JPH025364A - Gas diffusion type oxygen electrode - Google Patents

Gas diffusion type oxygen electrode

Info

Publication number
JPH025364A
JPH025364A JP63155662A JP15566288A JPH025364A JP H025364 A JPH025364 A JP H025364A JP 63155662 A JP63155662 A JP 63155662A JP 15566288 A JP15566288 A JP 15566288A JP H025364 A JPH025364 A JP H025364A
Authority
JP
Japan
Prior art keywords
electrode
oxide catalyst
gas diffusion
diffusion type
type oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63155662A
Other languages
Japanese (ja)
Other versions
JPH0546062B2 (en
Inventor
Noboru Yamazoe
昇 山添
Norio Miura
則雄 三浦
Yoichi Shimizu
陽一 清水
Kenichi Kamimura
賢一 上村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP63155662A priority Critical patent/JPH025364A/en
Publication of JPH025364A publication Critical patent/JPH025364A/en
Publication of JPH0546062B2 publication Critical patent/JPH0546062B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inert Electrodes (AREA)

Abstract

PURPOSE:To obtain high performance gas diffusion type oxygen electrode having remarkable electrode activity, high operating characteristic, good electrode performance and durability by using a perovskite oxide catalyst having a specific composition as an oxide catalyst of a reaction layer. CONSTITUTION:A perovskite oxide catalyst expressed by La1-xGaxMnO3 (however, 0.05<=x<=0.9) or La1-yCayCoO3 (however, 0.05<=y<=0.9) is used as an oxide catalyst of a reaction layer. Ca substitution rate of an oxide catalyst has an influence on battery performance and in case of La1-xCaxMnO3, it is especially preferable that 0.1<=x<=0.3, and particularly preferable that 0.15<=x<=0.25. And in case of La1-yCayCoC3, it is especially preferable that 0.3<=y<=0.5. If the content of oxide catalyst is too small, no catalyst effect can be obtained, and if it is too large, a change occurs in the fine structure inside the electrode with the result that the electrode resistance becomes worse, so that it is advisable the content is within the range of 10-60wt.%, particularly 20-30wt.%. Thereby, the durability of an electrode is improved and a gas diffusion type oxygen electrode which is stable for a long time and has a good operating characteristic can be obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はガス拡散型酸素電極に係り、特に極めて優れた
電極性能及び作動性能を有するガス拡散型酸素電極に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a gas diffusion type oxygen electrode, and particularly to a gas diffusion type oxygen electrode having extremely excellent electrode performance and operating performance.

[従来の技術] アルカリ水溶液中での酸素の電気化学的還元反応は、燃
料電池や金属−空気電池において極めて重要である。
[Prior Art] Electrochemical reduction reactions of oxygen in aqueous alkaline solutions are extremely important in fuel cells and metal-air cells.

本発明者らは、特に金属−空気電池用のガス拡散型酸素
電極、とりわけ酸素還元陰極としてカーボンを主体とし
たテフロン(ポリテトラフルオロエチレン)結着型ガス
拡散型酸素電極、即ちガス拡散型カーボン電極について
、種々検討を重ねてきた。
The present inventors have developed a gas diffusion type oxygen electrode for metal-air batteries, particularly a Teflon (polytetrafluoroethylene) bonded gas diffusion type oxygen electrode mainly composed of carbon as an oxygen reduction cathode, that is, a gas diffusion type oxygen electrode for use in metal-air batteries. Various studies have been conducted regarding electrodes.

第1図は一般的なガス拡散型カーボン電極を示す断面図
である。
FIG. 1 is a sectional view showing a general gas diffusion type carbon electrode.

図示の如く、ガス拡散型カーボン電極1は、ガス供給層
2と反応層3との2層とされており、ガス供給層2は炭
素及びテフロンよりなり、反応層は炭素、テフロン及び
酸化物触媒よりなる。このようなガス拡散型カーボン電
極1にはNiメツシュ4等の導電線がホットプレス等に
より埋設される。使用に際して、ガス供給層2は酸素等
のガス側に、反応層3はKOH等のアルカリ水溶液側に
設置される。
As shown in the figure, the gas diffusion type carbon electrode 1 has two layers: a gas supply layer 2 and a reaction layer 3. The gas supply layer 2 is made of carbon and Teflon, and the reaction layer is made of carbon, Teflon and an oxide catalyst. It becomes more. A conductive wire such as a Ni mesh 4 is embedded in such a gas diffusion type carbon electrode 1 by hot pressing or the like. In use, the gas supply layer 2 is placed on the side of a gas such as oxygen, and the reaction layer 3 is placed on the side of an alkaline aqueous solution such as KOH.

本発明者らは、先にこのようなガス拡散型カーボン電極
に用いられる酸化物触媒として、下記組成に代表される
ランタン系ペロブスカイト型酸化物触媒が有効であるこ
とを見出した(「日本化学会誌J 1986年No、6
第751〜755頁)。
The present inventors have previously discovered that lanthanum-based perovskite-type oxide catalysts represented by the following composition are effective as oxide catalysts used in such gas diffusion type carbon electrodes ("Journal of the Chemical Society of Japan"). J 1986 No. 6
pp. 751-755).

La(1,s S ro4F eo、a Mo、403
(M=Mn、Co) [発明が解決しようとする課題] 一般に、各種分野で用いられる電極においては、その電
極特性、耐久性等の各種特性の向上が常に要求されてお
り、ガス拡散型酸素電極においても、電流密度の向上、
電極活性の向上、電位の安定化などの電極性能、作動性
能等のより一層の改善が強く要望されている。
La(1, s S ro4F eo, a Mo, 403
(M=Mn, Co) [Problem to be solved by the invention] In general, electrodes used in various fields are constantly required to improve various properties such as electrode characteristics and durability. Also in electrodes, improvement of current density,
There is a strong demand for further improvements in electrode performance, such as improved electrode activity and potential stabilization, and operating performance.

本発明は上記従来の実情に鑑みてなさねたものであり、
優れた電極性能、作動性能を有するガス拡散型酸素電極
を提供することを目的とする。
The present invention has been made in view of the above-mentioned conventional situation,
The purpose of the present invention is to provide a gas diffusion type oxygen electrode with excellent electrode performance and operating performance.

[課題を解決するための手段] 請求項(1)のガス拡散型酸素電極は、炭素及びポリテ
トラフルオロエチレンを含むガス併給層と、炭素、ポリ
テトラフルオロエチレン及び酸化物触媒を含む反応層と
を備えるガス拡散型酸素電極において、酸化物触媒とし
て下記組成を有するベロブス)・カイト型酸化物触媒を
用いたことを特徴とする。
[Means for Solving the Problems] The gas diffusion type oxygen electrode according to claim (1) includes a gas co-supply layer containing carbon and polytetrafluoroethylene, and a reaction layer containing carbon, polytetrafluoroethylene and an oxide catalyst. The gas diffusion type oxygen electrode is characterized in that a belobus-kite type oxide catalyst having the following composition is used as the oxide catalyst.

Lad−x Ca、Mn03 (ただし、0.05≦X≦0.9) 請求項(2)のガス拡散型酸素電極は、上記ガス拡散型
酸素電極において、酸化物触媒としてLad−、Ca、
CaO2 (ただし、0.05≦y≦0.9) で示されるペロブストカイト型酸化物触媒を用いたこと
を特徴とする。
Lad-x Ca, Mn03 (however, 0.05≦X≦0.9) The gas diffusion type oxygen electrode according to claim (2) includes Lad-, Ca, Mn03 as the oxide catalyst in the gas diffusion type oxygen electrode.
It is characterized by using a perovstite-type oxide catalyst represented by CaO2 (0.05≦y≦0.9).

以下に本発明の詳細な説明する。The present invention will be explained in detail below.

本発明のガス拡散型酸素電極は、反応層の酸化物触媒と
して、 Lad−xCaxMnO3 (ただし、0.05≦X≦0.9) 又は L  a  + −y  Ca y  Co  O3(
ただし、0.05≦y≦0.9) で示されるペロブストカイト型酸化物触媒を用いること
以外は、第1図に示される従来のガス拡散型酸素電極と
同様の構成を有する。
The gas diffusion type oxygen electrode of the present invention uses Lad-xCaxMnO3 (however, 0.05≦X≦0.9) or La + -y Ca y Co O3 (
However, it has the same structure as the conventional gas diffusion type oxygen electrode shown in FIG. 1, except for using a perovstite type oxide catalyst represented by the following formula (0.05≦y≦0.9).

なお、上記酸化物触媒のCa置換率は、電池性能に影響
を及ぼし、酸化物触媒が L a I−g Ca 11 M n O3の場合、特
に 01≦X≦0.3 とりわけ 0.15≦X≦0.25 であることが好ましい。また、酸化物触媒がLad−、
CayCOO3 の場合、特に 0、 3 ≦y≦0,5 であることが好ましい。これらの酸化物触媒は、1種を
単独で用いても、2種を併用しても良い。
In addition, the Ca substitution rate of the above-mentioned oxide catalyst affects the battery performance, and when the oxide catalyst is L a I-g Ca 11 M n O3, especially 01≦X≦0.3, especially 0.15≦X It is preferable that ≦0.25. Moreover, the oxide catalyst is Lad-,
In the case of CayCOO3, it is particularly preferable that 0,3≦y≦0,5. These oxide catalysts may be used alone or in combination of two types.

反応層中の上記酸化物触媒の含有量は、少な過ぎると十
分な触媒効果が得られず、また所定量を超えて用いても
それに見合う電極抵抗の改善効果が得られない上に、過
度に多量の酸化物触媒を用いた場合には電極内部の微細
構造に変化が生じ、電極抵抗が悪化する場合がある。こ
のようなことから、酸化物触媒の含有量は10〜60重
1%、特に20〜30重量%の範囲とするのが好ましい
If the content of the above-mentioned oxide catalyst in the reaction layer is too small, a sufficient catalytic effect will not be obtained, and even if it is used in excess of a predetermined amount, a commensurate improvement effect on electrode resistance will not be obtained; When a large amount of oxide catalyst is used, the fine structure inside the electrode may change, and the electrode resistance may deteriorate. For this reason, the content of the oxide catalyst is preferably in the range of 10 to 60% by weight, particularly 20 to 30% by weight.

反応層及びガス供給層中のテフロンの含有量は、少な過
ぎると電極の結着性が悪くなり、反対に多くなると7F
L極の抵抗が高くなったり、ガス拡散性が悪くなる。従
って、テフロン含有量は10〜40重量%、特に反応層
では20〜30重量%、ガス供給層では18〜28重量
%の範囲とするのが好ましい。
If the content of Teflon in the reaction layer and gas supply layer is too low, the binding of the electrode will deteriorate; on the other hand, if it is too high, 7F
The resistance of the L pole becomes high and the gas diffusivity becomes poor. Therefore, the Teflon content is preferably in the range of 10 to 40% by weight, particularly 20 to 30% by weight in the reaction layer, and 18 to 28% by weight in the gas supply layer.

本発明のガス拡散型酸素電極は、ガス供給層として炭素
及びテフロン、反応層として炭素、テフロン及び酸化物
触媒を混合した原料粉末を用い、これら2層を例えばN
iメツシュと共にホットプレスするなどの方法により容
易に作製することかできる。
The gas diffusion type oxygen electrode of the present invention uses carbon and Teflon as the gas supply layer, raw material powder mixed with carbon, Teflon, and an oxide catalyst as the reaction layer, and these two layers are combined with
It can be easily produced by a method such as hot pressing with an i-mesh.

なお、各層の原料粉末は、例えば次のようにして調製す
ることができる。
Note that the raw material powder for each layer can be prepared, for example, as follows.

■ ガス供給層用原料粉末 ブタノール水溶液にカーボンブラックを添加して混合す
る。これにテフロンを分散させた後、濾過、乾燥して微
粉化する(ブタノール分散)。あるいは、混合系として
トライトン水溶液を用いて行なうこともできる。この場
合には、@粉化後、熱処理を施してトライトンを十分に
飛ばすことが必要である。
■ Add carbon black to the butanol aqueous solution of raw material powder for the gas supply layer and mix. After dispersing Teflon in this, it is filtered, dried and pulverized (butanol dispersion). Alternatively, a Triton aqueous solution can be used as a mixed system. In this case, it is necessary to perform heat treatment after pulverization to sufficiently remove Triton.

■ 反応層用原料粉末 カーボンと酸化物触媒をメノウ乳鉢で十分混合したもの
に、■の方法で得られたカーボンブラック−テフロン混
合粉末を加え、ブタノールを分散剤として液相混合、濾
過、乾燥した後、微粉化する。
■ The raw carbon powder for the reaction layer and the oxide catalyst were thoroughly mixed in an agate mortar, and the carbon black-Teflon mixed powder obtained by the method (■) was added, mixed in a liquid phase using butanol as a dispersant, filtered, and dried. After that, it is pulverized.

本発明のガス拡散型酸素電極の厚さについては特に制限
はないが、その厚さは薄いほど電極抵抗が低くなるため
性能が良くなる傾向にある。厚さがあまり薄くなり過ぎ
るとガス油れ、液漏れが発生するため性能が低下するこ
ととなる。従って、TL極の反応層、ガス供給層のそれ
ぞれにおいて、ホットプレスに用いた原料粉末の量が単
位面積当り5〜tsmg/cm″程度、特に反応層にお
いては約10〜12mg/crn’、ガス供給層では約
9〜11 ’m g / c rn’とするのが好まし
い。
There is no particular restriction on the thickness of the gas diffusion type oxygen electrode of the present invention, but the thinner the electrode, the lower the electrode resistance and the better the performance tends to be. If the thickness becomes too thin, gas oil and liquid leakage will occur, resulting in a decrease in performance. Therefore, in each of the reaction layer and gas supply layer of the TL pole, the amount of raw material powder used for hot pressing is about 5 to tsmg/cm'' per unit area, and especially in the reaction layer, the amount of raw material powder used for hot pressing is about 10 to 12 mg/crn', and the amount of gas Preferably, it is about 9-11' mg/c rn' in the feed layer.

以下に、本発明で用いる酸化物触媒の製造方法について
説明する。
The method for producing the oxide catalyst used in the present invention will be explained below.

本発明のペロブストカイト型酸化物触媒は、その製造方
法については特に制限はないが、例えば次の■又は■の
方法により製造できる。
Although there are no particular restrictions on the method for producing the perovstokite-type oxide catalyst of the present invention, it can be produced, for example, by the following method (1) or (2).

■ 酢酸塩分解法(AD法)(第2図参照)所定のモル
組成比の各金属酢酸塩の混合水溶液を蒸発、乾固、分解
後、約850℃にて10時間程度、空気中で焼成する。
■ Acetate decomposition method (AD method) (see Figure 2) After evaporating, drying, and decomposing a mixed aqueous solution of each metal acetate with a predetermined molar composition ratio, it is calcined in air at approximately 850°C for approximately 10 hours. .

■ クエン酸前駆体法(ACP法)(第3図参照) 所定のモル組成の金属硝酸塩とクエン酸の混合水溶液を
脱水、乾燥してアモルファスクエン酸前駆体を得た後、
これを空気中で約650℃にて2時間程度焼成する。
■ Citric acid precursor method (ACP method) (see Figure 3) After dehydrating and drying a mixed aqueous solution of metal nitrate and citric acid with a predetermined molar composition to obtain an amorphous citric acid precursor,
This is baked in air at about 650°C for about 2 hours.

特に、本発明においては、■のACP法により調製した
ペロブストカイト型酸化物触媒を用いることにより、著
しく浸れた電流密度の向上効果が得られる。これは、A
CP法で調製した触媒はその焼成温度がAD法よりも約
200℃低いため、表面積が大きくなっていることから
、触媒活性が高いためと考えられる。
Particularly, in the present invention, by using a perovstite type oxide catalyst prepared by the ACP method described in (1), a remarkable effect of improving the current density can be obtained. This is A
This is thought to be due to the fact that the calcination temperature of the catalyst prepared by the CP method is about 200° C. lower than that of the AD method, so the surface area is larger and the catalytic activity is higher.

[作用] アルカリ性水溶液中での酸素の還元では、下記(I)式
の四電子反応と、HO2−を生じる( II )式の二
電子反応が起こることが知られている。生じたHO2−
は(III )式のように電気化学的に還元されるか、
あるいは(IV )式のように触媒によって接触分解さ
れる。
[Function] It is known that in the reduction of oxygen in an alkaline aqueous solution, a four-electron reaction of the following formula (I) and a two-electron reaction of the formula (II) that produces HO2- occur. The generated HO2−
is electrochemically reduced as in formula (III), or
Alternatively, it is catalytically cracked by a catalyst as shown in formula (IV).

02 +2H20+4e−40H− ・・・(1) 02 + H20+26 = HO2−+ OH−・・
・(+1 ) HO2−+ H20+ 2 e = 30 H−・・・
(III ) 2HO2−−20H−+02   ・= (IV)本発
明で用いるペロブストカイト型酸化物触媒は、酸素の四
電子還元(I)式に対する活性が高いだけでなく、同時
に(+’V)式の過酸化水素の分解活性も高いことから
、極めて電流密度が高く、優れた電極性能を有するガス
拡散型酸素電極を提供することができる。
02 +2H20+4e-40H-...(1) 02 + H20+26 = HO2-+ OH-...
・(+1) HO2-+ H20+ 2 e = 30 H-...
(III) 2HO2--20H-+02 ・= (IV) The perovstite-type oxide catalyst used in the present invention not only has high activity for the four-electron reduction formula (I) of oxygen, but also has (+'V) Since the hydrogen peroxide decomposition activity of the formula is also high, it is possible to provide a gas diffusion type oxygen electrode having an extremely high current density and excellent electrode performance.

しかも、このペロブストカイト型酸化物触媒の添加によ
り、電極の耐久性も大幅に向上し、長期間安定”に作動
し得る、作動特性にも著しく優れたガス拡散型酸素電極
が提供される。
Furthermore, the addition of this perovstite type oxide catalyst greatly improves the durability of the electrode, providing a gas diffusion type oxygen electrode that can operate stably for a long period of time and has extremely excellent operating characteristics.

[実施例] 以下に製造例、実施例及び実験例を挙げて本発明をより
具体的に説明する。
[Example] The present invention will be described in more detail below with reference to Production Examples, Examples, and Experimental Examples.

製造例1:ガス供給層用原料粉末の製造カーボンブラッ
ク、n−ブタノール及び水を1:1:30(重量比)の
割合で添加し、スターテで60分間混合した。これにテ
フロンを分散させて吸引−過後、120℃で1昼夜乾燥
した。このものをミキサーで微粉化し、テフロン含有量
23重1%の原料粉末を製造した。
Production Example 1: Production of Raw Material Powder for Gas Supply Layer Carbon black, n-butanol, and water were added at a ratio of 1:1:30 (weight ratio) and mixed for 60 minutes using a starter. Teflon was dispersed therein, and after suction and filtration, it was dried at 120° C. for one day and night. This material was pulverized using a mixer to produce a raw material powder with a Teflon content of 23% by weight.

製造例2:反応層用原料粉末の製造 カーボンブラックと下記第1表のNo、1〜4に示す酸
化物触媒の各々をメノウ乳鉢で十分に混合したものに、
製造例1と同様にして得られたカーボン−テフロン原料
粉末を加え、n−ブタノールを分散剤として液相混合、
チ過、乾燥した後、ミルで微粉化して、テフロン含有量
25瓜量%、酸化物触媒含有量25重1%の原料粉末(
No、1〜4)を製造した。
Production Example 2: Production of raw material powder for reaction layer Carbon black and each of the oxide catalysts shown in No. 1 to 4 in Table 1 below were thoroughly mixed in an agate mortar.
Carbon-Teflon raw material powder obtained in the same manner as in Production Example 1 was added, and liquid phase mixing was carried out using n-butanol as a dispersant.
After being filtered and dried, it is pulverized in a mill to obtain a raw material powder (with a Teflon content of 25% by weight and an oxide catalyst content of 25% by weight).
Nos. 1 to 4) were manufactured.

また、触媒無添加の原料粉末(No、5)についても同
様に製造した。
In addition, a raw material powder without catalyst addition (No. 5) was also produced in the same manner.

第1表 酸化物触媒 製造例3:ガス拡散型酸素電極の製造 30mmφの錠剤成型器にリボンヒーターを巻き付けて
作った、第4図に示すホットプレス成形器に製造例】で
得られたガス供給層用原料粉末10 m g / c 
rn’をスバツテイラで充填し、360℃までリボンヒ
ーター(150W)で昇?Aしく約1時間)、424k
H/crn’でホットプレスして約0.20mmのガス
供給層用原料粉末の膜を作成した。次にこの膜を所定の
大きさに切り取り、膜の上に製造例2で得られた反応層
用原料粉末NO,I〜s (t 1 mg/crn”)
及びNiメツシュを乗せ、各々、再び360℃、566
 k g / cゴでホットプレスした。その後、ドラ
イヤーで空冷後、電極を取り出した。
Table 1 Oxide Catalyst Production Example 3: Production of Gas Diffusion Type Oxygen Electrode The gas obtained in Production Example] was supplied to the hot press molding machine shown in Figure 4, which was made by wrapping a ribbon heater around a 30 mm diameter tablet molding machine. Raw material powder for layer 10 mg/c
Fill rn' with Subatsu Teira and raise it to 360℃ using a ribbon heater (150W). (approx. 1 hour), 424k
A film of about 0.20 mm of the raw material powder for the gas supply layer was created by hot pressing with H/crn'. Next, this film was cut to a predetermined size, and the reaction layer raw material powder NO,I~s (t 1 mg/crn") obtained in Production Example 2 was placed on top of the film.
and Ni mesh, respectively, again at 360°C and 566°C.
Hot pressed at kg/c. Thereafter, the electrodes were taken out after being air-cooled with a hair dryer.

なお、図中、10は試料、11はピストン、12はシリ
ンダー 13はリボンヒーター 14はAC電源(to
ov)   15は熱電対である。
In the figure, 10 is the sample, 11 is the piston, 12 is the cylinder, 13 is the ribbon heater, and 14 is the AC power supply (to
ov) 15 is a thermocouple.

得られたガス拡散型酸素電極は、第1図に示す如く、N
iメツシュ4を備えるガス供給F12及び反応層3の2
層構造を有し、ガス供給層2の厚さは0.2mm、反応
層3の厚さは0.2mm、全厚さtは0.4mm、長さ
文は15mmである。
The obtained gas diffusion type oxygen electrode is made of N, as shown in Figure 1.
Gas supply F12 with i-mesh 4 and reaction layer 3 2
It has a layered structure, the thickness of the gas supply layer 2 is 0.2 mm, the thickness of the reaction layer 3 is 0.2 mm, the total thickness t is 0.4 mm, and the length is 15 mm.

実施例1 製造例3で得られた各電極を、第5図に示すようにセッ
トして、室温(25℃)、30重量%KOH中で、裏面
から酸素ガスを流しながら、ボランジオスタットにより
電流密度を測定した。
Example 1 Each electrode obtained in Production Example 3 was set as shown in Figure 5, and heated in 30 wt% KOH at room temperature (25°C) using a boranediostat while oxygen gas was flowing from the back side. Current density was measured.

なお、第5図中、20はガス拡散型酸素電極、21.2
2はテフロン製のホルダ、23.24はOリング、25
は銅線である。
In addition, in FIG. 5, 20 is a gas diffusion type oxygen electrode, 21.2
2 is a Teflon holder, 23.24 is an O-ring, 25
is copper wire.

結果を第6図及び第7図に示す。The results are shown in FIGS. 6 and 7.

第6図及び第7図より明らかなように、本発明のペロブ
ストカイト型酸化物触媒によれば、優れた電極性能が得
られる。特にACP法によるペロブストカイト型酸化物
触媒によれば、AD法による酸化物触媒に比べ、約4倍
以上も電流密度が向上し、優れた電極性能が得られる。
As is clear from FIGS. 6 and 7, the perovstite-type oxide catalyst of the present invention provides excellent electrode performance. In particular, the perovstite type oxide catalyst produced by the ACP method has a current density that is about four times higher than that of the oxide catalyst produced by the AD method, and excellent electrode performance can be obtained.

実験例1 ペロブストカイト型酸化物触媒No、1(ACP法)及
tNo、2(AD法)、No、 3 (ACP法)及び
No、4(AD法)について、それぞれBET表面積を
測定した。結果を第2表に示す。
Experimental Example 1 The BET surface area was measured for each of perovstite type oxide catalysts No. 1 (ACP method), t No. 2 (AD method), No. 3 (ACP method), and No. 4 (AD method). The results are shown in Table 2.

第2表 第2表より明らかなように、Mn系、Co系いずれもA
CP法で調製した方が、AD法の約9倍程度BET表面
積が大きく、このため触媒活性が高いことが認められる
As is clear from Table 2, both Mn-based and Co-based A
It is recognized that the BET surface area of the catalyst prepared by the CP method is about 9 times larger than that of the AD method, and therefore the catalyst activity is higher.

実施例2 LaCaCo系ペロブストカイト型酸化物触媒について
、Caの置換量を変化させて酸化物触媒を調製し、製造
例3と同様にして電極を製造し、各々の酸化物触媒より
得られる電極の電極性能を調べた。
Example 2 Regarding LaCaCo-based perovstite type oxide catalysts, oxide catalysts were prepared by changing the amount of Ca substitution, and electrodes were manufactured in the same manner as in Production Example 3, and electrodes obtained from each oxide catalyst were prepared. The electrode performance was investigated.

Lad−XcaxCo03におけるXの値と電流密度(
−125mV vs Hg/Hgoにて測定)との関係
を第8図に示す。
The value of X and current density in Lad-XcaxCo03 (
-125mV vs. Hg/Hgo) is shown in FIG.

第8図より明らかなように、LaCaCo系においては
、Ca置換量x=0.2〜0.6の範囲で電流密度が高
く、x=0.4で極大値をとる。
As is clear from FIG. 8, in the LaCaCo system, the current density is high in the range of Ca substitution amount x=0.2 to 0.6, and reaches a maximum value at x=0.4.

このと〆詮の性能は非常に高く、RWE換算で、+O,
SVのときに2.5A/crn’もの高電流密度が得ら
れた。
The performance of this and the end is very high, in terms of RWE, +O,
A high current density of 2.5 A/crn' was obtained during SV.

実験例2 カーボン上で酸素の電気化学的還元が起こる場合、二電
子還元による過酸化水素が生成し易いことが知られてい
る。従って、カーボンを基材とする電極を作製する場合
、電極触媒の過酸化水素分解活性は極めて重要となる。
Experimental Example 2 It is known that when electrochemical reduction of oxygen occurs on carbon, hydrogen peroxide is easily generated due to two-electron reduction. Therefore, when producing an electrode based on carbon, the hydrogen peroxide decomposition activity of the electrode catalyst is extremely important.

そこ1で、第9図に示すような装置を用いて、LaCa
Co系ペロブストカイト型酸化物触媒の過酸化水素(I
(202)分解活性を測定した。
Then, using a device like the one shown in Figure 9,
Hydrogen peroxide (I
(202) Degradation activity was measured.

即ち−まず三角フラスコ31中に、9mou/d m’
 N a OH水溶液に酸化物触媒を約0.02重1%
分散させた液30を入れ、この中に、2重量%過酸化水
素水32を滴下ロート33にて滴下した。この三角フラ
スコ31は・1ffl ?H槽34内に入れて80℃に
保持し、また、液30はマグネティックスタラ−35で
攪拌した。
That is, - First, in the Erlenmeyer flask 31, 9 mou/d m'
Approximately 0.02% by weight of oxide catalyst in NaOH aqueous solution
The dispersed liquid 30 was put thereinto, and a 2% by weight hydrogen peroxide solution 32 was dropped into it using a dropping funnel 33. Is this Erlenmeyer flask 31 1ffl? The liquid 30 was placed in an H tank 34 and maintained at 80°C, and the liquid 30 was stirred with a magnetic stirrer 35.

この時、生成する酸素を、水36を入れた容器(300
0cm)37に導入し、メスシリンダー38に水を送っ
てガス置換法により酸素の生成速度を測定し、酸化物触
媒1g当りのH2O2分解活性を求めた。
At this time, the generated oxygen is transferred to a container containing water 36 (300
0 cm) 37, water was sent to the graduated cylinder 38, and the rate of oxygen production was measured by a gas replacement method to determine the H2O2 decomposition activity per 1 g of oxide catalyst.

結果を第10図に示す。The results are shown in FIG.

第10図より明らかなようにH2022分解活性Ca置
換量x=0.4で極大値をとる。この傾向は、実施例2
の電極活性の結果とよく対応しており、触媒の8202
分解活性が、電極性能を大きく左右していることが明ら
かである。
As is clear from FIG. 10, the maximum value is reached when the H2022 decomposition active Ca substitution amount x=0.4. This tendency can be seen in Example 2
It corresponds well with the electrode activity result of 8202 of the catalyst.
It is clear that the decomposition activity greatly influences the electrode performance.

実施例3 製造例3において、ACP法により作製したLao、s
 Cao、4 COO3(No、3)を用いて製造した
電極、及び触媒無添加(No、5)にて同様にして製造
した電極について、短期連続試験を300 m A /
 c m’の定電流密度で行ない、その時の電位の経時
変化を調べた。
Example 3 In Production Example 3, Lao,s produced by the ACP method
A short-term continuous test was conducted at 300 m A / 300 m A / for an electrode manufactured using Cao, 4 COO3 (No. 3) and an electrode manufactured in the same manner without adding a catalyst (No. 5).
The test was carried out at a constant current density of cm', and the change in potential over time was investigated.

結果を第11図に示す。The results are shown in FIG.

第11図から明らかなように、触媒無添加(NO,5)
の電極は、本発明のLaCaCo0a系触媒(No、3
)を添加した電極に比し、電極性能もかなり劣っている
上に、30時間後から電位の低下が見られる。一方、本
発明の酸化物触媒を添加した電極は、測定を続けた50
時間後も極めて安定に作動する。
As is clear from Figure 11, no catalyst added (NO, 5)
The electrode was made of the LaCaCo0a-based catalyst of the present invention (No. 3
), the electrode performance was considerably inferior to that of the electrode with the addition of 30%, and a decrease in potential was observed after 30 hours. On the other hand, the electrode to which the oxide catalyst of the present invention was added continued to be measured.
It operates extremely stably even after hours.

[発明の効果コ 以上詳述した通り、本発明のガス拡散型酸素電極によれ
ば、著しく電極活性、作動特性等が高く、電極性能及び
耐久性に優れた高性能ガス拡散型酸素電極が提供される
[Effects of the Invention] As detailed above, the gas diffusion type oxygen electrode of the present invention provides a high-performance gas diffusion type oxygen electrode with extremely high electrode activity, operating characteristics, etc., and excellent electrode performance and durability. be done.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はガス拡散型酸素電極の構成を示す断面図、第2
図及び第3図は酸化物触媒の調製方法を示す系統図、第
4図はホットプレス法の一例を示す概略断面図、第5図
は電極特性の測定方法を示す概略的な断面図、第6図及
び第7図は実施例1の結果を示すグラフ、第8図は実施
例2の結果を示すグラフ、第9図は実験例2の装置を示
す概略的な断面図、第10図は実験例2の結果を示すグ
ラフ、第11図は実施例3の結果を示すグラフである。 1・・・ガス拡散型酸素′gjL極、 2・・・ガス供給層、 3・・・反応層。
Figure 1 is a cross-sectional view showing the configuration of a gas diffusion type oxygen electrode;
3 and 3 are system diagrams showing a method for preparing an oxide catalyst, FIG. 4 is a schematic cross-sectional view showing an example of the hot press method, FIG. 5 is a schematic cross-sectional view showing a method for measuring electrode characteristics, and FIG. 6 and 7 are graphs showing the results of Example 1, FIG. 8 is a graph showing the results of Example 2, FIG. 9 is a schematic cross-sectional view showing the apparatus of Experimental Example 2, and FIG. 10 is a graph showing the results of Example 2. A graph showing the results of Experimental Example 2, and FIG. 11 is a graph showing the results of Example 3. 1... Gas diffusion type oxygen'gjL pole, 2... Gas supply layer, 3... Reaction layer.

Claims (2)

【特許請求の範囲】[Claims] (1)炭素及びポリテトラフルオロエチレンを含むガス
供給層と、炭素、ポリテトラフルオロエチレン及び酸化
物触媒を含む反応層とを備えるガス拡散型酸素電極にお
いて、酸化物触媒として下記組成を有するペロブストカ
イト型酸化物触媒を用いたことを特徴とするガス拡散型
酸素電極。 La_1_−_xCa_xMnO_3 (ただし、0.05≦x≦0.9)
(1) In a gas diffusion type oxygen electrode comprising a gas supply layer containing carbon and polytetrafluoroethylene and a reaction layer containing carbon, polytetrafluoroethylene and an oxide catalyst, a perobst having the following composition as an oxide catalyst A gas diffusion type oxygen electrode characterized by using a kite-type oxide catalyst. La_1_-_xCa_xMnO_3 (0.05≦x≦0.9)
(2)炭素及びポリテトラフルオロエチレンを含むガス
供給層と、炭素、ポリテトラフルオロエチレン及び酸化
物触媒を含む反応層とを備えるガス拡散型酸素電極にお
いて、酸化物触媒として下記組成を有するペロブストカ
イト型酸化物触媒を用いたことを特徴とするガス拡散型
酸素電極。 La_1_−_yCa_yCoO_3 (ただし、0.05≦y≦0.9)
(2) In a gas diffusion type oxygen electrode comprising a gas supply layer containing carbon and polytetrafluoroethylene and a reaction layer containing carbon, polytetrafluoroethylene and an oxide catalyst, a perobst having the following composition as an oxide catalyst A gas diffusion type oxygen electrode characterized by using a kite-type oxide catalyst. La_1_−_yCa_yCoO_3 (however, 0.05≦y≦0.9)
JP63155662A 1988-06-23 1988-06-23 Gas diffusion type oxygen electrode Granted JPH025364A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63155662A JPH025364A (en) 1988-06-23 1988-06-23 Gas diffusion type oxygen electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63155662A JPH025364A (en) 1988-06-23 1988-06-23 Gas diffusion type oxygen electrode

Publications (2)

Publication Number Publication Date
JPH025364A true JPH025364A (en) 1990-01-10
JPH0546062B2 JPH0546062B2 (en) 1993-07-12

Family

ID=15610850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63155662A Granted JPH025364A (en) 1988-06-23 1988-06-23 Gas diffusion type oxygen electrode

Country Status (1)

Country Link
JP (1) JPH025364A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0750864A (en) * 1994-06-02 1995-02-21 Casio Comput Co Ltd Paging receiver
JP2003027269A (en) * 2001-07-11 2003-01-29 Choichi Furuya Catalyst-containing gas diffusion electrode
JP2006012764A (en) * 2004-05-28 2006-01-12 Dowa Mining Co Ltd Material for electrode of solid electrolyte type fuel cell and electrode

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0677015U (en) * 1993-02-05 1994-10-28 日精電機工業株式会社 Optical pickup device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0750864A (en) * 1994-06-02 1995-02-21 Casio Comput Co Ltd Paging receiver
JP2003027269A (en) * 2001-07-11 2003-01-29 Choichi Furuya Catalyst-containing gas diffusion electrode
JP2006012764A (en) * 2004-05-28 2006-01-12 Dowa Mining Co Ltd Material for electrode of solid electrolyte type fuel cell and electrode

Also Published As

Publication number Publication date
JPH0546062B2 (en) 1993-07-12

Similar Documents

Publication Publication Date Title
Xue et al. Transition metal oxide-based oxygen reduction reaction electrocatalysts for energy conversion systems with aqueous electrolytes
JP4161382B2 (en) Process for producing two-layer structured particulate composition
TW565531B (en) Lithium manganate, method for producing the same, and lithium by the method cell produced
JP5869169B1 (en) Perovskite oxide catalyst for oxygen evolution reaction
Li et al. Synthesis and characterization of Mo-doped LiNi0. 5Co0. 2Mn0. 3O2 cathode materials prepared by a hydrothermal process
WO1997045885A1 (en) Composite ceramic powder, method for manufacturing the powder, electrode for solid electrolytic fuel cell, and method for manufacturing the electrode
WO2020096022A1 (en) Material for oxygen evolution (oer) electrode catalyst, and use thereof
JP6858992B2 (en) Melilite type composite oxide
Gao et al. Preparation and characterization of La1− xSrxNiyFe1− yO3− δ cathodes for low-temperature solid oxide fuel cells
Kahoul et al. Solvent effect on synthesis of perovskite-type La1− xCaxCoO3 and their electrochemical properties for oxygen reactions
Silva et al. Electrochemical assessment of novel misfit Ca-cobaltite-based composite SOFC cathodes synthesized by solution blow spinning
Zhang et al. Synthesis of La0. 2Sr0. 8CoO3 and its electrocatalytic activity for oxygen evolution reaction in alkaline solution
Chen et al. La0. 7Sr0. 3FeO3− δ composite cathode enhanced by Sm0. 5Sr0. 5CoO3− δ impregnation for proton conducting SOFCs
JP6987383B2 (en) Positive electrode catalyst for metal-air battery and metal-air battery
Amira et al. Carbon-based lanthanum nickelate material La 2− x− y Nd x Pr y NiO 4+ δ (x= 0, 0.3, and 0.5; y= 0 and 0.2) as a bifunctional electrocatalyst for oxygen reduction in alkaline media
Wang et al. Structure-dependent electrocatalytic activity of La 1-x Sr x MnO 3 for oxygen reduction reaction
JP2005190833A (en) Electrode for secondary battery
Sung et al. Efficient Li2O2 oxidation kinetics of perovskite-type lanthanum chromium-based oxide by promoter interface formation for lithium-oxygen batteries
Hou et al. Enhanced electrochemical activity and durability of a direct ammonia protonic ceramic fuel cell enabled by an internal catalyst layer
Quan et al. Facile hybrid strategy of SrCo0. 5Fe0. 3Mo0. 2O3-δ/Co3O4 heterostructure for efficient oxygen evolution reaction
Li et al. Superior bifunctional oxygen electrocatalysts based on Co2MnO4 with mixed site occupancy, Mn-rich surfaces and twin defects
JPH025364A (en) Gas diffusion type oxygen electrode
Wei et al. La 0.6 Sr 0.4 CoO 3− δ–Ce 0.8 Gd 0.2 O 2− δ nanocomposites prepared by a sol–gel process for intermediate temperature solid oxide fuel cell cathode applications
JP3586883B2 (en) Catalyst for oxygen reduction electrode
WO2019093441A1 (en) Amorphous transition metal oxide and use thereof