JPH0252559B2 - - Google Patents

Info

Publication number
JPH0252559B2
JPH0252559B2 JP6975883A JP6975883A JPH0252559B2 JP H0252559 B2 JPH0252559 B2 JP H0252559B2 JP 6975883 A JP6975883 A JP 6975883A JP 6975883 A JP6975883 A JP 6975883A JP H0252559 B2 JPH0252559 B2 JP H0252559B2
Authority
JP
Japan
Prior art keywords
silica
liquid
solution
seed
mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6975883A
Other languages
Japanese (ja)
Other versions
JPS59196798A (en
Inventor
Goro Sato
Jusaku Arima
Michio Komatsu
Hiroyasu Nishida
Yoshitsune Tanaka
Michasu Hagio
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
Catalysts and Chemicals Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Catalysts and Chemicals Industries Co Ltd filed Critical Catalysts and Chemicals Industries Co Ltd
Priority to JP6975883A priority Critical patent/JPS59196798A/en
Priority to NZ20445583A priority patent/NZ204455A/en
Priority to IT67653/83A priority patent/IT1162875B/en
Priority to PH29046A priority patent/PH19651A/en
Publication of JPS59196798A publication Critical patent/JPS59196798A/en
Publication of JPH0252559B2 publication Critical patent/JPH0252559B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Removal Of Specific Substances (AREA)
  • Silicon Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、過飽和の溶存シリカを含有する水溶
液から過飽和分のシリカを重合させて系外へ分離
し、溶存シリカの含有量を低減せしめる方法に関
する。 過飽和の溶存シリカを含有する水溶液は一見安
定に見えるが、扱う機器へのスケール付着等が起
つて扱い難いものである。例えば、地熱発電所で
蒸気分離後の地熱熱水には地下のシリカが溶け込
んでおり、その濃度は400ppm〜100ppmに達す
る。そして大気圧に放出されたり熱回収されると
液温は下がり、溶存シリカ分はその温度での溶解
度以上、つまり過飽和状態にある。ちなみに非晶
質のシリカは水に対して20℃〜100℃で数十ppm
〜三百数十ppmの溶解度を有する。 従つて、液中にはかなりの量の過飽和シリカが
存在し、この過飽和シリカは不安定で付着力が強
いため機器の接液部でスケールとなつて析出する
ことになる。 スケールトラブルを解消するための研究は過去
において、雑試「セラミツクス」第15巻第2号の
第100頁〜104頁の「地熱発電と熱水の利用」、雑
試「島津評論第28巻第2号別刷第107頁〜120頁
(第1報)、同第121頁〜127頁(第2報)、あるい
は日本化学雑試第91号巻第12号第39頁〜46頁等に
報告されている。これらの報告では、熱水中の過
飽和シリカがコロイド化する過程とシリカの付着
性は相互に関係があることを解明し、シリカコロ
イドの生成速度の大きな条件下ではシリカの管壁
への付着がいちじるしいと述べている。コロイド
生成を50℃まで温度を下げること、かきまぜを行
なうこと、濾過を行なうこと、河川水混入後濾過
することなどはいずれもコロイドの生成を抑える
効果があること等を明らかにし、更にシリカコロ
イドの粒子の大きさが光散乱法で測つて約0.3μと
なり、コロイド抑制に効果のある条件下では付着
が少ないと述べている。しかし、シリカの付着は
上記のようにこれを抑える効果はあるものの又軽
減はされたものの付着の問題が解消したわけでは
なく、なお依然として大きな問題として残つてい
る。 これに対し、本発明者等は上記問題を解決する
ために過飽和シリカの重合について研究を重ねた
結果、過飽和シリカの重合を抑えるのではなく、
強制的に短時間のうちに重合せしめ、重合シリカ
を分離するという思想を基礎にし、更に重合速度
増加の要因及び条件を見い出して本発明を完成し
た。 即ち、本発明は、過飽和溶存シリカを含有する
被処理液とシリカシードを混合し、全シリカ量が
0.05%〜5%の範囲内にあるこの混合液を、PH6
〜10、液温40℃以上に保つて溶存シリカの重合を
促進せしめ、次いで限外膜を用いてシリカ重合物
を分離するものである。 過飽和溶存シリカの重合の反応は、元々含有し
ている溶解シリカだけでは反応のきつかけをつか
めないため、仲々重合を起こさない。重合を起こ
したとしても過飽和分の溶存シリカ含有量を短時
間に低下させることはできない。特にシリカ濃度
400〜500ppmの水溶液は反応のきつかけが殆んど
起らない。これ以上のシリカ濃度においては重合
反応は起るもののその速度は緩慢であるし、析出
した重合シリカは不安定で分離し得ない。 そこで、本発明ではシリカの重合を促進させる
ための他のシリカ源(シリカシード)を被処理液
と混合するのであり、それは被処理液中の溶解シ
リカの重合を生起させる種となつて作用してい
る。 溶解シリカの重合を生起させる種となり得る性
質としては多くの実験の結果、粒子径の小さな物
質群であつた、粒子径の測定できる領域のものも
あれば、現在の測定技術では粒子径の測定できな
い微粒子に至るまで広範囲である。また、ケイ酸
アルカリの加水分解直後のように未だ性状把握し
難いシリカまであり、そのキヤラクタライゼーシ
ヨンは同一性状の定義化は容易ではない。 本発明におけるシリカシードの具体的に限定列
挙すれば次の通りである。 () ケイ酸アルカリ液を酸と共に、又はケイ酸
アルカリ液を予め酸で中和もしくはイオン交換
樹脂で脱アルカリしたシリカ液を被処理液と混
合した場合で、混合後の全シリカ濃度が
500ppm(0.05%)以上の場合に効果が認められ
た。特に1000ppm(0.1%)以上の場合に優れた
効果を発揮する。 () 分画分子量5000の限外膜で分画可能なシリ
カ重合物(別法で粒子径測定できぬ程小さい)
を含有するシリカ液を被処理液と混合すると、
過飽和シリカの濃度が低下し、特に該シリカ液
量が多いほど過飽和シリカの濃度低下の速度は
速くなる。 () 低分子量のシリカ重合物のコロイド径や分
子量の把握は困難であるが、ゲルクロマトグラ
フイー法で測定して溶解シリカの濃度ピーク以
外に明らかに重合シリカの濃度ピークの観察さ
れたシリカ液を被処理液と混合すると、全シリ
カ濃度が500ppm以上で効果が認められた。 () 工業的に合成された一次平均粒子径が4m
μ以上のシリカコロイドを含むシリカ液を用い
た場合、全シリカ濃度が500ppm以上で過飽和
シリカの減少に寄与し、該シリカ液量が多いほ
どその減少速度が大きくなる。 () 非沈降性シリカ重合物の比表面積の測定可
能なシリカ源を用い、その添加量と過飽和シリ
カの減少量を調べた所、第1図の結果を得た。
これにより添加したシリカコロイド群の比表面
積と過飽和シリカの減少量と密接な関係がある
ことが判明し、混合後1の混合液中に1m2
上の比表面積を与える時過飽和シリカの減少効
果があることを知つた。なお、第1図は、後記
の実施例7〜11をプロツトしたものである。 ()〜()及び()を比較説明すると、
()〜()は粒子径よりも分子量として測定
できるシリカ重合体であつて、これらは低分子量
(500〜5000程度)の重合体である。()は通常
市販されているコロイドシリカ液であり、ハンド
リンクの問題で高濃度な液とするために4mμ以
上にまで成長させたもので、()〜()のシ
リカ重合体に比べ一般に密な粒子形態をなしてい
る。 上記の如きシリカシードと被処理液とを混合し
た後の混合液中の全シリカ量は、0.05%〜5%の
範囲内にあることが肝要である。シリカシード量
が多いほど反応が促進されて、過飽和シリカ量が
低減し、その温度での飽和に近づくことになる。 また、混合後反応速度を促進する上ではPH6〜
10の間で温度を40℃以上に保つことが肝要であ
る。望ましくはPH7〜9の間で温度を60℃以上で
あり、反応が一層促進される。 こうして析出せしめたシリカ重合物は、限外膜
を用いて混合液から分離する。限外膜はセルロー
ズ質、ポリイミド質、ポリオレフイン質、ポリス
ルフオン質等いずれも使用可能であり、分画分子
量が5000〜30万程度と広範囲の膜の使用が可能で
ある。使用方法も限外膜の通常の使用条件下で行
つて良く特に限定されない。 本発明によれば、析出するシリカ重合物は安定
で再溶解しにくいものであるため、過飽和シリカ
を効果的に分離することができる。また、分離さ
れた液にはシリカ重合物は含まれず、その温度
での溶解度よりわずかに多い溶解シリカを含むこ
とが認められた。 次に実施例と比較例を示して本発明の効果を明
らかにする。 熱水模凝液の調製法 24wt%シリカ濃度のケイ酸ナトリウム263gを
純水100Kgに溶解して0.063wt%シリカ濃度の希釈
ケイ酸ナトリウムを作り、予め再生した陽イオン
交換樹脂(SK−IB)5を充填した直径10cm、
長さ200cmのカラム中にSV5の速度で上記溶解液
を通過させ、0.06wt%のケイ酸液100を調製し
た。 この0.06wt%のケイ酸液100に
The present invention relates to a method for reducing the content of dissolved silica by polymerizing supersaturated silica from an aqueous solution containing supersaturated dissolved silica and separating it out of the system. Although an aqueous solution containing supersaturated dissolved silica appears to be stable at first glance, it is difficult to handle because it causes scale adhesion to the equipment in which it is handled. For example, underground silica is dissolved in geothermal hot water after steam separation at a geothermal power plant, and its concentration reaches 400ppm to 100ppm. Then, when the liquid is released to atmospheric pressure or heat is recovered, the temperature of the liquid decreases, and the dissolved silica content exceeds its solubility at that temperature, that is, it is in a supersaturated state. By the way, amorphous silica has a concentration of several tens of ppm in water at 20°C to 100°C.
It has a solubility of ~300 ppm. Therefore, a considerable amount of supersaturated silica is present in the liquid, and since this supersaturated silica is unstable and has a strong adhesive force, it will precipitate as scale on the parts of the equipment that come into contact with the liquid. In the past, research to solve scale problems was conducted in the Miscellaneous Test "Ceramics" Vol. 15 No. 2, pages 100 to 104, "Geothermal Power Generation and Hot Water Utilization," and the Miscellaneous Test "Shimadzu Review Vol. 28," 2 reprint, pages 107 to 120 (first report), pages 121 to 127 (second report), or Nihon Kagaku Miscellaneous Examination Vol. 91, No. 12, pages 39 to 46, etc. These reports revealed that there is a mutual relationship between the colloidalization process of supersaturated silica in hot water and the adhesion of silica, and that under conditions where the formation rate of silica colloid is high, silica adheres to the tube wall. It is said that the adhesion of colloids is noticeable.Reducing the temperature to 50℃, stirring, filtering, and filtering after mixing with river water all have the effect of suppressing colloid formation. Furthermore, the particle size of silica colloid was measured using a light scattering method to be approximately 0.3μ, and it was stated that under conditions that are effective in suppressing colloids, there is little adhesion.However, the adhesion of silica is Although there is an effect of suppressing this, and although it has been reduced, the problem of adhesion has not been eliminated, and it still remains a major problem. As a result of repeated research on the polymerization of supersaturated silica, we found that rather than suppressing the polymerization of supersaturated silica,
Based on the idea of forcibly polymerizing in a short time and separating the polymerized silica, the present invention was completed by further discovering factors and conditions for increasing the polymerization rate. That is, in the present invention, a liquid to be treated containing supersaturated dissolved silica and silica seeds are mixed, and the total amount of silica is
This mixture, which is in the range of 0.05% to 5%, has a pH of 6.
~10. The solution temperature is maintained at 40°C or higher to promote polymerization of dissolved silica, and then an ultramembrane is used to separate the silica polymer. In the polymerization reaction of supersaturated dissolved silica, the originally contained dissolved silica alone cannot trigger the reaction, so polymerization does not occur easily. Even if polymerization occurs, the content of dissolved silica in the supersaturated portion cannot be reduced in a short time. Especially silica concentration
An aqueous solution with a concentration of 400 to 500 ppm causes almost no reaction. At a silica concentration higher than this, although a polymerization reaction occurs, the rate is slow, and the precipitated polymerized silica is unstable and cannot be separated. Therefore, in the present invention, another silica source (silica seed) is mixed with the liquid to be treated to promote the polymerization of silica, and it acts as a seed that causes the polymerization of the dissolved silica in the liquid to be treated. ing. As a result of many experiments, the properties that can be the seeds that cause the polymerization of dissolved silica have been found to be a group of substances with small particle sizes, and some are in the range where particle sizes can be measured. This ranges from fine particles that cannot be removed. Furthermore, there are silicas whose properties are still difficult to understand, such as those immediately after hydrolysis of alkali silicate, and it is not easy to define the same properties for their characterization. A specific list of silica seeds in the present invention is as follows. () When an alkaline silicate solution is mixed with an acid, or a silica solution that has been previously neutralized with an acid or dealkalized with an ion exchange resin is mixed with the liquid to be treated, the total silica concentration after mixing is
Effectiveness was observed at 500ppm (0.05%) or higher. It exhibits excellent effects especially when it is 1000ppm (0.1%) or more. () Silica polymer that can be fractionated with an ultramembrane with a molecular weight cutoff of 5000 (particle size is too small to be measured by other methods)
When the silica liquid containing the silica liquid is mixed with the liquid to be treated,
The concentration of supersaturated silica decreases, and in particular, the greater the amount of silica liquid, the faster the rate of decrease in the concentration of supersaturated silica. () Although it is difficult to understand the colloidal diameter and molecular weight of low-molecular-weight silica polymers, it is difficult to determine the colloidal diameter and molecular weight of low-molecular-weight silica polymers, but it is possible to use silica liquids for which a concentration peak of polymerized silica was clearly observed in addition to the concentration peak of dissolved silica when measured using gel chromatography. When mixed with the liquid to be treated, the effect was observed when the total silica concentration was 500 ppm or higher. () Industrially synthesized primary average particle diameter is 4m
When using a silica solution containing a silica colloid of μ or more, a total silica concentration of 500 ppm or more contributes to the reduction of supersaturated silica, and the larger the amount of the silica solution is, the faster the rate of reduction becomes. () Using a silica source whose specific surface area can be measured for non-precipitating silica polymers, the amount added and the amount of decrease in supersaturated silica were investigated, and the results shown in Figure 1 were obtained.
As a result , it was found that there is a close relationship between the specific surface area of the added silica colloid group and the amount of reduction in supersaturated silica. I learned something. Note that FIG. 1 is a plot of Examples 7 to 11 described later. Comparing and explaining () ~ () and (),
() to () are silica polymers that can be measured as molecular weights rather than particle diameters, and these are low molecular weight polymers (about 500 to 5000). () is a commercially available colloidal silica liquid that has been grown to a thickness of 4 mμ or more in order to obtain a highly concentrated liquid due to the problem of hand linkage, and is generally denser than the silica polymers () to (). It has a particle shape. It is important that the total amount of silica in the mixed liquid after mixing the silica seeds and the liquid to be treated as described above is within the range of 0.05% to 5%. The larger the amount of silica seeds is, the more the reaction is accelerated, the less the amount of supersaturated silica is, and the closer it is to saturation at that temperature. In addition, in promoting the reaction rate after mixing, pH6~
It is important to keep the temperature above 40°C between 10 and 10 minutes. Preferably, the pH is between 7 and 9 and the temperature is 60°C or higher to further promote the reaction. The silica polymer thus precipitated is separated from the mixed solution using an ultramembrane. The ultra membrane can be made of cellulose, polyimide, polyolefin, polysulfonate, etc., and it is possible to use a wide range of membranes with a molecular weight cut-off of about 5,000 to 300,000. The method of use is not particularly limited and may be carried out under the usual conditions of use of ultramembranes. According to the present invention, since the precipitated silica polymer is stable and difficult to re-dissolve, supersaturated silica can be effectively separated. It was also found that the separated liquid did not contain any silica polymer, but contained dissolved silica in an amount slightly higher than its solubility at that temperature. Next, Examples and Comparative Examples will be shown to clarify the effects of the present invention. Preparation method of hot water simulated coagulation Dissolve 263 g of sodium silicate with 24 wt% silica concentration in 100 kg of pure water to make diluted sodium silicate with 0.063 wt% silica concentration, and pre-regenerate cation exchange resin (SK-IB). 10cm in diameter filled with 5.
The above solution was passed through a column with a length of 200 cm at a speed of SV5 to prepare a 0.06 wt% silicic acid solution 100. In this 0.06wt% silicic acid liquid 100

【表】 を添加し、80℃で10分間加温した後、6規定塩酸
を用いてPH7.5の熱水模凝液を調製した。この液
の溶解シリカ濃度は600ppmであつた。以後A液
と称する。 実施例 1 A液100に24wt%シリカ濃度のケイ酸ナトリ
ウム212.5gを加えて全シリカ濃度を1100ppmと
した。この時のPHは7.8であつた。その後60分間
継続して80℃に保持した。次いでこの液の90を
分画分子量6000の限外膜を用いて分離し89の
液を得た。 実施例 2 24wt%シリカ濃度のケイ酸ナトリウム67.5gを
純水1415gに希釈した溶液に1.4N−HC1138mlを
加えてPH7.0とした1%シリカ濃度溶液1620.5g
を調製し、この液をA液100に添加して全シリ
カ濃度を750ppmとした。この時のPHは7.3であつ
た。その後60分間継続して80℃に保持した。次い
でこの液の90を分画分子量6000の限外膜を用い
て分離し89の液を得た。 実施例 3 24wt%シリカ濃度のケイ酸ナトリウム135gを
純水1415gに希釈した溶液に5N−HCI70mlを加
えてPH7.1とした2%シリカ濃度液1620.5gを調
製し、この液をA液100に添加して全シリカ濃
度を1500ppmとした。この時のPHは7.2であつた。
その後60分間継続して80℃に保持した。次いでこ
の液の90を分画分子量5000の限外膜を用いて分
離しシリカ濃度7.5wt%の1の濃縮液を得た。 次にこの液0.5をA液100に添加し、60分間
継続して80℃に保持した。次いでこの液の90を
分画分子量6000の限外膜を用いて分離し液を89
得た。 実施例 4 99.5%塩化ナトリウム588gを純水100に溶解
した。この溶解を撹拌しながら24wt%シリカ濃
度のケイ酸ナトリウム416.7gを添加し、80℃ま
で加温し、その温度で10分間保持した。その後6
規定塩酸を添加してPH7.5とし、室温で12時間放
冷した。この溶液には、ゲルクロマトグラフイー
法により、溶解シリカ143ppmの他にコロイド質
が含まれていることが判つた(第2図参照)。こ
の溶解42.9KgをA液100に加えて全シリカ濃度
を720ppmとした。この時のPHは7.4であつた。次
いで60分間継続して80℃に保持した後、この液
121を分画分子量6000の限外膜を用いて分離し
液120を得た。 実施例 5 40wt%シリカ濃度で平均粒子径16mμのシリ
カコロイド含有液25gをA液100に加えて全シ
リカ濃度を700ppmとした。この時のPHは7.7であ
つた。次いで60分間継続して80℃に保持した後、
この液90を分画分子量6000の限外膜を用いて分
離し液89を得た。 実施例 6 30wt%シリカ濃度で平均粒子径7mμのシリ
カコロイド含有液20gをA液100に加えて全シ
リカ濃度660ppmとした。この時のPHは7.8であつ
た。次いで60分間継続して80℃に保持した後、こ
の液90を分画分子量6000の限外膜を用いて分離
し液89を得た。 実施例 7 A液100に対して、30wt%シリカ濃度でSiO2
グラム当りの比表面積が227m2であるシリカコロ
イド群を含有するコロイド液を、該シリカコロイ
ド群の比表面積が680m2(混合液1当り6.8m2
となるだけ加えて全シリカ濃度を630ppmとした。
この時のPHは7.7であつた。次いで60分間継続し
て80℃に保持した後、この液90を分画分子量
6000の限外膜を用いて分離し液89を得た。 実施例 8 実施例7のコロイド液の代わりに、20wt%シ
リカ濃度でSiO2グラム当りの比表面積が634m2
あるシリカコロイド群を含有するコロイド液を使
用し、これを該シリカコロイド群の比表面積が
7600m2(混合液1当り76m2)となるだけ加えて
全シリカ濃度を720ppmとした他は、実施例7と
同様にして液89を得た。 実施例 9 実施例7のコロイド液の代わりに、40wt%シ
リカ濃度でSiO2グラム当りの比表面積が61m2
あるシリカコロイド群を含有するコロイド液を使
用し、これを該シリカコロイド群の比表面積が
720m2(混合液1当り7.2m2)となるだけ加えて
全シリカ濃度を718ppmとした他は、実施例7と
同様にして液89を得た。 実施例 10 実施例7のコロイド液の代わりに、40wt%シ
リカ濃度でSiO2グラム当りの比表面積が34m2
あるシリカコロイド群を含有するコロイド液を使
用し、これを該シリカコロイド群の比表面積が
400m2(混合液1当り4.0m2)となるだけ加えて
全シリカ濃度を717ppmとした他は、実施例7と
同様にして液89を得た。 実施例 11 実施例7のコロイド液の代わりに、30wt%シ
リカ濃度でSiO2グラム当りの比表面積が227m2
あるシリカコロイド群を含有するコロイド液を使
用し、これを該シリカコロイド群の比表面積が
13600m2(混合液1当り136m2)となるだけ加え
て全シリカ濃度を1197ppmとした他は、実施例7
と同様にして液89を得た。 実施例 12 実施例7のコロイド液の代わりに、30wt%シ
リカ濃度でSiO2グラム当りの比表面積が390m2
あるシリカコロイド群を含有するコロイド液を使
用し、これを該シリカコロイド群の比表面積が
4200m2(混合液1当り42m2)となるだけ加えて
全シリカ濃度を707ppmとした他は、実施例7と
同様にして液89を得た。 実施例 13 実施例7のコロイド液の代わりに、5wt%シリ
カ濃度でSiO2グラム当りの比表面積が1174m2
あるシリカコロイド群を含有するコロイド液を使
用し、これを該シリカコロイド群の比表面積が
70000m2(混合液1当り700m2)となるだけ加え
て全シリカ濃度を1182ppmとした他は、実施例7
と同様にして液89を得た。 比較例 1 A液100を撹拌しながら80℃に加温した。20
分間80℃を保持した後、この液90を分画分子量
6000の限外膜を用いて分離し液89を得た。 比較例 2 60分間80℃を保持した以外は比較例1と同様に
して液89を得た。 比較例 3 A液100に99wt%シリカ濃度の水晶粉(比表
面積1m2/g)50gを添加し、その後80℃を保持
しながら、60分間継続して加熱を行つた。この混
合液は、水晶粉が沈降するため、常に混合撹拌が
必要であつた。 この液の90を分画分子量6000の限外膜を用い
て分離し液89を得た。 比較例 4 A液100に98wt%シリカ濃度のシリカ粉(比
表面積620m2/g)50gを添加し、その後80℃を
保持しながら、60分間継続して加熱を行つた。こ
の混合液は、シリカ粉が沈降するため、常に混合
撹拌が必要であつた。 この液の90を分画分子量6000の限外膜を用い
て分離し液89を得た。 以上得られた実施例1〜13並びに比較例1〜4
の液のシリカ量を求め、結果を表−1及び2に
示した。
After adding [Table] and heating at 80°C for 10 minutes, a simulated hot water coagulant with a pH of 7.5 was prepared using 6N hydrochloric acid. The dissolved silica concentration of this solution was 600 ppm. Hereinafter, it will be referred to as liquid A. Example 1 212.5 g of sodium silicate having a silica concentration of 24 wt% was added to 100 of Solution A to make the total silica concentration 1100 ppm. The pH at this time was 7.8. Thereafter, the temperature was maintained at 80°C for 60 minutes. Next, 90 of this liquid was separated using an ultramembrane with a molecular weight cutoff of 6000 to obtain 89 liquid. Example 2 1620.5 g of a 1% silica concentration solution in which 1138 ml of 1.4N-HC was added to a solution of 67.5 g of sodium silicate with a 24 wt% silica concentration diluted in 1415 g of pure water to adjust the pH to 7.0.
was prepared, and this solution was added to 100% of solution A to make the total silica concentration 750 ppm. The pH at this time was 7.3. Thereafter, the temperature was maintained at 80°C for 60 minutes. Next, 90 of this liquid was separated using an ultramembrane with a molecular weight cutoff of 6000 to obtain 89 liquid. Example 3 135g of sodium silicate with 24wt% silica concentration was diluted with 1415g of pure water to prepare 1620.5g of 2% silica concentration solution with pH 7.1 by adding 70ml of 5N-HCI, and this solution was added to A solution 100. was added to bring the total silica concentration to 1500 ppm. The pH at this time was 7.2.
Thereafter, the temperature was maintained at 80°C for 60 minutes. Next, 90% of this liquid was separated using an ultramembrane with a molecular weight cutoff of 5000 to obtain a concentrated liquid of 1 with a silica concentration of 7.5% by weight. Next, 0.5 of this solution was added to 100 of solution A and kept at 80° C. for 60 minutes. Next, 90% of this liquid was separated using an ultramembrane with a molecular weight cutoff of 6000, and the liquid was reduced to 89%.
Obtained. Example 4 588 g of 99.5% sodium chloride was dissolved in 100 g of pure water. While stirring the solution, 416.7 g of sodium silicate having a silica concentration of 24 wt % was added, heated to 80° C., and held at that temperature for 10 minutes. then 6
Normal hydrochloric acid was added to adjust the pH to 7.5, and the mixture was allowed to cool at room temperature for 12 hours. It was determined by gel chromatography that this solution contained 143 ppm of dissolved silica as well as colloidal substances (see Figure 2). 42.9 kg of this solution was added to 100 kg of solution A to make the total silica concentration 720 ppm. The pH at this time was 7.4. This solution was then kept at 80°C for 60 minutes, and then
Liquid 120 was obtained by separating 121 using an ultramembrane with a molecular weight cutoff of 6000. Example 5 25 g of a solution containing silica colloid with a silica concentration of 40 wt% and an average particle diameter of 16 mμ was added to 100 of Solution A to make the total silica concentration 700 ppm. The pH at this time was 7.7. Then, after being kept at 80°C for 60 minutes,
This liquid 90 was separated using an ultramembrane having a molecular weight cut off of 6000 to obtain liquid 89. Example 6 20 g of a solution containing silica colloid with a silica concentration of 30 wt% and an average particle diameter of 7 mμ was added to 100 g of solution A to give a total silica concentration of 660 ppm. The pH at this time was 7.8. Next, after being maintained at 80° C. for 60 minutes, this liquid 90 was separated using an ultramembrane having a molecular weight cut off of 6000 to obtain liquid 89. Example 7 SiO 2 at a silica concentration of 30 wt% for 100 of solution A
A colloidal liquid containing a silica colloid group having a specific surface area per gram of 227 m 2 is mixed with a colloidal liquid containing a silica colloid group having a specific surface area of 680 m 2 (6.8 m 2 per 1 mixed liquid).
The total silica concentration was 630 ppm.
The pH at this time was 7.7. Next, after maintaining the temperature at 80℃ for 60 minutes, this liquid 90 was
Separation was performed using a 6000 ultra membrane to obtain liquid 89. Example 8 Instead of the colloidal liquid of Example 7, a colloidal liquid containing a silica colloid group with a silica concentration of 20 wt% and a specific surface area of 634 m 2 per 2 grams of SiO was used, and this was surface area
Solution 89 was obtained in the same manner as in Example 7, except that 7600 m 2 (76 m 2 per mixed solution) was added and the total silica concentration was 720 ppm. Example 9 Instead of the colloidal liquid of Example 7, a colloidal liquid containing a silica colloid group with a silica concentration of 40 wt% and a specific surface area of 61 m 2 per 2 grams of SiO was used, and this was surface area
Solution 89 was obtained in the same manner as in Example 7, except that 720 m 2 (7.2 m 2 per mixed solution) was added to make the total silica concentration 718 ppm. Example 10 Instead of the colloidal liquid of Example 7, a colloidal liquid containing a silica colloid group with a silica concentration of 40 wt% and a specific surface area of 34 m 2 per 2 grams of SiO was used, and this was surface area
Solution 89 was obtained in the same manner as in Example 7, except that 400 m 2 (4.0 m 2 per mixed solution) was added to make the total silica concentration 717 ppm. Example 11 Instead of the colloidal liquid of Example 7, a colloidal liquid containing a silica colloid group with a silica concentration of 30 wt% and a specific surface area of 227 m 2 per 2 grams of SiO was used, and this was surface area
Example 7 except that 13600 m 2 (136 m 2 per mixed solution) was added and the total silica concentration was 1197 ppm.
Liquid 89 was obtained in the same manner as above. Example 12 Instead of the colloidal liquid of Example 7, a colloidal liquid containing a silica colloid group with a silica concentration of 30 wt% and a specific surface area of 390 m 2 per 2 grams of SiO was used, and this was surface area
Solution 89 was obtained in the same manner as in Example 7, except that 4200 m 2 (42 m 2 per mixed solution) was added to make the total silica concentration 707 ppm. Example 13 Instead of the colloidal liquid of Example 7, a colloidal liquid containing a silica colloid group with a silica concentration of 5 wt% and a specific surface area of 1174 m 2 per 2 grams of SiO was used, and this was surface area
Example 7 except that 70000 m 2 (700 m 2 per mixed solution) was added and the total silica concentration was 1182 ppm.
Liquid 89 was obtained in the same manner as above. Comparative Example 1 Liquid A 100 was heated to 80°C while stirring. 20
After maintaining the temperature at 80℃ for a minute, this liquid was added to the molecular weight cutoff 90.
Separation was performed using a 6000 ultra membrane to obtain liquid 89. Comparative Example 2 Liquid 89 was obtained in the same manner as Comparative Example 1 except that the temperature was maintained at 80°C for 60 minutes. Comparative Example 3 50 g of quartz powder (specific surface area: 1 m 2 /g) with a silica concentration of 99 wt% was added to Solution A 100, and then heating was continued for 60 minutes while maintaining the temperature at 80°C. This liquid mixture required constant mixing and stirring because the crystal powder would settle. 90 of this liquid was separated using an ultramembrane with a molecular weight cutoff of 6000 to obtain liquid 89. Comparative Example 4 50 g of silica powder (specific surface area: 620 m 2 /g) with a silica concentration of 98 wt% was added to Solution A 100, and then heating was continued for 60 minutes while maintaining the temperature at 80°C. This liquid mixture required constant mixing and stirring because the silica powder would settle. 90 of this liquid was separated using an ultramembrane with a molecular weight cutoff of 6000 to obtain liquid 89. Examples 1 to 13 and Comparative Examples 1 to 4 obtained above
The amount of silica in the liquid was determined and the results are shown in Tables 1 and 2.

【表】【table】

【表】 比較例1〜4では、いくらか溶解シリカを析出
させることができるものの、析出したシリカは不
安定なものであるため、限外過に際して再溶解
し殆ど除去し得なかつた。これに対し、実施例1
〜13では、析出したシリカ量も多く、かつ安定な
ものであるため、効果的にシリカを除去すること
ができる。 なお、ゲルクロマトグラフイー法によるデータ
ーはT.Tarutani、J、Chromatogr.、50、523
(1970)の交献に従つて測定した。 また、溶解シリカ濃度は次の方法により求め
た。 溶解シリカの分析法(工業用水試験方法
JISK0101に準ずる) 予め試料中の全SiO2を定量し、SiO2として0.05
gになる様に試料を採取する。蒸留水で50mlに希
釈し、2N−HClでPHを1.0に調製する。250mlの
メスフラスコに移して約230mlに希釈する。モリ
ブデン酸アンモニウム溶液(10%)の10mlを加え
て蒸留水で250mlとし混合する。20分間放置後420
mμの波長で吸光度を測る。 試料の吸光度から予め作成した検量線を用いて
溶解シリカの量を求めた(この方法での溶解シリ
カとはモノケイ酸とジケイ酸を示す)。
[Table] In Comparative Examples 1 to 4, some dissolved silica could be precipitated, but since the precipitated silica was unstable, it was redissolved during ultrafiltration and could hardly be removed. In contrast, Example 1
In samples 1 to 13, the amount of silica precipitated was large and the silica was stable, so silica could be effectively removed. The data obtained by gel chromatography method is provided by T. Tarutani, J. Chromatogr., 50 , 523.
(1970). Further, the dissolved silica concentration was determined by the following method. Dissolved silica analysis method (industrial water test method)
(According to JISK0101) Quantify the total SiO 2 in the sample in advance, and convert it to 0.05 as SiO 2 .
Collect a sample so that the amount of Dilute to 50 ml with distilled water and adjust the pH to 1.0 with 2N-HCl. Transfer to a 250 ml volumetric flask and dilute to approximately 230 ml. Add 10 ml of ammonium molybdate solution (10%) and make up to 250 ml with distilled water and mix. 420 after leaving for 20 minutes
Measure the absorbance at a wavelength of mμ. The amount of dissolved silica was determined using a calibration curve prepared in advance from the absorbance of the sample (dissolved silica in this method refers to monosilicic acid and disilicic acid).

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、シリカシード中のシリカコロイド群
の比表面積と過飽和シリカの減少量との関係を例
示したものである。第2図は、ゲルクロマトグラ
フイー法により重合シリカの存在が認められた場
合を例示したものである。
FIG. 1 illustrates the relationship between the specific surface area of the silica colloid group in the silica seed and the amount of reduction in supersaturated silica. FIG. 2 illustrates a case in which the presence of polymerized silica was recognized by gel chromatography.

Claims (1)

【特許請求の範囲】 1 過飽和溶存シリカを含有する被処理液とシリ
カシードを混合し、全シリカ量が0.05%〜5%の
範囲内にあるこの混合液を、PH6〜10、液温40℃
以上に保つて溶存シリカの重合を促進せしめ、次
いで限外膜を用いてシリカ重合物を分離する過飽
和溶存シリカの減少方法。 2 シリカシードは、ケイ酸アルカリ液又はケイ
酸アルカリ液を中和もしくはイオン交換樹脂で脱
アルカリしたシリカ液である特許請求の範囲第1
項記載の方法。 3 シリカシードは、分画分子量5000の限外膜で
分画可能なシリカ重合物を含有するシリカ液であ
る特許請求の範囲第1項記載の方法。 4 シリカシードは、ゲルクロマトグラフイー法
で重合シリカの存在が認められるシリカ液である
特許請求の範囲第1項記載の方法。 5 シリカシードは、一次平均粒子径が4mμ以
上のシリカコロイドを含むシリカ液である特許請
求の範囲第1項記載の方法。 6 シリカシードは、過飽和溶存シリカを含有す
る被処理液とシリカシードを混合した際、混合液
中のシリカコロイド群に混合液1当り1m2以上
の比表面積を与える非沈降性シリカ重合物を含む
シリカ液である特許請求の範囲第1項記載の方
法。
[Claims] 1. A liquid to be treated containing supersaturated dissolved silica and silica seeds are mixed, and this mixed liquid with a total silica content in the range of 0.05% to 5% is heated at a pH of 6 to 10 and a liquid temperature of 40°C.
A method for reducing supersaturated dissolved silica in which the polymerization of dissolved silica is promoted by maintaining the above temperature, and then the silica polymer is separated using an ultramembrane. 2. The silica seed is an alkali silicate solution or a silica solution obtained by neutralizing an alkali silicate solution or dealkalizing it with an ion exchange resin. Claim 1
The method described in section. 3. The method according to claim 1, wherein the silica seed is a silica liquid containing a silica polymer that can be fractionated with an ultramembrane having a molecular weight cut off of 5000. 4. The method according to claim 1, wherein the silica seed is a silica liquid in which the presence of polymerized silica is confirmed by gel chromatography. 5. The method according to claim 1, wherein the silica seed is a silica liquid containing a silica colloid having a primary average particle diameter of 4 mμ or more. 6. The silica seed contains a non-sedimentable silica polymer that gives the silica colloid group in the mixed liquid a specific surface area of 1 m 2 or more per mixed liquid when the silica seed is mixed with the liquid to be treated containing supersaturated dissolved silica. The method according to claim 1, which is a silica liquid.
JP6975883A 1982-06-14 1983-04-20 Reduction of oversaturatedly dissolved silica Granted JPS59196798A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP6975883A JPS59196798A (en) 1983-04-20 1983-04-20 Reduction of oversaturatedly dissolved silica
NZ20445583A NZ204455A (en) 1982-06-14 1983-06-02 Process of decreasing the silica content of a supersaturated silica solution by forming silica colloid and separation thereof
IT67653/83A IT1162875B (en) 1982-06-14 1983-06-14 Sepn. of super saturated silica using ultrafiltration membrane
PH29046A PH19651A (en) 1982-06-14 1983-06-14 Process of converting supersaturated silica into silica sol and separating same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6975883A JPS59196798A (en) 1983-04-20 1983-04-20 Reduction of oversaturatedly dissolved silica

Publications (2)

Publication Number Publication Date
JPS59196798A JPS59196798A (en) 1984-11-08
JPH0252559B2 true JPH0252559B2 (en) 1990-11-13

Family

ID=13412012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6975883A Granted JPS59196798A (en) 1982-06-14 1983-04-20 Reduction of oversaturatedly dissolved silica

Country Status (1)

Country Link
JP (1) JPS59196798A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL9202017A (en) * 1992-11-19 1994-06-16 Tno Method and device for removing at least one component from a solution.

Also Published As

Publication number Publication date
JPS59196798A (en) 1984-11-08

Similar Documents

Publication Publication Date Title
Iler Isolation and characterization of particle nuclei during the polymerization of silicic acid to colloidal silica
US3533816A (en) Preparation of high ratio alkali metal silicates
US3875079A (en) Large pore silicas
JP3463328B2 (en) Method for producing acidic silica sol
KR0142224B1 (en) Flocculant for water treatment and method for producing it
US2727008A (en) Process for increasing the concentration of a metastable silica sol
JPH0252559B2 (en)
US4343717A (en) Process for the preparation of stable silica sol
JP3311882B2 (en) Silica gel having high specific surface area and controlled low structure and method for producing the same
US3098044A (en) Method of producing hydrous metal oxide sols
JP3362793B2 (en) Method for producing silica sol
US3012972A (en) Aqueous silica dispersions and their production
US5624651A (en) Stable high solids, high ratio alkali metal silicate solutions
JP2007063555A (en) Weakly acidic cation exchanger
VEDA et al. Recovery of silica from the Sumikawa geothermal fluids by addition of cationic reagents
JPS6094198A (en) Treatment of geothermal hot water
CN107973942B (en) Isobutene-maleic anhydride alternating copolymer/sodium alginate hydrogel and preparation method thereof
Chao The isolation and characterization of ribonucleic acid from yeast macromolecular ribonucleoprotein
RU2003127386A (en) METHOD FOR PRODUCING GELEOUS CATIONITES
US10662271B2 (en) Droplets distributed in an aqueous medium
CN107903410B (en) Isobutene-maleic anhydride alternating copolymer/sodium alginate hydrogel and preparation method thereof
Brykov Formation of concentrated polysilicate solutions from stabilized silica sols
JPS58219986A (en) Treatment of geothermal hot water
RU2683320C1 (en) Double polycylacate of alkali metal and organic base
JP4375880B2 (en) Flocculant for water treatment