JPS6094198A - Treatment of geothermal hot water - Google Patents
Treatment of geothermal hot waterInfo
- Publication number
- JPS6094198A JPS6094198A JP20179083A JP20179083A JPS6094198A JP S6094198 A JPS6094198 A JP S6094198A JP 20179083 A JP20179083 A JP 20179083A JP 20179083 A JP20179083 A JP 20179083A JP S6094198 A JPS6094198 A JP S6094198A
- Authority
- JP
- Japan
- Prior art keywords
- silica
- hot water
- liquid
- geothermal hot
- colloid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
- Removal Of Specific Substances (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、地熱熱水中の溶存シリカを安定な一シリカコ
ロイドとして析出せしめると同時に、共存するA−6,
Fa、 T1 及びMt元素をシリカコロイドへ固定化
する地熱熱水の処理法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention allows dissolved silica in geothermal hot water to be precipitated as a stable silica colloid, while at the same time coexisting A-6,
This invention relates to a geothermal hot water treatment method for fixing Fa, T1, and Mt elements into silica colloid.
地熱エネルギーの利用の態様としては、地中の高温熱水
を水蒸気と共に噴出させ蒸気と熱水とを分離し蒸気は発
電用に供し熱水は、必要に応じフラッシュ蒸発により二
次蒸気を発生させかっ降圧させた後、その熱を暖房等に
利用し更には温泉として或は地中に還元すること等がよ
く知られ、又実際にも6処で行なわれている。Geothermal energy is utilized by ejecting high-temperature hot water from underground together with steam, separating the steam and hot water, and using the steam for power generation, and using the hot water to generate secondary steam by flash evaporation as needed. It is well known that after the pressure is lowered, the heat is used for heating, etc., and is then returned to hot springs or underground, and is actually practiced in six places.
この地熱利用において、噴出する熱水はその地中におけ
る温度に応じ岩石中のシリカを多量に溶解し数百ppm
以上のシリカが含まれている。In this geothermal use, the hot water that erupts dissolves a large amount of silica in rocks depending on the temperature underground, resulting in several hundred ppm of silica.
Contains more than silica.
そして蒸気分離後の熱水の温度低下と共にシリカ溶解度
が低下して溶存シリカの一部が過飽和となる。この過飽
和溶存シリカは不安定で付着力が強いため機器の接液部
でスクールとなって析出する。またスケール析出は前記
温度低下のみならず、熱水中に微量混在するA−g、
Fe、 Ti。As the temperature of the hot water after steam separation decreases, the solubility of silica decreases, and a portion of the dissolved silica becomes supersaturated. This supersaturated dissolved silica is unstable and has a strong adhesive force, so it forms schools and precipitates on the wetted parts of equipment. In addition, scale precipitation is caused not only by the temperature drop mentioned above, but also by
Fe, Ti.
Mt等の元素によって助長される。こうしたスケール析
出は各機器の能力低下さらには使用不能へと重大なトラ
ブルを招く。This is promoted by elements such as Mt. Such scale precipitation causes serious troubles such as a reduction in the performance of each device and even the inability to use it.
このシリカトラブル対策には各種の方法が検討されてい
る。例えば、熱水に石灰を添加しカルシウムシリケート
を生成させて沈降させる方法やA1又はFe 化合物を
凝集剤として添加しコロイド状シリカを生成させる方法
がある。しかしながら、これらの方法によっては必ずし
も十分にはスケール析出を防ぐことはできなかったり、
経済的に不利である等の問題があった。Various methods are being considered to counter this silica problem. For example, there is a method in which lime is added to hot water to produce calcium silicate and precipitated, and a method in which A1 or Fe 2 compound is added as a flocculant to produce colloidal silica. However, these methods may not always be able to sufficiently prevent scale precipitation;
There were problems such as being economically disadvantageous.
これに対し本発明者らは上記問題を解決するため、過飽
和溶存シリカの重合及びスケール析出を助長する上記元
素について研究を重ねた。In order to solve the above problem, the present inventors have conducted repeated research on the above elements that promote the polymerization and scale precipitation of supersaturated dissolved silica.
その結果、所定の条件下ではシリカ液及び/又はシリカ
コロイド含有液の添加にまり溶存シリカの重合が短時間
で進みスケールとして析出することのない安定なシリカ
コロイドが生成し、同時に前記元素がシリカコロイドに
効率良く固定化されることを見い出した。As a result, under certain conditions, the addition of the silica solution and/or silica colloid-containing solution causes dissolved silica to polymerize in a short period of time, producing a stable silica colloid that does not precipitate as scale. It was discovered that it can be efficiently immobilized on colloids.
即ち、本発明の地熱熱水の処理法は、シリカ液及び/又
はシリカコロイド含有面を地熱熱水中へ加え温度40℃
以上、pH6〜9の範囲に保って、溶存シリカを重合し
てコロイド化せしめると同時に、地熱熱水中に共存する
A沼、 Fa。That is, the method for treating geothermal hot water of the present invention involves adding a surface containing silica liquid and/or silica colloid to geothermal hot water at a temperature of 40°C.
As mentioned above, while keeping the pH in the range of 6 to 9 and polymerizing dissolved silica to make it a colloid, A and Fa coexist in the geothermal hot water.
T1及びMt元累χシリカコロイドへ固定化するもので
ある。The T1 and Mt elements are immobilized on the χ silica colloid.
コロイド化を促進させる物としてはシリカ液及び/又は
シリカコロイド液である。より具体的にはシリカ液は、
ケイ酸アルカリ液又はケイ酸アルカリ液を予め酸で中和
もしくはイオン交換樹脂で脱アルカリしたものである。The substance that promotes colloid formation is silica liquid and/or silica colloid liquid. More specifically, the silica liquid is
This is an alkali silicate solution or an alkali silicate solution that has been previously neutralized with an acid or dealkalized with an ion exchange resin.
また、シリカコロイド液はゲルクロマトグラフィー法で
重合シリカの存在が認められるものであれば良い。勿論
、通常市販されている4mμ以上のシリカコロイドを含
むシリカコロイド液等も使用できる。Further, the silica colloid liquid may be one in which the presence of polymerized silica is recognized by gel chromatography. Of course, commercially available silica colloid solutions containing silica colloids of 4 mμ or more can also be used.
上記の如きシードと地熱熱水とを混合した後の混合液中
の全シリカ量は0.05 % (500PPm )〜5
%の範囲内にあることが望ましい。The total amount of silica in the mixed solution after mixing the above seeds and geothermal hot water is 0.05% (500PPm) to 5%.
It is desirable that it be within the range of %.
また、重合促進後のシリカコロイドは安定なものである
ため、該シリカコロイドの粒径については特に拘束はな
いが、沈降性のゲルにまで成長させるのは好ましいこと
ではない。In addition, since the silica colloid after polymerization promotion is stable, there are no particular restrictions on the particle size of the silica colloid, but it is not preferable to grow it to a sedimentary gel.
シリカコロイドの生成過程で上記元素をシリカコロイド
に固定化させる条件は、温度40℃以上、pH6〜9で
ある。温度40℃未満の場合はコロイド生成が遅いと同
時に上記元素の沈着も遅い。またpH6未満では上記元
素のシリカコロイドへの沈着が生じず、pH9を超える
とシリカコロイドの溶解が生じると同時に上記元素も溶
解してしまう。The conditions for fixing the above elements to the silica colloid during the production process of the silica colloid are a temperature of 40° C. or higher and a pH of 6 to 9. When the temperature is less than 40°C, colloid formation is slow and at the same time the deposition of the above elements is also slow. Further, if the pH is less than 6, the above elements will not be deposited on the silica colloid, and if the pH exceeds 9, the silica colloid will dissolve and at the same time the above elements will also dissolve.
地熱熱水中には、上記のAl1. Fs、TI 及びM
t元素の他に、Na、 K、 Ll+ ca、 F、
CIJ。In the geothermal hot water, the above-mentioned Al1. Fs, TI and M
In addition to the t element, Na, K, Ll+ ca, F,
C.I.J.
804、 B、 As等が確認されている。Na、に等
のその他のものは、上記のような条件下で一部はシリカ
コロイドに固定化されるものの、そのほとんどが液側に
残り選択性がなかった。特に陰イオンとして存在するF
s CIJ s S On e B及びA8 は液側
へ選択的に存在していた。804, B, As, etc. have been confirmed. Although some of the other substances such as Na and Ni were immobilized on the silica colloid under the above conditions, most of them remained on the liquid side and had no selectivity. Especially F, which exists as an anion.
s CIJ s S One B and A8 were selectively present on the liquid side.
一方、A4 m F e s T l及びMtは次のよ
うな性質を持っているのでシリカスケール析出を助長し
又はシリカコロイドに固定化される。On the other hand, since A4 m Fe s T l and Mt have the following properties, they promote silica scale precipitation or are immobilized in silica colloid.
l)酸化物、水酸化物の配位数がシリカと同じ4配位で
シリカと化合物を作り易い◇
11)中性付近での溶解度が著しく小さく核生成し易い
。l) The coordination number of oxides and hydroxides is 4, which is the same as that of silica, making it easy to form compounds with silica.◇ 11) Solubility near neutrality is extremely low, making it easy to form nuclei.
iii ) イオン及び水酸化物又は酸化物がプラスチ
ャージを有しているのでマイナスチャージのシリカと結
合し易い。iii) Since ions and hydroxides or oxides have a positive charge, they easily combine with negatively charged silica.
1v)Schulty−Hardyの法則(陽イオン原
子価の大きいほどコロイドに対する凝結力が上位という
法則ンからシリカコロイドを凝集させ易い。1v) Schulty-Hardy's law (the larger the valence of the cation, the higher the coagulation force for the colloid), making it easier to aggregate silica colloids.
本発明によれば、比較的簡単な操作で安定なシリカコロ
イドが生成し、同時に液中に溶存しているA−e、 F
e、 Ti及びM?元素が低減するため、効果的にスケ
ール防止が達成できる。また本発明は、本来スケール析
出を助長していた上記元素を安定なシリカコロイド生成
のために有効利用したものであることが言える。本発明
により生成したシリカコロイドは安定で再溶解するもの
ではないため、そのまま還元井等にもどすことができる
が、必要に応じて限外膜や逆浸透膜等を用いて分離回収
することができる。According to the present invention, a stable silica colloid is produced by a relatively simple operation, and at the same time A-e and F dissolved in the liquid are produced.
e, Ti and M? Since the elements are reduced, scale prevention can be effectively achieved. Furthermore, it can be said that the present invention effectively utilizes the above-mentioned elements, which originally promoted scale precipitation, for stable silica colloid production. The silica colloid produced by the present invention is stable and does not dissolve again, so it can be returned to the reinjection well as it is, but if necessary, it can be separated and recovered using an ultra membrane, reverse osmosis membrane, etc. .
更にその分離したシリカコロイドをシードとして使用す
ることができる。Furthermore, the separated silica colloid can be used as a seed.
なお、A−g、 Fe、Ti及びMlは地熱熱水中で確
認された元素であるが、これらの元素に似た性質を有す
る他の元素についても同様にシリカコロイドに固定化さ
れよう。これらの元素は次のような範囲に属するものが
多い。Although A-g, Fe, Ti, and Ml are elements confirmed in geothermal hot water, other elements having properties similar to these elements may also be immobilized in the silica colloid. Many of these elements belong to the following ranges.
1)酸化物になった場合の静電気原子価(原子価を配位
数で除した値)が0533〜0.67の元素
11)イオン化ポテンシャル(原子価をイオン半径で除
した値)が2〜7の範囲゛の元素m) 酸化物、水酸化
物の等電点(表面の荷電が零となる水浴液のpH値)が
4〜13の範囲の元素
以下、実施例を示して本発明の効果を具体的に示す。1) Elements with an electrostatic valence (value divided by the valence by the coordination number) of 0533 to 0.67 when converted into an oxide 11) Ionization potential (value divided by the ion radius) of 2 to 0.67 Elements in the range 7) The isoelectric points of oxides and hydroxides (the pH value of the water bath solution at which the surface charge becomes zero) are in the range of 4 to 13. Demonstrate specific effects.
熱水模凝液の調製法
A液
24 wt%シリカ濃度のケイ酸ナトリウム2θ8tを
純水100KPK溶解してO,05wt%シリカ濃度の
希釈ケイ酸ナトリウムを作り、予め再生した陽イオン交
換樹脂(SK−IB)51を充填した直径1OCrn、
長さ200crnのカラム中にSV5の速度で上記溶解
液を通過させ、0.05 vrt係のケイ酸液100.
dを調製した。この0.05 wt%のケイ酸液100
.4に99.5%塩化カリウム、99.5%塩化ナトリ
ウム、95.0%塩化カルシウム、99,5チ硫酸ナト
リウム、99.5 %ホウ酸、99.5%亜ひ酸ナトリ
ウム、5饅水酸化ナトリウム等を添加して、ケイ酸液1
形当りに
K 118M
Na 752mg
Ca 14.6報
MP 0.44■
層 1.0■
Fe lO,OQ
’l’i 12.511f/
B 7.1〜
As 1.62■
8 67.7報
(u 1000確
となるように模凝液を調製した。これを以後A液と称す
る。Preparation method for hot water simulated coagulation Solution A2: Dissolve sodium silicate 2θ8t with a silica concentration of 24 wt% in 100 KPK of pure water to make diluted sodium silicate with a silica concentration of 0.05 wt%. - IB) diameter 1OCrn filled with 51,
The lysate was passed through a column of length 200 crn at a speed of SV5 and 100 crn of silicic acid solution at 0.05 vrt.
d was prepared. This 0.05 wt% silicic acid solution 100
.. 4 contains 99.5% potassium chloride, 99.5% sodium chloride, 95.0% calcium chloride, 99.5% sodium thiosulfate, 99.5% boric acid, 99.5% sodium arsenite, 5-hydroxide Add sodium etc. to silicic acid solution 1
K 118M Na 752mg Ca 14.6 reports MP 0.44 ■ Layer 1.0 ■ Fe 1O,OQ 'l'i 12.511f/ B 7.1 ~ As 1.62 ■ 8 67.7 reports ( A mock coagulant solution was prepared so as to have a concentration of 1,000 μl.This is hereinafter referred to as solution A.
B液
ケイ散液l!当りに
に109諺y
Na 11]9m5
Ca 32.7凋g
Ml 0.27叢y
縛 0.5扉y
Fs 25.0 肩y
T133゜3xy
B 23.3xy
As 1.631+y
8 536報
Cで 1700*y
となるようにした以外はA液と全く同様にして模凝液を
調製した。これを以後B液と称する。B liquid silicon dispersion l! 109 Proverbs Na 11]9m5 Ca 32.7g Ml 0.27plexy Binding 0.5doory Fs 25.0 Shouldery T133゜3xy B 23.3xy As 1.631+y 8 536 report C A mock coagulated solution was prepared in the same manner as Solution A except that the concentration was adjusted to 1700*y. This will be referred to as liquid B hereinafter.
実施例I
A液100Jに対して、30wt%シリカ濃度で粒子径
119Aのシリカコロイドを有するコロイド液18tを
加えて全シリカ濃度を554ppmとした。この時のp
Hは8.7であった。次いで80℃を保持しながら10
分間継続して加熱を行った後、この液を分画分子量6o
ooの限外膜により限外f過してP液9B7を得た。Example I To 100 J of Solution A, 18 t of a colloidal solution having a silica concentration of 30 wt % and a silica colloid with a particle size of 119 A was added to make the total silica concentration 554 ppm. p at this time
H was 8.7. Then, while maintaining the temperature at 80°C,
After heating continuously for a minute, this liquid was mixed with a molecular weight cutoff of 6o.
P liquid 9B7 was obtained by ultraf filtration through an ultrafiltration membrane of oo.
実施例2
B液1001に対して、30wt係シリカ濃度で粒子径
120人のシリカコロイドを有するコロイド液161を
加えて全シリカ濃度を548ppmとした。この時のp
Hは7.4であった。次いで80℃を保持しながら10
分間継続して加熱を行った後、この液を分画分子量60
00の限外膜により限外r過してP液99.8を得た。Example 2 To liquid B 1001, colloidal liquid 161 having a silica concentration of 30 wt and a particle size of 120 particles was added to make the total silica concentration 548 ppm. p at this time
H was 7.4. Then, while maintaining the temperature at 80°C,
After heating continuously for a minute, this liquid was mixed with a molecular weight cutoff of 60.
The solution was ultrafiltered through a 00 ultramembrane to obtain P solution 99.8 g.
実施例3
B液100−eに対して、24wt係シリカ濃度のケイ
酸ナトリウム液502を加えて全シリカ濃度を620
ppmとした。この時のpHは7.9であった。次いで
80℃を保持しながら10分間継続して加熱を行った後
、この液を分画分子量6000の限外膜により限外f遇
してP液991を得た。Example 3 Sodium silicate solution 502 with a silica concentration of 24 wt was added to liquid B 100-e to bring the total silica concentration to 620.
It was set as ppm. The pH at this time was 7.9. Next, after heating was continued for 10 minutes while maintaining the temperature at 80° C., this liquid was subjected to ultrafiltration using an ultrafiltration membrane having a molecular weight cut off of 6000 to obtain P liquid 991.
実施例4
A液1001に対して、30 wt’Jiシリカ濃度で
粒子径119人のシリカコロイドを有するコロイド液1
8tと24 wt%シリカ濃度のケイ酸ナトリウム30
tとを加えて全シリカ濃度を625 ppmとした。こ
の時のpHは9.0であった。次いで80℃を保持しな
がら10分間継続して加熱を行った後、この液を分画分
子量6000の限外膜により限外1過してP液98!を
得た。Example 4 Colloidal liquid 1 having a silica colloid with a particle size of 119 people at a silica concentration of 30 wt'Ji for A liquid 1001
8t and 24 wt% silica concentration of sodium silicate 30
t was added to give a total silica concentration of 625 ppm. The pH at this time was 9.0. Next, after heating for 10 minutes while maintaining the temperature at 80°C, this liquid was passed through an ultra membrane with a molecular weight cut off of 6000 for an ultraviolet period to obtain a P liquid of 98. I got it.
比較例I
A液100Jに対して、0.IN硫酸60〇−と30
wt%シリカ濃度で粒子!119Aのシリカコロイドを
有するコロイド液18tとを加えて全シリカ濃度を55
0 ppmとした。この時のpHは5.0であった。次
いで80℃を保持しながら10分間継続して加熱を行っ
た後、この液を分画分子量6000I7)限外膜により
限外濾過してf3液98!を得た。Comparative Example I For 100J of liquid A, 0. IN sulfuric acid 60〇 and 30
Particles at wt% silica concentration! 18 tons of colloidal solution containing 119A silica colloid was added to bring the total silica concentration to 55%.
It was set to 0 ppm. The pH at this time was 5.0. Next, after heating continuously for 10 minutes while maintaining the temperature at 80°C, this liquid was ultrafiltered through an ultramembrane with a molecular weight cut off of 6000 I7) to obtain f3 liquid 98! I got it.
比較例2
A液!(jO)に対して、3o w*qbシリカ濃度で
粒子径119Aのシリカコロイドを有するコロイド液1
82を加えて全シリカ濃度を554ppmとした。この
時のpHは8.7であった。次いで20℃まで冷却させ
10分間保持した後。Comparative Example 2 Liquid A! Colloidal liquid 1 having a silica colloid with a particle size of 119A at a silica concentration of 3o w*qb for (jO)
82 was added to give a total silica concentration of 554 ppm. The pH at this time was 8.7. Then, it was cooled to 20°C and held for 10 minutes.
この液を分画分子i 6000の限外膜により限外濾過
してe液98ぷを得た。This liquid was ultrafiltered using an ultrafiltration membrane of fraction molecule i 6000 to obtain 98 ml of liquid e.
以上のようにして得た各実施例及び比較例のi+j液中
の組成を分析し残存率をめた。結果は次表罠示す通りで
ある。The compositions of the i+j liquids of each of the Examples and Comparative Examples obtained as described above were analyzed to determine the residual rate. The results are shown in the table below.
これより、本発明によって液中の溶存シリカ濃度と共に
、Fe、AA、T量及びM#を十分に低減することがで
きることが判る。This shows that the present invention can sufficiently reduce the dissolved silica concentration in the liquid, as well as the amounts of Fe, AA, T, and M#.
なお、各種元素の濃度測定は次の方法に従ったO
K、Na : 炎光光度法
As、5(naso4) : イオンクo’vトゲラフ
イー法Cj= 電位差滴定法The concentrations of various elements were measured according to the following methods: OK, Na: Flame photometric method As, 5 (naso4): Ionometric method Cj = Potentiometric titration method
Claims (1)
熱水中へ加え温度40℃以上、pH6〜9の範囲に保っ
て、溶存シリカを重合してコロイド化せしめると同時に
、地熱熱水中に共存するAA、 Fe、 TI 及びM
t元素なシリカコロイドへ固定化する地熱熱水の処理法
。1. Add the silica liquid and/or the silica colloid-containing liquid to the geothermal hot water and maintain the temperature at 40°C or higher and the pH in the range of 6 to 9 to polymerize the dissolved silica and make it colloid, while at the same time coexisting in the geothermal hot water. AA, Fe, TI and M
A treatment method for geothermal hot water that is immobilized into t-element silica colloid.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20179083A JPS6094198A (en) | 1983-10-27 | 1983-10-27 | Treatment of geothermal hot water |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20179083A JPS6094198A (en) | 1983-10-27 | 1983-10-27 | Treatment of geothermal hot water |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6094198A true JPS6094198A (en) | 1985-05-27 |
JPH0215279B2 JPH0215279B2 (en) | 1990-04-11 |
Family
ID=16446971
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20179083A Granted JPS6094198A (en) | 1983-10-27 | 1983-10-27 | Treatment of geothermal hot water |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6094198A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016168559A (en) * | 2015-03-13 | 2016-09-23 | 株式会社東芝 | Method and device for suppressing generation of scale |
-
1983
- 1983-10-27 JP JP20179083A patent/JPS6094198A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016168559A (en) * | 2015-03-13 | 2016-09-23 | 株式会社東芝 | Method and device for suppressing generation of scale |
Also Published As
Publication number | Publication date |
---|---|
JPH0215279B2 (en) | 1990-04-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11161746B2 (en) | Preparation of molecular sieve and treatment of silicon-containing wastewater therefrom | |
US5510040A (en) | Removal of selenium from water by complexation with polymeric dithiocarbamates | |
US3066095A (en) | Water purification agents and method of using same | |
US9744518B2 (en) | Method of removing strontium cations from a water stream using an amorphous titanium silicate | |
JPS63130189A (en) | Water treatment method and flocculating agent used therefor | |
CN108264610A (en) | A kind of chitosan flocculant and its preparation method and application | |
CN104649494A (en) | Method for treating silica sol wastewater and co-producing sodium salt | |
JPS6094198A (en) | Treatment of geothermal hot water | |
KR890009445A (en) | Method for Purifying Ferrous Ion-Containing Acid Solution | |
Malki et al. | Controlling aluminum silicate formation in membrane separation processes | |
Olin et al. | The use of bentonite as a coagulant in water treatment | |
TW200812916A (en) | Process for treatment of water to reduce fluoride levels | |
JP4086297B2 (en) | Boron-containing wastewater treatment method and chemicals used therefor | |
JP4030729B2 (en) | Method for producing flocculant | |
JP2732067B2 (en) | Coagulant for water treatment | |
JP4184069B2 (en) | Inorganic flocculant for water treatment and method of using the same | |
CN103172152B (en) | Preparation method of modified polymerized ferric sulfate | |
CN1095442C (en) | Active polysilicate flocculating agent and preparation method thereof | |
US7465691B1 (en) | Composition for cleaning up natural water and sewage water and method for producing said composition (variants) | |
JPS60143891A (en) | Treatment of waste water from stack gas desulfurization | |
JPS6042218A (en) | Manufacture of extremely high purity silica | |
RU2617155C1 (en) | Method for producing coagulant based on aluminium polyoxysulfate, coagulant produced by said method | |
US1620333A (en) | Process of treating liquids | |
US2152942A (en) | Coagulant | |
SU707592A1 (en) | Granulated sorbent for arsenic extraction |