JP2003027269A - Catalyst-containing gas diffusion electrode - Google Patents

Catalyst-containing gas diffusion electrode

Info

Publication number
JP2003027269A
JP2003027269A JP2001210853A JP2001210853A JP2003027269A JP 2003027269 A JP2003027269 A JP 2003027269A JP 2001210853 A JP2001210853 A JP 2001210853A JP 2001210853 A JP2001210853 A JP 2001210853A JP 2003027269 A JP2003027269 A JP 2003027269A
Authority
JP
Japan
Prior art keywords
gas diffusion
diffusion electrode
gas supply
supply layer
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001210853A
Other languages
Japanese (ja)
Inventor
Choichi Furuya
長一 古屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ASS FOR PROGRESS OF NEW CH
ASSOCIATION FOR PROGRESS OF NEW CHEMISTRY
Original Assignee
ASS FOR PROGRESS OF NEW CH
ASSOCIATION FOR PROGRESS OF NEW CHEMISTRY
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ASS FOR PROGRESS OF NEW CH, ASSOCIATION FOR PROGRESS OF NEW CHEMISTRY filed Critical ASS FOR PROGRESS OF NEW CH
Priority to JP2001210853A priority Critical patent/JP2003027269A/en
Publication of JP2003027269A publication Critical patent/JP2003027269A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inert Electrodes (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a gas diffusion electrode of a long life by constituting the electrode in such a manner that a hydrophobic property is not lost in a gas diffusion layer, thereby preventing its performance from being degraded by the infiltration of liquid. SOLUTION: This gas diffusion electrode consisting of a reaction layer and a gas supply layer is characterized in that the gas supply layer is a structure formed by diffusing hydrogen peroxide decomposing catalyst particulates into the structure consisting of hydrophobic carbon black and fluororesin and having gas permeability. The method for manufacturing the gas diffusion electrode consisting of the reaction layer and the gas supply layer comprises forming the gas supply layer from a slurry prepared by dispersing the hydrophobic carbon black, the fluororesin dispersion and the hydrogen peroxide decomposing catalyst particulates into an aqueous solution containing a surfactant.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、食塩電解の酸素陰
極、燃料電池等に用いるガス拡散電極及びその製造方法
に関し、特に長時間の使用でも疎水性を失わず長寿命な
ガス拡散電極及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas diffusion electrode used in an oxygen cathode for salt electrolysis, a fuel cell and the like, and a method for producing the same, and particularly to a gas diffusion electrode which does not lose its hydrophobicity even after long-term use and has a long life. It relates to a manufacturing method.

【0002】[0002]

【従来の技術】ガス拡散電極は、通常反応層とガス供給
層から構成される構造を有しており、反応層は電解液に
接し、ガス供給層はガス室側に接し、ガス室から供給さ
れるガス成分は、ガス供給層を通って反応層へ送られ
る。本発明者が開発しているガス拡散電極においては、
反応層は、通常触媒担持親水性カーボンブラックと疎水
性カーボンブラック及びポリテトラフルオロエチレン
(PTFE)から構成される。また、ガス供給層は疎水
性カーボンブラックとPTFEから構成され、電解液の
ガス室への浸透防止と反応層へのガス供給通路となる。
反応層中で酸素還元反応が進行する。しかし、この構成
のガス拡散電極を長期間使用すると反応層とガス供給層
との界面のガス供給層の疎水性カーボンブラックも電位
によって酸化されて親水性になることが判明した。これ
はカーボンブラック表面で酸素が還元され、過酸化水素
が生成し、この過酸化水素が疎水性カーボンブラックの
表面を酸化し、その結果疎水性のカーボンブラックが親
水化し、電解液が大量にしみ込みガス供給通路を塞ぎ、
反応層へのガス供給能が低下することで性能が悪くな
る。
2. Description of the Related Art A gas diffusion electrode usually has a structure composed of a reaction layer and a gas supply layer. The reaction layer is in contact with the electrolytic solution, the gas supply layer is in contact with the gas chamber side, and the gas is supplied from the gas chamber. The generated gas component is sent to the reaction layer through the gas supply layer. In the gas diffusion electrode developed by the present inventor,
The reaction layer is usually composed of a catalyst-supporting hydrophilic carbon black, a hydrophobic carbon black and polytetrafluoroethylene (PTFE). The gas supply layer is composed of hydrophobic carbon black and PTFE and serves as a gas supply passage to the reaction layer and to prevent permeation of the electrolytic solution into the gas chamber.
The oxygen reduction reaction proceeds in the reaction layer. However, it has been found that when the gas diffusion electrode having this structure is used for a long period of time, the hydrophobic carbon black in the gas supply layer at the interface between the reaction layer and the gas supply layer is oxidized by the potential and becomes hydrophilic. This is because oxygen is reduced on the surface of carbon black, hydrogen peroxide is generated, and this hydrogen peroxide oxidizes the surface of the hydrophobic carbon black, and as a result, the hydrophobic carbon black becomes hydrophilic and a large amount of electrolyte solution stains. Block the gas supply passage,
The performance deteriorates because the gas supply ability to the reaction layer decreases.

【0003】[0003]

【発明が解決しようとする課題】このように、この種の
ガス拡散電極では、疎水性カーボンブラックでも過酸化
水素発生電位で酸素還元反応を続けるとカーボンブラッ
ク表面が酸化されて親水性になり電解液がガス供給層内
部にまで浸入するようになる。本発明は、このような欠
点がなく、長時間使用しても性能が低下せず、長寿命の
ガス拡散電極及びその製造方法を提供することを目的と
する。
As described above, in this type of gas diffusion electrode, even if hydrophobic carbon black is used, if the oxygen reduction reaction is continued at the hydrogen peroxide generation potential, the surface of the carbon black is oxidized and becomes hydrophilic, resulting in electrolysis. The liquid comes into the inside of the gas supply layer. An object of the present invention is to provide a gas diffusion electrode which does not have such drawbacks, does not deteriorate in performance even after long-term use, and has a long life, and a method for manufacturing the same.

【0004】[0004]

【課題を解決するための手段】本発明者は、上記の課題
を解決するための手段を種々検討したところ、ガス拡散
電極に電解液が浸入してその性能が低下するのは、疎水
性カーボンブラックがその疎水性を失うためであるか
ら、その疎水性を失うことなく長期に保持できるように
すればよいのであるが、疎水性カーボンブラックがその
疎水性を失うのは、疎水性カーボンブラックが酸化され
ることによるものであるから、酸化されないようにすれ
ばよいことを着目した。そして、ガス供給層の疎水性カ
ーボンブラックの周囲において酸化作用をする過酸化水
素が存在しないようにすればよいことから、過酸化水素
が発生した場合にそれを分解できるようにすればよいこ
とを基礎として、本発明に到達した。
Means for Solving the Problems The present inventor has studied various means for solving the above-mentioned problems. As a result, it is found that the performance of the hydrophobic carbon decreases when the electrolytic solution enters the gas diffusion electrode. Because black loses its hydrophobicity, it should be able to be retained for a long time without losing its hydrophobicity, but hydrophobic carbon black loses its hydrophobicity when hydrophobic carbon black is used. Since it is due to being oxidized, we paid attention to the fact that it should be prevented from being oxidized. Further, since it is sufficient to prevent hydrogen peroxide which has an oxidizing effect from existing around the hydrophobic carbon black of the gas supply layer, it is only necessary to be able to decompose hydrogen peroxide when it is generated. As a basis, the invention has been reached.

【0005】そこで、過酸化水素が存在しないようにす
るには、ガス供給層内部にも銀微粒子等の過酸化水素分
解触媒を存在させればいい訳である。しかし、銀微粒子
が多すぎたり、偏在していると親水性の銀微粒子を伝わ
ってやはりガス供給層内部に電解液が浸入し、やがてガ
ス室まで達してしまう。銀微粒子同士が接触せず孤立し
ていると疎水性カーボンブラックが親水化して過酸化水
素が生成しても近傍の銀微粒子がすぐに過酸化水素を分
解するのでこれ以上親水化が進行しない。
Therefore, in order to prevent the presence of hydrogen peroxide, it is sufficient to make a hydrogen peroxide decomposition catalyst such as silver fine particles also exist inside the gas supply layer. However, if there are too many silver fine particles or if they are unevenly distributed, the electrolytic solution will penetrate into the gas supply layer through the hydrophilic silver fine particles and eventually reach the gas chamber. If the silver fine particles are not in contact with each other and are isolated from each other, even if the hydrophobic carbon black becomes hydrophilic and hydrogen peroxide is produced, the nearby silver fine particles immediately decompose the hydrogen peroxide, so that the hydrophilicization does not proceed any further.

【0006】すなわち、本発明は下記の手段によって前
記の課題を解決した。 (1)反応層とガス供給層とからなるガス拡散電極にお
いて、ガス供給層が、疎水性カーボンブラックとフッ素
樹脂から成るガス透過能を有する組織中に過酸化水素分
解触媒微粒子を分散させた構造体であることを特徴とす
るガス拡散電極。 (2)反応層とガス供給層とからなるガス拡散電極の製
造方法において、界面活性剤を含む水溶液中で疎水性カ
ーボンブラック、フッ素樹脂ディスパージョン及び過酸
化水素分解触媒微粒子を分散させたスラリーからガス供
給層を形成させることを特徴とするガス拡散電極の製造
方法。 (3)界面活性剤を含む水溶液中で疎水性カーボンブラ
ック、フッ素樹脂ディスパージョン及び過酸化水素分解
触媒微粒子を分散させたスラリーからガス拡散電極を形
成させることを特徴とするガス拡散電極の製造方法。
That is, the present invention has solved the above problems by the following means. (1) In a gas diffusion electrode composed of a reaction layer and a gas supply layer, the gas supply layer has a structure in which fine particles of hydrogen peroxide decomposition catalyst are dispersed in a tissue having gas permeability which is composed of hydrophobic carbon black and a fluororesin. A gas diffusion electrode characterized by being a body. (2) In a method for producing a gas diffusion electrode comprising a reaction layer and a gas supply layer, from a slurry in which hydrophobic carbon black, fluororesin dispersion and hydrogen peroxide decomposition catalyst fine particles are dispersed in an aqueous solution containing a surfactant. A method for manufacturing a gas diffusion electrode, which comprises forming a gas supply layer. (3) A method for producing a gas diffusion electrode, which comprises forming a gas diffusion electrode from a slurry in which hydrophobic carbon black, fluororesin dispersion and hydrogen peroxide decomposition catalyst fine particles are dispersed in an aqueous solution containing a surfactant. .

【0007】[0007]

【発明の実施の形態】本発明のガス拡散電極を製造する
ためには、導電性基体を支持体とし、その各面に反応層
と、ガス拡散層を形成させる。そのためには、前記の反
応層材料を混合したスラリーにアルコールを添加して自
己組織化して粘稠物とし、あるいはそれを粉末化したも
のをローラーで反応層シートを作る。また、ガス拡散層
材料を混合したスラリーから同様にしてガス供給層シー
トを作る。
BEST MODE FOR CARRYING OUT THE INVENTION In order to manufacture the gas diffusion electrode of the present invention, a conductive substrate is used as a support, and a reaction layer and a gas diffusion layer are formed on each surface of the support. For that purpose, alcohol is added to the slurry in which the reaction layer materials are mixed to self-assemble into a viscous material, or a powdered product thereof is made into a reaction layer sheet with a roller. Further, a gas supply layer sheet is prepared in the same manner from the slurry in which the gas diffusion layer material is mixed.

【0008】このガス供給層シートは例えば銀金網のよ
うな導電性基体を間に挟んで反応層シートと重ね合わせ
てホットプレスする事でガス拡散電極が得られる。ま
た、ガス供給層シートのみをホットプレスしてもガス拡
散電極として使用できる。過酸化水素分解能力がある触
媒は銀、白金属、Co、Mn等の金属、合金、酸化物の
微粒子が利用可能である。また、ジルコニア微粒子等耐
食性の微粒子に触媒を担持したもの等も使用できる。粒
径は0.05から1ミクロン程度がよく、粒径は均一な
物がよい。特に分散した疎水性カーボンブラックの粒径
とあまり差がない0.3ミクロン程度で且つ粒径が揃っ
た微粒子がよい。触媒微粒子は体積割合で1〜20%が
良く、5〜10%が好適である。あまり少ないと効果が
ないし、多いと触媒自身が親水性なので電解液が浸透し
てしまうので不適である。
A gas diffusion electrode can be obtained by hot pressing the gas supply layer sheet and the reaction layer sheet with a conductive substrate such as a silver wire mesh interposed therebetween. Further, even if only the gas supply layer sheet is hot pressed, it can be used as a gas diffusion electrode. As the catalyst capable of decomposing hydrogen peroxide, fine particles of silver, white metal, metals such as Co and Mn, alloys, and oxides can be used. Further, it is also possible to use a material in which a catalyst is supported on fine particles of corrosion resistance such as fine particles of zirconia. The particle size is preferably 0.05 to 1 micron, and a uniform particle size is preferred. In particular, fine particles having a uniform particle size of about 0.3 μm which is not so different from the particle size of the dispersed hydrophobic carbon black are preferable. The volume ratio of the catalyst fine particles is preferably 1 to 20%, and is preferably 5 to 10%. If the amount is too small, there is no effect, and if the amount is too large, the catalyst itself is hydrophilic and the electrolyte solution permeates, which is not suitable.

【0009】また、本発明のガス拡散電極を製造するに
は、前記したように、反応層シートとガス供給層シート
を用意しなくとも、もっと簡単な方法によって製造する
ことができる。界面活性剤を含む水溶液中で疎水性カー
ボンブラック、フッ素樹脂ディスパージョン及び過酸化
水素分解触媒微粒子を分散させたスラリーからガス供給
層よりなる電極を形成させ、その電極の一方の面を親水
化することにより、反応層に変えて、反応層とガス供給
層とからなるガス拡散電極とすることができる。その親
水化する手段としては、例えばその電極を酸素が微量存
在する条件で水素が発生するように液中で電解すればよ
い。その他の手段を採用することもできる。
Further, as described above, the gas diffusion electrode of the present invention can be manufactured by a simpler method without preparing the reaction layer sheet and the gas supply layer sheet. An electrode consisting of a gas supply layer is formed from a slurry in which hydrophobic carbon black, fluororesin dispersion and hydrogen peroxide decomposition catalyst fine particles are dispersed in an aqueous solution containing a surfactant, and one surface of the electrode is made hydrophilic. As a result, a gas diffusion electrode including a reaction layer and a gas supply layer can be used instead of the reaction layer. As a means for making it hydrophilic, for example, the electrode may be electrolyzed in a liquid so that hydrogen is generated under the condition that a slight amount of oxygen exists. Other means can also be adopted.

【0010】[0010]

【実施例】以下実施例により本発明を具体的に説明す
る。ただし、本発明はこれらの実施例のみに限定される
ものではない。
The present invention will be described in detail with reference to the following examples. However, the present invention is not limited to these examples.

【0011】実施例1 疎水性カーボンブラック(No.6、平均粒径500オ
ングストローム、試作品、電気化学工業社製)2部に4
%トライトン(界面活性剤)を20部、ジェットミル分
散させ、疎水性カーボンブラックの平均粒径0.4ミク
ロンの分散液を得た。PTFEディスパージョン(D−
1,ダイキン工業社製)1.5部を攪拌混合させる。次に
銀微粒子(平均粒径0.3ミクロン、3030HD、三
井金属鉱業社製)を10部添加し、混合分散した。エタ
ノールを25部添加して凝集させ、濾過、乾燥し、それ
からガス供給層原料粉末を得た。また、界面活性剤(ト
ライトン)4%含む水に前記と同じ疎水性カーボンブラ
ックを軽く分散させ、ジェットミルを用い1000kg
/cm2の圧力で0.2mm径の2つのノズルで高速流
を衝突させることで平均粒径0.45ミクロンに分散し
た。このカーボンブラック分散液に田中貴金属製の平均
粒径0.1ミクロンの銀コロイド分散液を添加攪拌混
合、更に、PTFEディスパージョンを添加、攪拌混合
のみで分散操作を行い、最後にエチルアルコールを添加
混合して自己組織化させ反応層原料を得る。
Example 1 Hydrophobic carbon black (No. 6, average particle size of 500 Å, prototype, manufactured by Denki Kagaku Kogyo Co., Ltd.) 4 in 2 parts
% Triton (surfactant) (20 parts) was dispersed in a jet mill to obtain a dispersion of hydrophobic carbon black having an average particle size of 0.4 micron. PTFE dispersion (D-
1.5 parts by Daikin Industries, Ltd.) are mixed by stirring. Next, 10 parts of silver fine particles (average particle size 0.3 micron, 3030HD, manufactured by Mitsui Mining & Smelting Co., Ltd.) were added and mixed and dispersed. 25 parts of ethanol was added to cause coagulation, filtration and drying, and then a gas supply layer raw material powder was obtained. Further, the same hydrophobic carbon black as described above is lightly dispersed in water containing 4% of a surfactant (Triton), and 1000 kg is obtained using a jet mill.
A high-speed flow was collided with two nozzles having a diameter of 0.2 mm at a pressure of / cm 2 to disperse the particles having an average particle diameter of 0.45 μm. To this carbon black dispersion, a silver colloid dispersion made by Tanaka Kikinzoku Co., Ltd. having an average particle size of 0.1 micron was added and mixed by stirring, further, PTFE dispersion was added, and the dispersion operation was performed only by stirring and mixing, and finally ethyl alcohol was added. The reaction layer raw material is obtained by mixing and self-assembling.

【0012】この反応層原料にソルベントナフサを加
え、ロールすることで厚さ0.5mmのシートをつく
り、別に前記のガス供給層原料粉末にソルベントナフサ
を加え、ロールすることで厚さ2mmのシートを作り、
これを重ねあわせ、ロールすることで全体の厚さを0.
6mmとする。このシートをエチルアルコールを用いた
抽出器で界面活性剤を除去する。100℃で乾燥後、5
0メッシュ、0.19mm厚の銀網をガス供給層側に敷
き、380℃、50kg/cm2の圧力で60秒間ホッ
トプレスすることにより、ガス拡散電極を得た。得られ
たガス拡散電極のガス供給層の微細構造を調べたとこ
ろ、触媒の銀微粒子は、独立して分散して存在している
ことが確認された。この電極の酸素還元性能を測定し
た。その結果、30A/dm2で0.78V(vs.R
HE)の高い性能が得られた。更に、小型の食塩電解槽
で長期試験を行ったところ2年経過後も安定に電解中で
ある。
A solvent naphtha is added to this reaction layer raw material and rolled to form a sheet having a thickness of 0.5 mm. Separately, solvent naphtha is added to the gas supply layer raw material powder and rolled to obtain a sheet having a thickness of 2 mm. Make
By stacking this and rolling it, the total thickness becomes 0.
6 mm. Surfactant is removed from this sheet with an extractor using ethyl alcohol. After drying at 100 ° C, 5
A 0 mesh, 0.19 mm thick silver net was laid on the gas supply layer side and hot pressed at 380 ° C. and a pressure of 50 kg / cm 2 for 60 seconds to obtain a gas diffusion electrode. When the fine structure of the gas supply layer of the obtained gas diffusion electrode was examined, it was confirmed that the silver fine particles of the catalyst exist independently dispersed. The oxygen reduction performance of this electrode was measured. As a result, 0.78 V (vs. R at 30 A / dm 2
High performance of HE) was obtained. Furthermore, when a long-term test was carried out in a small salt electrolysis tank, electrolysis was stably performed even after 2 years had passed.

【0013】実施例2 上記のガス供給層原料のみで作ったシートと銀網をホッ
トプレスして、銀が孤立分散した疎水性カーボンブラッ
クとPTFEからなる単層ガス拡散電極を得た。この電
極を酸素が微量存在する条件で水素発生操作を30分す
ること電極を活性化した。この電極の酸素還元性能を測
定したところ、30A/dm2で0.76V(vs.R
HE)の高い性能が得られた。活性化処理で大量の過酸
化水素が発生して一部の疎水性カーボンブラックが親水
化して反応層化する事が分かった。しかし、この電極表
面は変化無く安定性が高いことが分かった。
Example 2 A sheet made of only the above-mentioned gas supply layer raw material and a silver net were hot-pressed to obtain a single-layer gas diffusion electrode made of hydrophobic carbon black in which silver was isolated and dispersed and PTFE. The electrode was activated by subjecting this electrode to a hydrogen generation operation for 30 minutes under the condition that a slight amount of oxygen was present. When the oxygen reduction performance of this electrode was measured, it was 0.76 V (vs.R) at 30 A / dm 2.
High performance of HE) was obtained. It was found that a large amount of hydrogen peroxide was generated by the activation treatment and a part of the hydrophobic carbon black was made hydrophilic to form a reaction layer. However, it was found that the surface of this electrode remained stable without change.

【0014】比較例1 疎水性カーボンブラック(No.6、電気化学工業社
製)50gを界面活性剤を4%含む水500mlに分散
させ、ジェットミルで2回分散操作を行い0.6ミクロン
以下の粒径にする。これにPTFE40%となるように
PTFEディスパージョンを添加、混合する。この触媒
を含まない分散液にアルコールを添加して凝集させ、濾
過、乾燥して通常のガス供給層原料粉末を得る。この粉
末にソルベントナフサを加え、餅状にし、0.5mm厚
のシートにロールし、界面活性剤除去、乾燥してガス供
給層シートを得る。この通常のガス供給層シートと50
メッシュ、0.19mm厚の銀網を380℃、50kg
/cm2の圧力で60秒間ホットプレスすることでガス
供給層のみのガス拡散電極を得た。
Comparative Example 1 50 g of hydrophobic carbon black (No. 6, manufactured by Denki Kagaku Kogyo Co., Ltd.) was dispersed in 500 ml of water containing 4% of a surfactant, and dispersed twice with a jet mill to obtain particles of 0.6 micron or less. Diameter. The PTFE dispersion is added to and mixed with this so that the content of PTFE will be 40%. Alcohol is added to the dispersion liquid containing no catalyst to coagulate it, followed by filtration and drying to obtain an ordinary gas supply layer raw material powder. Solvent naphtha was added to this powder to form a dough, which was rolled into a 0.5 mm thick sheet, the surfactant was removed, and the sheet was dried to obtain a gas supply layer sheet. This normal gas supply layer sheet and 50
Mesh, 0.19 mm thick silver net at 380 ° C, 50 kg
A gas diffusion electrode having only a gas supply layer was obtained by hot pressing at a pressure of / cm 2 for 60 seconds.

【0015】水素発生操作を30分することで活性化し
た。この電極の酸素還元性能を測定したところ、80
℃、30A/dm2で0.68V(vs.RHE)の性
能が得られた。しかし、電解後に電極表面を観察すると
0.3mm程度の溝が電極全体に出来ていた。これは疎
水性カーボンブラックが過酸化水素で親水化し反応層化
すると共に更に過酸化水素が大量に生成し反応層化した
部分が膨潤させられた結果であると判明した。
The hydrogen generation operation was activated after 30 minutes. The oxygen reduction performance of this electrode was measured and found to be 80
A performance of 0.68 V (vs. RHE) was obtained at 30 ° C. and 30 A / dm 2 . However, when the electrode surface was observed after electrolysis, a groove of about 0.3 mm was formed on the entire electrode. This was found to be the result of the hydrophobic carbon black becoming hydrophilic with hydrogen peroxide to form a reaction layer, and at the same time a large amount of hydrogen peroxide was generated to swell the reaction layer.

【0016】[0016]

【発明の効果】本発明のガス拡散電極では、ガス拡散電
極のガス供給層中に過酸化水素分解能力がある触媒微粒
子を孤立分散させることで疎水性カーボンブラックの親
水化を阻止することが出来る。カーボンブラック上で過
酸化水素の生成は必然であるが、生成しても近くにある
触媒上ですぐに分解されるのでそれ以上の親水化は阻止
できる。その結果、長時間使用してもガス供給層に浸水
せず、長寿命のガス拡散電極となる。また、触媒分散単
層ガス拡散電極は電解中に必要な部分だけ親水化し、反
応層を自己生成するので、食塩電解用の酸素陰極として
は有効な電極となる。
EFFECT OF THE INVENTION In the gas diffusion electrode of the present invention, it is possible to prevent the hydrophilization of the hydrophobic carbon black by separately dispersing the catalyst fine particles capable of decomposing hydrogen peroxide in the gas supply layer of the gas diffusion electrode. . Hydrogen peroxide is inevitably produced on carbon black, but even if it is produced, it is decomposed immediately on the nearby catalyst, so that further hydrophilization can be prevented. As a result, even if it is used for a long time, the gas supply layer will not be flooded, and the gas diffusion electrode will have a long life. In addition, the catalyst-dispersed single-layer gas diffusion electrode is made effective as an oxygen cathode for salt electrolysis because it hydrophilizes only a necessary portion during electrolysis and self-generates a reaction layer.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 反応層とガス供給層とからなるガス拡散
電極において、ガス供給層が、疎水性カーボンブラック
とフッ素樹脂から成るガス透過能を有する組織中に過酸
化水素分解触媒微粒子を分散させた構造体であることを
特徴とするガス拡散電極。
1. A gas diffusion electrode comprising a reaction layer and a gas supply layer, wherein the gas supply layer comprises hydrogen peroxide decomposition catalyst fine particles dispersed in a tissue composed of hydrophobic carbon black and fluororesin and having gas permeability. A gas diffusion electrode, which is a structure having a different structure.
【請求項2】 反応層とガス供給層とからなるガス拡散
電極の製造方法において、界面活性剤を含む水溶液中で
疎水性カーボンブラック、フッ素樹脂ディスパージョン
及び過酸化水素分解触媒微粒子を分散させたスラリーか
らガス供給層を形成させることを特徴とするガス拡散電
極の製造方法。
2. A method for producing a gas diffusion electrode comprising a reaction layer and a gas supply layer, wherein hydrophobic carbon black, fluororesin dispersion and hydrogen peroxide decomposition catalyst fine particles are dispersed in an aqueous solution containing a surfactant. A method for producing a gas diffusion electrode, which comprises forming a gas supply layer from a slurry.
【請求項3】 界面活性剤を含む水溶液中で疎水性カー
ボンブラック、フッ素樹脂ディスパージョン及び過酸化
水素分解触媒微粒子を分散させたスラリーからガス拡散
電極を形成させることを特徴とするガス拡散電極の製造
方法。
3. A gas diffusion electrode comprising a slurry in which hydrophobic carbon black, fluororesin dispersion and hydrogen peroxide decomposition catalyst fine particles are dispersed in an aqueous solution containing a surfactant. Production method.
JP2001210853A 2001-07-11 2001-07-11 Catalyst-containing gas diffusion electrode Pending JP2003027269A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001210853A JP2003027269A (en) 2001-07-11 2001-07-11 Catalyst-containing gas diffusion electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001210853A JP2003027269A (en) 2001-07-11 2001-07-11 Catalyst-containing gas diffusion electrode

Publications (1)

Publication Number Publication Date
JP2003027269A true JP2003027269A (en) 2003-01-29

Family

ID=19046261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001210853A Pending JP2003027269A (en) 2001-07-11 2001-07-11 Catalyst-containing gas diffusion electrode

Country Status (1)

Country Link
JP (1) JP2003027269A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007119817A (en) * 2005-10-26 2007-05-17 Permelec Electrode Ltd Gas diffusion cathode for reducing oxygen in brine electrolysis, and brine electrolysis method
JP2007257965A (en) * 2006-03-22 2007-10-04 Toyota Central Res & Dev Lab Inc Polymer electrolyte fuel cell and fuel cell system
JP2021163748A (en) * 2020-03-30 2021-10-11 日本碍子株式会社 Membrane electrode assembly

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH025364A (en) * 1988-06-23 1990-01-10 Mitsui Eng & Shipbuild Co Ltd Gas diffusion type oxygen electrode
JPH04157193A (en) * 1990-10-19 1992-05-29 Tome Sangyo Kk Production of superfine metal grain
JPH06223835A (en) * 1993-01-21 1994-08-12 Aqueous Res:Kk Gas diffusion electrode
JPH08283978A (en) * 1995-04-10 1996-10-29 Permelec Electrode Ltd Production of gas diffusion electrode
JP2000106203A (en) * 1998-09-30 2000-04-11 Aisin Seiki Co Ltd Solid polymer electrolyte membrane, electrode for fuel cell, and solid polymer electrolyte fuel cell
JP2000273676A (en) * 1999-03-19 2000-10-03 Choichi Furuya Gas diffusion electrode in which silver fine particles are filled into gaps
JP2001011676A (en) * 1999-07-01 2001-01-16 Choichi Furuya Production of gas diffusion electrode by self- organization

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH025364A (en) * 1988-06-23 1990-01-10 Mitsui Eng & Shipbuild Co Ltd Gas diffusion type oxygen electrode
JPH04157193A (en) * 1990-10-19 1992-05-29 Tome Sangyo Kk Production of superfine metal grain
JPH06223835A (en) * 1993-01-21 1994-08-12 Aqueous Res:Kk Gas diffusion electrode
JPH08283978A (en) * 1995-04-10 1996-10-29 Permelec Electrode Ltd Production of gas diffusion electrode
JP2000106203A (en) * 1998-09-30 2000-04-11 Aisin Seiki Co Ltd Solid polymer electrolyte membrane, electrode for fuel cell, and solid polymer electrolyte fuel cell
JP2000273676A (en) * 1999-03-19 2000-10-03 Choichi Furuya Gas diffusion electrode in which silver fine particles are filled into gaps
JP2001011676A (en) * 1999-07-01 2001-01-16 Choichi Furuya Production of gas diffusion electrode by self- organization

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007119817A (en) * 2005-10-26 2007-05-17 Permelec Electrode Ltd Gas diffusion cathode for reducing oxygen in brine electrolysis, and brine electrolysis method
JP2007257965A (en) * 2006-03-22 2007-10-04 Toyota Central Res & Dev Lab Inc Polymer electrolyte fuel cell and fuel cell system
JP2021163748A (en) * 2020-03-30 2021-10-11 日本碍子株式会社 Membrane electrode assembly

Similar Documents

Publication Publication Date Title
US20190326607A1 (en) Method for forming noble metal nanoparticles on a support
US4456521A (en) Three layer laminate
US4518705A (en) Three layer laminate
US9023549B2 (en) Gas diffusion electrode
JPH02107792A (en) Platinum black air cathode, its operation method and a laminar gas diffusion electrode having an immediate layer combination
JP7061249B2 (en) Hydrogen generation catalyst, hydrogen generator, hydrogen generation method
WO2016063922A1 (en) Fuel cell electrode catalyst layer, production method therefor, membrane electrode assembly, and solid polymer fuel cell
JP2006297355A (en) Catalyst and its manufacturing method
JP4190026B2 (en) Gas diffusion electrode
CN100486010C (en) Fuel cell
US4337139A (en) Fluorinated carbon electrode
JP4797166B2 (en) Noble metal catalyst-supported conductive polymer composite and method for producing the same
JP6978759B2 (en) Gas diffusion layer for air electrode
JP2005216772A (en) Electrode catalyst, electrode and mea carrying the same
JP2003027269A (en) Catalyst-containing gas diffusion electrode
JP2890486B2 (en) Fuel electrode catalyst for liquid fuel cell and method for producing the same
JP4716825B2 (en) Manufacturing method of gas diffusion electrode
JP2805458B2 (en) Manufacturing method of gas diffusion electrode
JP2005270687A (en) Catalyst-carrying carbon material and its production method
JP2006012691A (en) Electrode catalyst and its method of manufacture
US9966609B2 (en) Gas diffusion electrode and process for making same
JP3373135B2 (en) Method for producing reaction layer of gas diffusion electrode
JP2006051457A (en) Silver-supported catalyst and its production method, and silver catalyst support type gas diffusion electrode, and electrolytic oxidation method and electrolytic oxidation system using it,
JP2909539B1 (en) Gas diffusion electrode
JPS609595B2 (en) Manufacturing method of gas diffusion electrode

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20031225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20031225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040225

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040421

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060424

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060817

A072 Dismissal of procedure [no reply to invitation to correct request for examination]

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20070306

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080321

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080415

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080415

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100803

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110118