectively separating carbon monoxide especially from a gaseous mixture, by holding a liquid composition containing a copper compound and dimethylsulfoxide to a support membrane having a skin layer to use the same in a fluidized state. CONSTITUTION:A copper compound such as cuppric chloride and dimethylsulfoxide (DMSO) are pref. mixed in a ratio of 0.5<DMSO/copper compound <50 (mol. ratio) to obtain a liquid composition. At this time, vanadium trichloride may be added in a mol. ratio of 0.2 or less based on the copper compound and a proper solvent may be used. The obtained liquid composition is held to a support membrane having a skin layer and a gaseous mixture is contacted with the primary side while the liquid composition is brought to a fluidized state by stirring, bubbling or an ultrasonic wave and the secondary side of the membrane is reduced in pressure to selectively take out specific gas, especially, carbon monoxide.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は気体の選択的分離法に関する。詳しくは銅化合
物とジメチルスルホキシドを含む液状物を、支持体とな
るスキン層を有する膜に保持し、その液状物に外部より
流動状態を形成させながら、気体選択分離膜として使用
する、気体混合物の中から特定の気体、特に−酸化炭素
(以下COと略す)を選択的に分離する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for selectively separating gases. Specifically, a gas mixture is prepared by holding a liquid containing a copper compound and dimethyl sulfoxide in a membrane having a skin layer as a support, and using the liquid as a gas selective separation membrane while forming a fluid state in the liquid from the outside. The present invention relates to a method for selectively separating a specific gas, particularly -carbon oxide (hereinafter abbreviated as CO).

〔従来の技術〕[Conventional technology]

従来気体混合物の分離膜として各種の高分子膜が知られ
ているが、これらの膜は気体の透過)、1気体の溶解係
数、拡散係数が大きくなり従って透過係数を大きくする
ことが出来る。更にこの様な液状の膜の中に、ある気体
とのみ選択的に可逆的相互作用を有する物質が含まれる
場合にはその気体の透過性を更に上げることが可能であ
る。一方、膜の選択性能は膜への気体相互の溶解度の差
、膜中での気体相互の拡散速度の差によって与えられる
ので上記の如き特定の気体とのみ選択的に可逆的相互作
用を有する物質を膜中に含む場合には、その気体のみの
溶解度が太き(なり選択性能も飛躍的に大きくすること
が可能である。
Conventionally, various polymer membranes have been known as separation membranes for gas mixtures, but these membranes have large gas permeation coefficients, solubility coefficients, and diffusion coefficients for one gas, and therefore can have large permeation coefficients. Furthermore, if such a liquid membrane contains a substance that selectively and reversibly interacts only with a certain gas, it is possible to further increase the permeability of that gas. On the other hand, the selective performance of a membrane is given by the difference in mutual solubility of gases in the membrane and the difference in the diffusion rate of gases in the membrane, so substances that selectively and reversibly interact only with specific gases such as those mentioned above When it is included in the membrane, the solubility of only that gas is high (and the selectivity can be dramatically increased).

この様にある気体とのみ選択的に可逆的相互作用を有す
る物質を含有する膜については多くの例が知られており
、例えばアルカリ金属の重炭酸塩の水溶液による炭酸ガ
スの分離(特公昭II!;−1174)、硝酸銀水溶液
によるオレフィンの分離(特公昭!r3−31gl12
 )、塩化第一鉄のホルムアミド溶液による一酸化窒素
の分離(A、工Oh E Journal vo1/ 
A A、? 40 j−ベージ19り0年)などがあり
これらの液体膜は支持体となる膜に保持して使用される
。又−酸化炭素の分離については塩化銅の塩酸水溶液(
特開昭!S−タダ6:16、j!−13り02gうが知
られているが、この場合には濃厚な塩酸水溶液を使用し
なければならない関係上、容器の耐久性に問題があり、
また圧力差による水分の散逸のため濃度変化を起こし性
能低下を起すという難点がある。又透過の二次側(流出
側)を減圧にする場合は水蒸気や、塩化水素ガスの透過
がおこり他のガスと混入するという難点がある。
Many examples are known of such membranes containing substances that selectively and reversibly interact only with certain gases. !;-1174), separation of olefins using silver nitrate aqueous solution (Tokukosho!r3-31gl12
), Separation of nitric oxide using a formamide solution of ferrous chloride (A, Engineering Journal vol. 1/
AA,? 40 J-Bage 1920), etc., and these liquid membranes are used by being held on a membrane that serves as a support. Also, for the separation of carbon oxide, an aqueous solution of copper chloride in hydrochloric acid (
Tokukai Akira! S-Tada 6:16, j! -13ri02g is known, but in this case there is a problem with the durability of the container because it requires the use of a concentrated aqueous hydrochloric acid solution.
Furthermore, there is a problem in that the dissipation of water due to the pressure difference causes a change in concentration, resulting in a decrease in performance. Furthermore, when reducing the pressure on the secondary side (outflow side) of permeation, there is a problem that water vapor and hydrogen chloride gas permeate and mix with other gases.

COを含有する気体混合物からCOを分離濃縮する方法
として、アンモニア性第一銅水溶液又は塩酸性第一銅水
溶液や0O8ORB法として知られる塩化銅〔工〕アル
ミニウムのトルエン溶液(英国特許第1.J / ff
、790号〕あるいは、銅化合物と金属(銅を除く)塩
化物及び含酸系有機溶媒又はピリジン(特開昭3ダーク
/7Kg、&Q−qt7g9 )銅化合物とジメチルス
ルホキシド遷移金属塩化物(特開昭!;1.−1117
21)や非プロトン性アミド、あるいはリンの酸素酸誘
導体あるいは遷移金属塩化物の溶液〔特開昭kA−7)
g7:11.kA−J/g’l:10)flどKOO’
に吸収させる吸収法、及びこれら吸収法とは原理的に異
なる深冷分離法が知られている。しかしこれらの方法は
、00解離の為に加熱を要するとか。
As a method for separating and concentrating CO from a gas mixture containing CO, an ammoniacal cuprous aqueous solution, a hydrochloric acidic cuprous aqueous solution, and a toluene solution of copper aluminum chloride known as the 0O8ORB method (British Patent No. 1.J) are used. /ff
, No. 790] or a copper compound and a metal (excluding copper) chloride and an acid-containing organic solvent or pyridine (JP-A No. 3 Dark/7Kg, &Q-qt7g9), a copper compound and dimethyl sulfoxide transition metal chloride (JP-A No. Showa!;1.-1117
21), aprotic amides, oxyacid derivatives of phosphorus, or solutions of transition metal chlorides [JP-A-7]
g7:11. kA-J/g'l:10)fldoKOO'
An absorption method in which the substance is absorbed into the liquid, and a cryogenic separation method that is fundamentally different from these absorption methods are known. However, these methods require heating for 00 dissociation.

装置が高価であるとか、動力消費量が大きい等の問題が
あった。
There were problems such as the equipment was expensive and the power consumption was large.

〔発明の目的〕[Purpose of the invention]

前述の塩化第一銅−ジメチルスルホキシド−遷移金属塩
化物の混合物又は反応物を流動型キャリヤー膜として検
討した結果攪拌系で使用した場合には、極めて高い分離
性能と透過速度を示すことを見出し更にその流動状態の
効果が顕著であり、無攪拌下の分離性能に比べて、撹拌
下で杢糸は高い分離性能を示すことを見出し本発明に到
達した。
As a result of studying the above-mentioned cuprous chloride-dimethyl sulfoxide-transition metal chloride mixture or reaction product as a fluidized carrier membrane, we found that it exhibits extremely high separation performance and permeation rate when used in a stirred system. The present invention was achieved by discovering that the effect of the fluid state is remarkable, and that the heathered yarn exhibits higher separation performance under stirring than that without stirring.

〔発明の構成〕[Structure of the invention]

すなわち、本発明の要旨は、銅化合物とジメチルスルホ
キシドを含む液状物を使用して混合気体中の特定の気体
を選択的に分離する方法において、銅化合物とジメチル
スルホキシドを含む液状物乞支持体となるスキン層を有
する膜に保持し、該液状物乞流動させながら使用するこ
とを特徴とする気体選択分離法にある。以下、本発明の
詳細な説明する。
That is, the gist of the present invention is to provide a method for selectively separating a specific gas in a mixed gas using a liquid material containing a copper compound and dimethyl sulfoxide. This gas selective separation method is characterized in that the gas is retained in a membrane having a skin layer, and the liquid is used while being allowed to flow. The present invention will be explained in detail below.

本発明で使用する銅化合物としては特に限定しないが、
塩化第1銅、塩化第コ銅、酸化第1銅、酸化第コ銅、臭
化第7銅、臭化第2銅、シアン化i/銅、シアン化第コ
銅、チオシアン酸銀、フッ化銅、ヨウ化銅、硫化銅、硫
酸銅などが例示され、これらは単独又は混合物として使
用できる。これらの中でも塩化第一銅、ヨウ化第7銅、
チオシアン酸第1銅などは特に適した銅化合物である。
The copper compounds used in the present invention are not particularly limited, but include:
Cuprous chloride, cuprous chloride, cuprous oxide, cuprous oxide, cuprous bromide, cupric bromide, i/copper cyanide, cuprous cyanide, silver thiocyanate, fluoride Copper, copper iodide, copper sulfide, copper sulfate, etc. are exemplified, and these can be used alone or as a mixture. Among these, cuprous chloride, cuprous iodide,
Cuprous thiocyanate and the like are particularly suitable copper compounds.

本発明で使用する気体選択分離膜は、COと可逆的相互
作用をもつ物質を含む液状物であって、銅化合物とジメ
チルスルホキシドを含むことを特徴とする。
The gas selective separation membrane used in the present invention is a liquid material containing a substance that has a reversible interaction with CO, and is characterized by containing a copper compound and dimethyl sulfoxide.

銅化合物とジメチルスルホキシドを含む液状物では、両
者の混合物又は両者の反応物(錯体)がCOと可逆的相
互作用をもつ物質として機能していると考えられる。
In a liquid containing a copper compound and dimethyl sulfoxide, a mixture of the two or a reactant (complex) of the two is thought to function as a substance that has a reversible interaction with CO.

銅化合物、ジメチルスルホキシドは市販品の場合そのま
ま用いてもよいし、さらに精製してもよい。
If the copper compound and dimethyl sulfoxide are commercially available products, they may be used as they are or may be further purified.

ジメチルスルホキシド(以下、DMSOと略す)が液体
である条件下に使用する場合は、DM80自体をそのま
ま溶媒として用いることができる。
When dimethyl sulfoxide (hereinafter abbreviated as DMSO) is used under conditions where it is a liquid, DM80 itself can be used as it is as a solvent.

しかし他の溶媒を併用することもできる。However, other solvents can also be used in combination.

そのまま溶媒として使用できる場合は一酸化炭素の如き
、特定の気体と可逆的に相互作用をもつ物質の濃度が高
くなり促進輸送には好都合である。
If it can be used as a solvent as it is, the concentration of substances that reversibly interact with specific gases, such as carbon monoxide, will be high, which is advantageous for facilitated transport.

用いてもよく、たとえばケトン、エステル、エーテル、
アルコール、アミン、アミド、他の含1窒素化合物、含
硫黄化合物、含リン化合物、含1フ1 などはDMEIOQ良く溶解するという点では適切であ
るが、透過の2次側を減圧にする場合はこれら化合物は
蒸気圧が高いため、蒸気となって透過し他のガスと混入
するという難点を有するコーピロリドン、γ−ブチロラ
クトン、エチレングリコール、テトラエチレングリコー
ル、ジメチルエステル、ポリエチレングリコール、クリ
セリン、 安息香酸エテル、ヘキサメチルホスホリック
トリアミド、イミダゾール、ピラゾール、トリアゾール
、テトラゾール等の蒸気圧の比較的低い溶媒を用いる場
合には、室温で十分である。
May be used, such as ketones, esters, ethers,
Alcohols, amines, amides, other 1-nitrogen compounds, sulfur-containing compounds, phosphorus-containing compounds, 1-containing compounds, etc. are suitable in that they dissolve well in DMEIOQ, but when reducing the pressure on the secondary side of permeation, Because these compounds have high vapor pressure, they have the disadvantage of passing through as vapor and mixing with other gases.Copyrrolidone, γ-butyrolactone, ethylene glycol, tetraethylene glycol, dimethyl ester, polyethylene glycol, chrycerin, benzoic acid ether , hexamethylphosphoric triamide, imidazole, pyrazole, triazole, tetrazole and the like, room temperature is sufficient.

さらに高温で行なう場合には、案温では固体操作の容易
性という観点からは均一溶液の万が好ましい。溶液中の
銅化合物の分散性を改善するためには、前記成分にさら
に三塩化バナジウム等の公知の方法(特開昭AiA−/
Ig7.22)をか液体の場合は通常DMSO/銅化合
物〉0.1−万浴媒を使用する場合はDMSOと溶媒の
比は通常J)M80/@媒〉θ、00/Cモル/リット
ル)以上が選ばれる。
When carrying out the reaction at a higher temperature, it is preferable to form a homogeneous solution at an ambient temperature from the viewpoint of ease of solid state manipulation. In order to improve the dispersibility of the copper compound in the solution, vanadium trichloride or the like may be added to the above components by a known method (JP-A-Sho AiA-/
If Ig7.22) is a liquid, it is usually DMSO/copper compound>0.1-10,000. If a bath medium is used, the ratio of DMSO to solvent is usually J) M80/@ medium>θ, 00/C mol/liter. ) or more are selected.

この場合銅化合物とDMSOとの比は上記と同様に選ば
れる。
In this case the ratio of copper compound to DMSO is selected as above.

液状物調製の温度は一般に0〜200℃で製造すること
ができ、不活性ガス気流下で行うのが好ましい。
The liquid material can be prepared generally at a temperature of 0 to 200 DEG C., and is preferably carried out under an inert gas stream.

溶媒を使用する場合には溶媒にDMSOを溶解させた扱
銅化合物?添加するのが望ましい。また、減圧や析出な
どの方法で固形分(銅化合物とDMSOの反応生成物)
を取り出したのち、再度溶解可能な溶媒に溶解させても
よい。
If a solvent is used, should a copper compound be prepared by dissolving DMSO in the solvent? It is desirable to add In addition, solid content (reaction product of copper compound and DMSO) can be extracted by methods such as depressurization and precipitation.
After taking it out, it may be dissolved again in a dissolvable solvent.

三塩化バナジウムな含む系の構成比では、銅化合物と三
塩化バナジウムのモル比f o、θノ≦三塩化バナジウ
ム/銅化合物≦0.コ(モル比)の選択に当っては、前
記の様に、透過側に揮散□パ・:し・i)ないもののほ
かに、液状物の粘度が小さく、11’il 安定性がよいものであることが好ましい。
Regarding the composition ratio of the system containing vanadium trichloride, the molar ratio of copper compound to vanadium trichloride is f o, θ ≦vanadium trichloride/copper compound ≦0. In selecting the molar ratio, in addition to the one that does not volatilize on the permeate side, the viscosity of the liquid is low and the 11'il stability is good. It is preferable that there be.

′□′次にこうして得られた特定の気体とのみ可逆的に
吸脱着する物質を含む液状物を保持する為に使用する支
持体として、スキン層を有する膜を用いることが出来ろ
。このスキン層を有する膜に特定の気体とのみ可逆的に
吸脱Mjる物質を保持することにより、透過側を減圧に
しても液滴の流出を防ぐことができる。
'□'Next, a membrane having a skin layer can be used as a support used to hold the thus obtained liquid material containing a substance that reversibly adsorbs and desorbs only a specific gas. By retaining a substance that reversibly adsorbs and desorbs Mj only with a specific gas in the membrane having this skin layer, it is possible to prevent droplets from flowing out even if the pressure on the permeate side is reduced.

すなわち膜の1次側に選択的分離を目的とする上記特定
ガス包含む混合ガスを接触させ、膜の一次側(透過側)
を大気圧より小さい圧力に減圧にして該特定の気体を選
択的に取り出すことが可能となる。スキン層を有する膜
としては液滴な通さないものであれば特にii?lI限
されず非対称膜、複合膜、均質膜などを挙げることがで
きる。
That is, the primary side of the membrane is brought into contact with a mixed gas containing the above-mentioned specific gas for the purpose of selective separation, and the primary side (permeation side) of the membrane is
By reducing the pressure to a pressure lower than atmospheric pressure, it becomes possible to selectively extract the specific gas. Especially if the membrane having a skin layer does not allow liquid droplets to pass through it, ii? It is not limited to lI, but includes asymmetric membranes, composite membranes, homogeneous membranes, and the like.

即ち、製膜溶液から一段階の堰膜操作で、多孔質の層と
緻密な層を同時に有する膜を形成するような方法で製膜
した膜、あらかじめ形成した多孔質の膜の上にモノマー
を重合してポリマ一層を形成する方法で製膜した膜、同
様に多孔膜の上にプラズマ重合層又は蒸着層を形成した
膜、ポリマー溶液を多孔膜の上にコーティングして後、
架橋反応や溶媒の蒸発により形成したポリマー膚を有す
る膜、膜厚の薄い均質膜な多孔膜の上に積層した膜など
があげられる。
In other words, a membrane formed by a method that forms a membrane having both a porous layer and a dense layer by a one-step weir membrane operation from a membrane-forming solution, and a monomer applied onto a pre-formed porous membrane. Membranes formed by polymerization to form a single layer of polymer, membranes in which a plasma polymerized layer or vapor deposited layer is similarly formed on a porous membrane, and a membrane formed by coating a porous membrane with a polymer solution.
Examples include a membrane with a polymer skin formed by crosslinking reaction or evaporation of a solvent, and a membrane laminated on a thin, homogeneous porous membrane.

父、スキン層と多孔層の材質は同じであっても異なって
いてもよい。
The materials of the skin layer and the porous layer may be the same or different.

また、支持体となる膜に上記物質を保持する方法として
は、支持体膜の上に形成した架橋性の高分子の網目に包
含させろ1伝、支持体膜の支持体として使用される上記
膜の材料の種類は特に限定されないが、再生セルロース
、セルロースエステル、ポリカーボネート、ポリエステ
ル、テフロン、ナイロン、アセナルセルロース、ポリア
クリロニトリル、ポリビニルアルコール、ポリメチルメ
タアクリレート、ポリスルホン、ポリエチレン、ポリプ
ロピレン、ポリビニルピリジン、ポリフェニレンオキサ
イド、ボリフエニレンオギサイドスルホン酸、ポリベン
ズイミダゾール、ポリイミダゾピロロン、ポリピペラジ
ンアミド、ポリスチレン、ポリアミノ酸、ポリウレタン
、ボリアミノ酸ポリウレタン共重合体、ポリシロキサン
、ポリシロキサンホリカーボ不−ト共重合体、ポリトリ
メチルビニ−」l− ルシラン、コラーゲン、ポリイオン錯体、ポリウレア、
ポリアミド、ポリイミド、ポリアミドイミド、ポリ塩化
ビニル、スルホン化ポリフルこれら支持体の形状は平板
状、管状、スパイ、、14に限定されないが、lO〜ノ
000μの範囲ヴ’b”)Ii’l、y、。、: O4
M fi ”i n K &−!、’ff K fll
J OX !。
In addition, as a method for retaining the above-mentioned substance in a membrane that serves as a support, the above-mentioned substance may be incorporated into a crosslinkable polymer network formed on the support membrane. The types of materials are not particularly limited, but include regenerated cellulose, cellulose ester, polycarbonate, polyester, Teflon, nylon, acenal cellulose, polyacrylonitrile, polyvinyl alcohol, polymethyl methacrylate, polysulfone, polyethylene, polypropylene, polyvinylpyridine, polyphenylene oxide. , polyphenylene ogicide sulfonic acid, polybenzimidazole, polyimidazopyrrolone, polypiperazine amide, polystyrene, polyamino acid, polyurethane, polyamino acid polyurethane copolymer, polysiloxane, polysiloxane polycarbonate copolymer, poly trimethylvinyl-lucirane, collagen, polyion complex, polyurea,
Polyamide, polyimide, polyamideimide, polyvinyl chloride, sulfonated polyfluoride The shape of these supports is not limited to flat, tubular, spy, etc., but ranges from 10 to 000μ. ,.,: O4
M fi ”i n K &-!,'ff K fll
JOX! .

支持体に重ねて支持して使用することも出来る。It can also be used by stacking it on a support.

スキン層の厚みは10A−100μ好ましくは/QQA
−IQμの範囲で使用される。
The thickness of the skin layer is preferably 10A-100μ/QQA
- used in the range of IQμ.

特定の気体とのみ可逆的に吸脱着する物質に流動状態を
形成しつる方法としては、撹拌、バブリング、振動(超
音波等)、その物質自体の循環静かある。
Methods for forming a fluid state in a substance that reversibly adsorbs and desorbs only a specific gas include stirring, bubbling, vibration (such as ultrasonic waves), and quiet circulation of the substance itself.

すなわち、特定の気体とのみ可逆的に吸脱着する物質C
キャリヤー液を含む液状物を流動状態に保持する方法と
しては平板状、管状、中空糸状の支持体膜と液状物を含
む空間を攪拌翼の回転によって流動させる方法、その空
間に外からポンプ等により液状物(キャリヤー液)の流
束を送り込むことによって流動させる方法、支持膜自体
を回転させる等によって動かす万伝、外から気体を膜面
に吹き込むことによって流動問題ないが、/ rpm〜
/Q万rpm好ましくは一゛ の溶液な溜めた容器を誼き、ここからポンプでこの液体
乞膜セルの支持体膜の表面(膜の一次側〕に導き循環す
る方法を用いることか出来るが、この場合には溜めの容
器に於て特定の気体を十分液体に吸収させ、これを膜セ
ルに於て膜的に行うことにより、その特定の気体を高選
択的、連続的に取り出す方法を使用することも出来る。
In other words, a substance C that reversibly adsorbs and desorbs only a specific gas.
A method for keeping a liquid material including a carrier liquid in a fluid state is to make a space containing a flat, tubular, or hollow fiber support membrane and a liquid material flow by rotating a stirring blade, or to use a pump or the like to enter the space from the outside. There are methods to flow by sending in a flux of liquid (carrier liquid), methods to move by rotating the support membrane itself, and methods to flow by blowing gas into the membrane surface from the outside, but / rpm~
It is also possible to use a method in which a container containing a solution at a speed of 10,000 rpm, preferably 1000 rpm, is drained, and the liquid is introduced to the surface of the support membrane (primary side of the membrane) of the membrane cell using a pump and circulated. In this case, there is a method of highly selectively and continuously taking out a specific gas by sufficiently absorbing a specific gas into a liquid in a reservoir container and then performing this membrane-wise in a membrane cell. You can also use

この場合膜セルと溜めの温度を相違させ特定の気体の取
り出しを容易にすることが出来る。膜セル部分の温度は
特に限定されないが例えば0−.200℃の範囲で使用
することか出来る。
In this case, the temperature of the membrane cell and the reservoir can be made different to facilitate extraction of a specific gas. The temperature of the membrane cell portion is not particularly limited, but may be, for example, 0-. It can be used within the range of 200℃.

〔実施例〕〔Example〕

酸素したもの)を10m1添加し、攪拌した。 10 ml of oxygenated solution was added and stirred.

tro℃で3時間加熱するとスラリー状の褐色溶液(キ
ャリヤー溶液)となった。
When heated at tro.degree. C. for 3 hours, a slurry-like brown solution (carrier solution) was obtained.

一万、気体透過測定用セルにボIJ l−IJメチルず
れも’ 0−” 〜’ 0−’ ca/ctl ・se
a ・mHgである。
10,000, IJ l-IJ methyl deviation in the cell for gas permeation measurement '0-' ~ '0-' ca/ctl ・se
a ・mHg.

この膜上に不活性ガス気流下、上記のスラリー溶液をf
f、 A ml添加し、攪拌した。−次側、二次側とも
に減圧にしたのち一次側には/、KGの気体を流し、二
次側は真空にして各種気体の透過性なガスクロマトグラ
フィー法により測定した。測定ガスは純ガスを用いた。
The above slurry solution was poured onto this membrane under a stream of inert gas.
f, A ml was added and stirred. After reducing the pressure on both the downstream and secondary sides, a gas of /KG was flowed into the primary side, and the secondary side was evacuated and measurements were made using gas chromatography, which is permeable to various gases. Pure gas was used as the measurement gas.

結果は表−7に示す。−酸化炭素ガスのみが選択的に透
過促進された。測定温度はコク、5℃であった。
The results are shown in Table-7. - Only carbon oxide gas was selectively promoted. The measurement temperature was 5°C.

又、この方法によるとり、MEIOの液滴は実験操作中
7滴も二次側には透らず、DMSOの蒸気圧も低いため
、DMSOの蒸気も透っていないとい=15− う利点?有する〔トラップ管をつげて実験したが1滴も
たまっていなかった。)。
Also, with this method, not even 7 droplets of MEIO permeate to the secondary side during the experimental operation, and since the vapor pressure of DMSO is low, the vapor of DMSO also does not permeate.=15- An advantage? [I experimented with a trap tube, but not a single drop was collected.] ).

実施例コ 乾燥電電気流下に塩化第一銅(市販品をそのまま使用)
/、09gおよび三塩化バナジウムだ。
Example: Cuprous chloride under drying current (commercial product used as is)
/, 09g and vanadium trichloride.

この溶液を用いた以外は実施例1と同様の方法により、
各種気体の透過速度を測定した。
By the same method as in Example 1 except for using this solution,
The permeation rate of various gases was measured.

(測定温度コt、rr:、)結果Y表−7に示す。(Measured temperature t, rr:,) Results are shown in Table 7.

表かられかるように均−系では、00の透過速度は他の
気体に比べ非常に大きく、cOガスのみか選択的に透過
促進されたことがわかる。
As can be seen from the table, in a homogeneous system, the permeation rate of 00 was much higher than that of other gases, indicating that the permeation of only cO gas was selectively promoted.

に於る00およびOH4の透過速度を測定した。The permeation rates of 00 and OH4 were measured.

実施例3 塩化第一銅の代りに、ヨウ化第−銅(市販品をそのまま
使用)1.90flを使用した以外は、実施例−と全く
同じ方法により各種気体の透過速度を測定した。〔測定
温度27℃)結果を表−ノに示す。
Example 3 The permeation rates of various gases were measured in the same manner as in Example 3, except that 1.90 fl of cuprous iodide (a commercially available product was used as is) was used instead of cuprous chloride. [Measurement temperature: 27°C] The results are shown in Table No.

表かられかるように00ガスのみが選択的に透過促進さ
れた。
As seen from the table, only 00 gas was selectively promoted in permeation.

・比較例コ 実施例3と同一のキャリヤー溶液を同一膜上1.“にO
,ココ傭の膜厚になるように加え、静止状態に於る00
およびOH4の透過速度乞測定した。
・Comparative Example: The same carrier solution as in Example 3 was applied on the same membrane. “niO
, in addition to making the film thickness as small as 00 in the stationary state.
The permeation rate of and OH4 was measured.

表−ノに示すように攪拌状態に比べcoの透過速度、C
OとOH,の分離比のいずれも低下した。
As shown in Table 1, the permeation rate of co, C
Both O and OH separation ratios decreased.

実施例グ 塩化第一銅および三塩化バナジウムの使用量?各々、コ
、コSIおよび0.379用いた以外は実施例−と全く
同じ方法により、各種気体の透過速度を測定した。(測
定温度コA、j℃)結果を表−ノに示す。
Example G: Amount of cuprous chloride and vanadium trichloride used? The permeation rates of various gases were measured in exactly the same manner as in Example 1, except that SI, SI and SI of 0.379 were used. (Measurement temperature A, j°C) The results are shown in Table No.

表かられかるようにCOの透過速度は他のガスに比べ非
常に大きく、COガスのみが選択的スコに採り、そこへ
l−メチルイミダゾール(市販品を脱水、脱酸素したも
の) ’r: / Oral添(測定温度2g℃) 表−ノに示す様に00ガスのみが選択的に透過促進され
た。
As can be seen from the table, the permeation rate of CO is very high compared to other gases, and only CO gas is selectively taken into the Sco, where l-methylimidazole (dehydrated and deoxidized commercially available product) is added. /Oral addition (measurement temperature: 2g°C) As shown in Table 1, only 00 gas was selectively promoted in permeation.

比較例ダ 比較例3と同一のキャリヤー溶液を同一膜上にO,コt
crrLの膜厚になるように加え静止状態に於るCOお
よびOH4の透過速度を測定した。
Comparative Example DA The same carrier solution as Comparative Example 3 was applied on the same membrane.
In addition, the permeation rate of CO and OH4 in a static state was measured so that the film thickness was equal to crrL.

(測定温度、2t″C)表−ノに示す様に、比較例3の
攪拌状態に比べCOの透過速度は低下しているが、00
とOH4の分離比の低下はわずかであった。
(Measurement temperature, 2t''C) As shown in Table 1, the CO permeation rate is lower than in the stirring state of Comparative Example 3;
There was only a slight decrease in the separation ratio of and OH4.

〔発明の効果〕〔Effect of the invention〕

本発明の気体選択分離法によれば主として2炭のガス化
及び製鉄の副生ガスとして得られる一酸化炭素を含む混
合ガス等から主として一酸化炭素を高収率で得て各種の
化学反応に原料として使用することが出来る。
According to the gas selective separation method of the present invention, carbon monoxide can be obtained in high yield mainly from a mixed gas containing carbon monoxide obtained as a by-product gas of two-coal gasification and iron manufacturing, and can be used in various chemical reactions. It can be used as a raw material.

Claims (2)

【特許請求の範囲】[Claims] (1)銅化合物とジメチルスルホキシドを含む液状物を
使用して混合気体中の特定の気体を選択的に分離する方
法において、銅化合物とジメチルスルホキシドを含む液
状物を、支持体となるスキン層を有する膜に保持し、該
液状物を流動させながら使用することを特徴とする気体
の選択的分離法。
(1) In a method of selectively separating a specific gas in a mixed gas using a liquid containing a copper compound and dimethyl sulfoxide, the liquid containing a copper compound and dimethyl sulfoxide is separated from a skin layer serving as a support. 1. A method for selectively separating gases, characterized in that the liquid substance is held in a membrane containing a liquid substance and used while flowing the liquid substance.
(2)銅化合物とジメチルスルホキシドを含む液状物と
して、銅化合物に対して0.2モル比以下の三塩化バナ
ジウムを含有する液状物を使用することを特徴とする特
許請求の範囲第一項記載の分離法。
(2) Claim 1 describes the use of a liquid containing vanadium trichloride in a molar ratio of 0.2 or less to the copper compound as the liquid containing the copper compound and dimethyl sulfoxide. separation method.
JP60109362A 1985-05-23 1985-05-23 Selective separation of gas Pending JPS61268338A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60109362A JPS61268338A (en) 1985-05-23 1985-05-23 Selective separation of gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60109362A JPS61268338A (en) 1985-05-23 1985-05-23 Selective separation of gas

Publications (1)

Publication Number Publication Date
JPS61268338A true JPS61268338A (en) 1986-11-27

Family

ID=14508303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60109362A Pending JPS61268338A (en) 1985-05-23 1985-05-23 Selective separation of gas

Country Status (1)

Country Link
JP (1) JPS61268338A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4818255A (en) * 1987-02-10 1989-04-04 Kozo Director-general of Agency of Industrial Science and Technology Iizuka Material for gas separation

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5417381A (en) * 1977-06-20 1979-02-08 Bend Res Inc Method of separating ion from aqueous solution through separation membrane and its separation membrane
JPS56118722A (en) * 1980-02-25 1981-09-17 Babcock Hitachi Kk Absorbent liquid for carbon monoxide
JPS57136902A (en) * 1981-02-19 1982-08-24 Agency Of Ind Science & Technol Transferring method of cation
JPS5912707A (en) * 1982-06-30 1984-01-23 ベンド・リサ−チ・インコ−ポレ−テツド Membrane for producing oxygen and production of oxygen
JPS59138039A (en) * 1982-12-23 1984-08-08 アンプ・インコ−ポレ−テツド Film switch assembly for cathode ray tube and its mounting means

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5417381A (en) * 1977-06-20 1979-02-08 Bend Res Inc Method of separating ion from aqueous solution through separation membrane and its separation membrane
JPS56118722A (en) * 1980-02-25 1981-09-17 Babcock Hitachi Kk Absorbent liquid for carbon monoxide
JPS57136902A (en) * 1981-02-19 1982-08-24 Agency Of Ind Science & Technol Transferring method of cation
JPS5912707A (en) * 1982-06-30 1984-01-23 ベンド・リサ−チ・インコ−ポレ−テツド Membrane for producing oxygen and production of oxygen
JPS59138039A (en) * 1982-12-23 1984-08-08 アンプ・インコ−ポレ−テツド Film switch assembly for cathode ray tube and its mounting means

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4818255A (en) * 1987-02-10 1989-04-04 Kozo Director-general of Agency of Industrial Science and Technology Iizuka Material for gas separation

Similar Documents

Publication Publication Date Title
Pinnau et al. Ultrathin multicomponent poly (ether sulfone) membranes for gas separation made by dry/wet phase inversion
EP0452003B1 (en) Process for selective separation with high pressure facilitated membranes
Nymeijer et al. Super selective membranes in gas–liquid membrane contactors for olefin/paraffin separation
US5131928A (en) High pressure facilitated membranes for selective separation and process for the use thereof
US4617029A (en) Method for gas separation
US4746333A (en) Method for producing an integral asymmetric gas separating membrane and the resultant membrane
US4931181A (en) Composite membranes for fluid separations
JPH0724277A (en) Composite membrane for separation of fluid manufactured from lithium salt of sulfonated aromatic polymer
EP0532198A1 (en) Polyphenylene oxide-derived membranes for separation in organic solvents
JPS6312310A (en) Production of semipermeable composite membrane
FR2729306A1 (en) PROCESS FOR SEPARATING ACIDIC GAS FROM GASEOUS MIXTURES USING COMPOSITE MEMBRANES FORMED OF SEL-POLYMER MIXTURES
KR20200012863A (en) Gas separators, gas separator elements, gas separators and gas separation methods
JPS63218231A (en) Separation material of gas
JPS61268338A (en) Selective separation of gas
CA1284462C (en) Method for gas separation
EP4130012A1 (en) Metal-organic framework, separation film, and method for producing metal-organic framework
Bellobono et al. Transport of oxygen facilitated by peroxo-bis [N, N′-ethylene bis-(salicylideneiminato)-dimethylformamide-cobalt (III)] embedded in liquid membranes immobilized by photografting onto cellulose
JPH0254133B2 (en)
US12083474B2 (en) Stacked membranes and their use in gas separation
JPH0363414B2 (en)
KR101791422B1 (en) Hollow Fiber Membrane comprising Derivatives of Transition Metal-Salen for Separating Oxygen and Manufacturing Method thereof
JPH0217213B2 (en)
JPH085961B2 (en) Hydrogen separation method
JPS63194715A (en) Gas separating material
JPH0255099B2 (en)