JPH0253990B2 - - Google Patents

Info

Publication number
JPH0253990B2
JPH0253990B2 JP366781A JP366781A JPH0253990B2 JP H0253990 B2 JPH0253990 B2 JP H0253990B2 JP 366781 A JP366781 A JP 366781A JP 366781 A JP366781 A JP 366781A JP H0253990 B2 JPH0253990 B2 JP H0253990B2
Authority
JP
Japan
Prior art keywords
synchronization
signal
circuit
threshold
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP366781A
Other languages
Japanese (ja)
Other versions
JPS57116483A (en
Inventor
Mitsutoshi Sugawara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP366781A priority Critical patent/JPS57116483A/en
Publication of JPS57116483A publication Critical patent/JPS57116483A/en
Publication of JPH0253990B2 publication Critical patent/JPH0253990B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/04Synchronising
    • H04N5/08Separation of synchronising signals from picture signals

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Synchronizing For Television (AREA)

Description

【発明の詳細な説明】 本発明はテレビジヨン受信機の同期分離回路の
改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a synchronization separation circuit for a television receiver.

テレビジヨン受信機(以下TVと略する)にお
いては、アンテナで受けた放送電波信号はチユー
ナ,映像中間周波増幅回路,映像検波回路を経て
複合映像信号に変換される。かかる信号は映像信
号及びクロマ信号処理回路や音声信号処理回路に
供給されるとともに同期分離回路にも供給され、
その出力により水平及び垂直の発振周波数及び位
相を電波信号と同期をとつている。従来、同期分
離回路としては整流特性のある素子による自己バ
イアスにより、ピーク値よりやや下の電圧にしき
い値を設定された回路を用いて、同期電圧レベル
と映像信号レベルとの電圧差による分離を行なつ
ている。この方法は同期信号の大きさの定常的な
ちがいにはよく追従するが、複合映像信号におい
て、サグ等で同期信号分の大きさが変化したり、
ゴーストによつて同期信号分の大きさが水平と垂
直で異なつてしまう場合のような速い変化には追
従しきれずに誤動作してしまい、同期みだれを生
じている。
In a television receiver (hereinafter abbreviated as TV), a broadcast radio signal received by an antenna is converted into a composite video signal through a tuner, a video intermediate frequency amplification circuit, and a video detection circuit. Such a signal is supplied to a video signal and chroma signal processing circuit and an audio signal processing circuit, and is also supplied to a synchronization separation circuit,
Its output synchronizes the horizontal and vertical oscillation frequencies and phases with the radio signal. Conventionally, synchronous separation circuits use circuits whose thresholds are set to a voltage slightly below the peak value due to self-biasing by elements with rectifying characteristics, and separation based on the voltage difference between the synchronous voltage level and the video signal level is performed. is being carried out. This method tracks steady differences in the magnitude of the synchronization signal well, but in composite video signals, the magnitude of the synchronization signal may change due to sag, etc.
Due to ghosts, the synchronization signal cannot fully follow fast changes such as when the magnitude of the synchronization signal differs horizontally and vertically, resulting in malfunctions and synchronization errors.

第1図に従来のベース時定数形同期分離回路の
一例を示す。1は複合映像信号源であり、2はそ
の内部低抗であり、実際には映像検波段又は第一
映像増幅段とその出力インピーダンスである。複
合映像信号中の同期信号が入力されるとトランジ
スタ5のベースエミツタ間が導通し、内部抵抗2
と同期信号電圧の大きさに応じてコンデンサ3が
充電される。複合映像信号中の同期信号以外の部
分ではトランジスタ5が非導通となりコンデンサ
3の電荷は抵抗4を介してゆつくりと放電する。
したがつてコンデンサ3にはトランジスタ5を逆
バイアスにするような直流電圧が生ずることにな
る。しかしながら、定常時のコンデンサ3の充放
電々荷の平均はひとしいため、上記逆バイアス電
圧の値はコンデンサ3の充放電々荷の平均をひと
しくする電圧に自己設定されることになる。これ
によつて同期成分と、他の部分とが電圧分離でき
る。たとえば抵抗4の値を小さくすれば放電電流
がふえるので、これを補うため自己バイアスが浅
くなり、相対的に同期信号部分に対するしきい値
が低くなつて同期信号部分の充電電流を増すよう
になる。トランジスタ5の導通,非導通に応じ、
負荷抵抗6の両端に映像分を除去した同期信号が
得られ、そのまま水平AFC回路(H.AFC)に加
えられるとともにローパスフイルタ8を介して垂
直発振回路(V.OSC)へ加えられる。端子7は
電源電圧Vccの与えられる電源端子である。
FIG. 1 shows an example of a conventional base time constant type synchronous separation circuit. 1 is a composite video signal source, and 2 is its internal resistance, which is actually the video detection stage or the first video amplification stage and its output impedance. When the synchronization signal in the composite video signal is input, conduction occurs between the base and emitter of transistor 5, and internal resistance 2
The capacitor 3 is charged according to the magnitude of the synchronizing signal voltage. In a portion of the composite video signal other than the synchronization signal, the transistor 5 becomes non-conductive, and the charge in the capacitor 3 is slowly discharged via the resistor 4.
Therefore, a DC voltage is generated in the capacitor 3 that causes the transistor 5 to be reverse biased. However, since the average charges and discharges of the capacitor 3 during steady state are the same, the value of the reverse bias voltage is self-set to a voltage that makes the average charges and discharges of the capacitor 3 equal. This allows voltage separation between the synchronous component and other parts. For example, if you reduce the value of resistor 4, the discharge current will increase, so to compensate for this, the self-bias will become shallower, the threshold for the sync signal section will become relatively lower, and the charging current for the sync signal section will increase. . Depending on whether the transistor 5 is conductive or non-conductive,
A synchronizing signal with the video component removed is obtained at both ends of the load resistor 6, and is applied as it is to the horizontal AFC circuit (H.AFC), and is also applied to the vertical oscillation circuit (V.OSC) via the low-pass filter 8. Terminal 7 is a power supply terminal to which power supply voltage Vcc is applied.

本回路の応答は同期信号の大きさの定常的なず
れに対しては自己バイアスがよく応答するにもか
かわらず、垂直サグやゴースト,フエージング等
によりひかく的速い応答に対し、特に同期が急に
小さくなる方向で自己バイアスが追いつけずに同
期が欠けてしまう欠点があつた。これに対し、自
己バイアスを浅くなるように諸定数を設定すれば
同期信号に対するしきい値が下がり上記同期の欠
けに対応できるが、こんどは逆に同期先端のみな
らずペデスタル部分でも導通してしまうこともあ
り、これは特に水平の周期のかかりはじめをずら
してしまう欠点があつた。
The response of this circuit is that although the self-bias responds well to steady deviations in the magnitude of the synchronization signal, it is particularly difficult to respond to rapid responses due to vertical sag, ghosting, fading, etc. There was a drawback that the self-bias could not catch up with the direction of sudden decrease, resulting in a lack of synchronization. On the other hand, if the constants are set to make the self-bias shallower, the threshold for the synchronization signal will be lowered and the lack of synchronization mentioned above can be addressed, but on the contrary, conduction will occur not only at the synchronization tip but also at the pedestal part. This had the disadvantage of shifting the start of the horizontal cycle.

本発明の目的はかかる欠点を改良し、垂直サグ
やゴースト,フエージング等につよい同期分離回
路を提供するためのものである。
SUMMARY OF THE INVENTION An object of the present invention is to improve the above drawbacks and provide a synchronization separation circuit that is resistant to vertical sag, ghosting, fading, and the like.

本発明による同期分離回路は、複合映像信号を
ベースが定電圧でバイアスされているトランジス
タのエミツタにコンデンサを介して供給し、この
トランジスタのコレクタから閾値が互いに異なる
二つの比較器を介して水平および垂直同期信号を
取り出すことを特徴とする。
The synchronization separation circuit according to the present invention supplies a composite video signal to the emitter of a transistor whose base is biased at a constant voltage via a capacitor, and from the collector of this transistor passes the horizontal and It is characterized by extracting a vertical synchronization signal.

次に図面を参照して本発明をより詳細に説明す
る。
Next, the present invention will be explained in more detail with reference to the drawings.

第2図は本発明にとつて前提となる回路を示す
回路図であり第1図と同じものには同一の番号を
付してある。9〜12の各素子はそれぞれ3〜6の
素子と動作上対応している。このためもし全く同
一の定数にした場合の動作第1図と何らかわらな
い。しかしながら第2図では抵抗4の値をより少
さくしてしきい値電圧を低くするとともに、抵抗
10の値をより大きくしてしきい値電圧を高くし
ている。このようにすると、垂直同期信号に対し
ては低いしきい値電圧のため同期欠けに強くな
る。なお垂直信号においてはたとえ水平同期信号
のペデスタル部分がひつかかつたとしてもローパ
スフイルタ8により充分減衰されるため問題はな
い。また、水平同期信号に対しては高いしきい値
電圧のためペデスタル部分で同期がかかつてしま
うことはない。なお水平同期信号は同期欠けがお
こりやすくなるが、水平はAFC回路で制御され
ているため同期信号が多少欠けてもAFCの時定
数回路の働きですぐに同期みだれとならないので
問題はない。
FIG. 2 is a circuit diagram showing a circuit which is a prerequisite for the present invention, and the same parts as in FIG. 1 are given the same numbers. Each of elements 9 to 12 corresponds operationally to elements 3 to 6, respectively. Therefore, if the constants are exactly the same, the operation will not be any different from that shown in FIG. However, in FIG. 2, the value of resistor 4 is made smaller to lower the threshold voltage, and the value of resistor 10 is made larger to make the threshold voltage higher. In this case, the threshold voltage for the vertical synchronization signal is low, making it resistant to synchronization loss. In the case of vertical signals, even if the pedestal portion of the horizontal synchronizing signal is affected, there is no problem because it is sufficiently attenuated by the low-pass filter 8. Further, since the threshold voltage is high for the horizontal synchronizing signal, synchronization will not be lost at the pedestal portion. Note that the horizontal synchronization signal is prone to synchronization loss, but since the horizontal is controlled by the AFC circuit, even if the synchronization signal is slightly lost, the AFC time constant circuit does not immediately cause synchronization loss, so there is no problem.

第3図は本発明にとつて他の前提となる回路を
示す回路図であり、第1図と同じものには同じ番
号を付してある。ここでは抵抗4は大きな値に設
定し、しきい値を高く選んである。このため前述
のように水平同期出力は全く問題がない。また比
較器13により規準電圧14(これはトランジス
タ5のベースエミツタ間順方向電圧約0.7Vより
低く選ばれる)と比較し、その出力をローパスフ
イルタ8を介し垂直発振回路へ加えられる。この
ようにすると垂直同期信号に対しては低いしきい
値が実現でき、前述のように、同期欠けに強い回
路となる。なお第3図はIC化した場合コンデン
サ3のみ外付にすればよく従来例と同じであり、
トータルのコスト増はわずかである。
FIG. 3 is a circuit diagram showing another circuit which is a prerequisite for the present invention, and the same parts as in FIG. 1 are given the same numbers. Here, the resistor 4 is set to a large value and the threshold value is selected high. Therefore, as mentioned above, there is no problem with the horizontal synchronization output. Further, the comparator 13 compares it with a reference voltage 14 (which is selected to be lower than the base-emitter forward voltage of transistor 5 of about 0.7 V), and its output is applied to the vertical oscillation circuit via the low-pass filter 8. In this way, a low threshold value can be achieved for the vertical synchronization signal, resulting in a circuit that is resistant to loss of synchronization, as described above. In addition, Figure 3 shows that when integrated into an IC, only the capacitor 3 needs to be externally connected, which is the same as the conventional example.
The total cost increase is small.

以上は、同期正の場合であるが、同期負に対処
した本発明の一実施例を第4図に示す。第1〜3
図と同一のものには同一の番号を付してある。第
4図の場合は入力される複合映像信号1の極性が
第1〜3図と逆の同期負方向である。したがつて
複合映像信号中の同期成分の期間はベースをバイ
アス電圧源17につながれたトランジスタ5のエ
ミツタ電流が流れることによりコンデンサ3を充
電し他の期間は低抗4を介して放電する(尚図示
しないが抵抗4のかわりに定電流源を用いてもよ
い)。よつて動作は第1〜3図と逆極性になつて
いるが基本的にはなんらかわらない。
The above is a case of positive synchronization, but FIG. 4 shows an embodiment of the present invention that deals with negative synchronization. 1st to 3rd
Components that are the same as those in the figure are given the same numbers. In the case of FIG. 4, the polarity of the input composite video signal 1 is in the synchronous negative direction, which is opposite to that of FIGS. 1-3. Therefore, during the period of the synchronous component in the composite video signal, the emitter current of the transistor 5 whose base is connected to the bias voltage source 17 flows to charge the capacitor 3, and during other periods, the capacitor 3 is discharged via the resistor 4. Although not shown, a constant current source may be used instead of the resistor 4). Therefore, although the operation is of opposite polarity to that in Figs. 1 to 3, there is basically no difference.

同期分離出力はトランジスタ5のコレクタ電流
の導通時に抵抗6に表われるので、第1の規準電
圧14によりひかく的浅い(抵抗6における電圧
降下が小さくて動作する)しきい値電圧を設定さ
れた第1の比較器13の出力をローパスフイルタ
8を介して垂直発振回路へつなぎ、第2の規準電
圧16によりひかく的深いしきい値電圧を設定さ
れた比較器15の出力を水平AFC回路へ導くこ
とによつて、第2〜3図の回路と同様サグやゴー
ストに強い同期分離回路が実現できる。
Since the synchronously separated output appears on the resistor 6 when the collector current of the transistor 5 is conductive, a threshold voltage that is shallower (operates with a small voltage drop across the resistor 6) is set by the first reference voltage 14. The output of the first comparator 13 is connected to the vertical oscillation circuit via the low-pass filter 8, and the output of the comparator 15, which has a significantly deeper threshold voltage set by the second reference voltage 16, is connected to the horizontal AFC circuit. By guiding, it is possible to realize a synchronization separation circuit that is resistant to sags and ghosts, similar to the circuits shown in FIGS. 2 and 3.

このように本発明によれば、しきい値の高い同
基分離回路を水平同期用に、しきい値の低い同期
分離回路を垂直用にそれぞれ用いることにより、
サグやゴースト等に強い同期分離回路を実現する
ことにある。しきい値電圧を制御する方法につい
ては前述の方法の他に、たとえば第2,3図の抵
抗2の値(信号源内部抵抗及び必要に応じさらに
直列に抵抗を追加することにより)を変えてもよ
い。また、本発明の各構成要素は適宜変更できる
ことは明らかである。
As described above, according to the present invention, by using a same base separation circuit with a high threshold for horizontal synchronization and a sync separation circuit with a low threshold for vertical synchronization,
The objective is to realize a synchronization separation circuit that is resistant to sags and ghosts. In addition to the methods described above, the threshold voltage can be controlled by, for example, changing the value of resistor 2 in Figures 2 and 3 (by changing the internal resistance of the signal source and adding a further resistor in series as necessary). Good too. Furthermore, it is clear that each component of the present invention can be modified as appropriate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の同期分離回路、第2図及び第3
図は本発明の前提回路、第4図は本発明の一実施
例を示す同期分離回路の回路図である。 1……複合映像信号源、2……抵抗、3,9…
…コンデンサ、4,10……抵抗、5,11……
トランジスタ、6,12……負荷抵抗、7……電
源、8……ローパスフイルタ、13,15……比
較器、14,16……基準電圧、17……バイア
ス電圧源。
Figure 1 shows a conventional synchronous separation circuit, Figures 2 and 3
The figure is a prerequisite circuit of the present invention, and FIG. 4 is a circuit diagram of a synchronous separation circuit showing an embodiment of the present invention. 1...Composite video signal source, 2...Resistor, 3, 9...
...Capacitor, 4,10...Resistor, 5,11...
Transistor, 6, 12... Load resistance, 7... Power supply, 8... Low pass filter, 13, 15... Comparator, 14, 16... Reference voltage, 17... Bias voltage source.

Claims (1)

【特許請求の範囲】[Claims] 1 同期信号の極性が同期負である複合映像信号
を、ベースが定電圧でバイアスされエミツタに電
流源が接続されたトランジスタの該エミツタにコ
ンデンサを介して供給し、このトランジスタのコ
レクタ出力を、第1の閾値を有する第1の比較器
と該第1の閾値よりも深い第2の閾値を有する第
2の比較器とに供給し、これら第1および第2の
比較器から垂直および水平同期信号をそれぞれ得
ることを特徴とする同期分離回路。
1. A composite video signal in which the polarity of the sync signal is sync-negative is supplied via a capacitor to the emitter of a transistor whose base is biased with a constant voltage and whose emitter is connected to a current source, and the collector output of this transistor is a first comparator having a threshold of 1 and a second comparator having a second threshold deeper than the first threshold, and receiving vertical and horizontal synchronization signals from the first and second comparators; A synchronous separation circuit characterized by obtaining the following.
JP366781A 1981-01-12 1981-01-12 Synchronous separating circuit Granted JPS57116483A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP366781A JPS57116483A (en) 1981-01-12 1981-01-12 Synchronous separating circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP366781A JPS57116483A (en) 1981-01-12 1981-01-12 Synchronous separating circuit

Publications (2)

Publication Number Publication Date
JPS57116483A JPS57116483A (en) 1982-07-20
JPH0253990B2 true JPH0253990B2 (en) 1990-11-20

Family

ID=11563781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP366781A Granted JPS57116483A (en) 1981-01-12 1981-01-12 Synchronous separating circuit

Country Status (1)

Country Link
JP (1) JPS57116483A (en)

Also Published As

Publication number Publication date
JPS57116483A (en) 1982-07-20

Similar Documents

Publication Publication Date Title
GB2029158A (en) Synchronization signal separator circuit
JP3029431B2 (en) VTR signal detection circuit, composite video signal identification circuit, and composite video signal noise characteristic detection circuit
JPH03117995A (en) Chrominance signal contour correction device
US4453183A (en) Dual polarity sync processor
JPH0253990B2 (en)
EP0145224B1 (en) Stabilized color television subcarrier regenerator circuit and method
US4148068A (en) Television synchronizing signal separating circuit
EP0059379B1 (en) Noise detecting circuit and television receiver employing the same
EP0298488B1 (en) Video signal processing circuit for VTR signal
EP0024860B1 (en) Dual standard television vertical deflection system
US4999707A (en) Synchronizing signal separating circuit separating synchronizing signal from a composite video signal
JPH0736617B2 (en) Automatic gain control device
US3441790A (en) Stabilization of television deflection circuits
KR870000835B1 (en) Non-broadcast channel noise eliminating circuit
JP2815865B2 (en) Synchronous signal separation circuit
KR860001146B1 (en) Noise eliminated circuit
JPS6129188B2 (en)
JP3296637B2 (en) Sync separation circuit
JP3019315B2 (en) AFC lock discrimination circuit
KR850001847Y1 (en) Video signal detecting circuit
JPH082085B2 (en) Synchronization detection device
CA2013532C (en) Synchronizing signal separating circuit
KR100231501B1 (en) Chroma signal processing apparatus
GB2026272A (en) Horizontal deflection integrated circuit
JPS58173982A (en) Channel selection device