JPH0252530B2 - - Google Patents

Info

Publication number
JPH0252530B2
JPH0252530B2 JP60242722A JP24272285A JPH0252530B2 JP H0252530 B2 JPH0252530 B2 JP H0252530B2 JP 60242722 A JP60242722 A JP 60242722A JP 24272285 A JP24272285 A JP 24272285A JP H0252530 B2 JPH0252530 B2 JP H0252530B2
Authority
JP
Japan
Prior art keywords
mol
membrane
polymer
sulfone
separation performance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60242722A
Other languages
Japanese (ja)
Other versions
JPS62102802A (en
Inventor
Yoshimitsu Sakaguchi
Hiroshi Kawada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP24272285A priority Critical patent/JPS62102802A/en
Publication of JPS62102802A publication Critical patent/JPS62102802A/en
Publication of JPH0252530B2 publication Critical patent/JPH0252530B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は良好な分離性能を有するガス分離用膜
に関するものである。 (従来の技術) ガス分離用膜としてはポリスルホンとシリコン
系ポリマーとを複合化させた複合膜が知られてい
る(特開昭53−86684号公報)。この膜はモンサン
ト社よりプリズムセパレーターとして市販されて
いる。この膜に用いられているシリコン系ポリマ
ーは耐熱性が悪く、高温(例えば100℃)では分
離性能の低下が大きい。 耐熱性の良いポリマーの1つとして芳香族ポリ
アミドが知られている。特にビス〔4−(4−ア
ミノフエノキシ)フエニル〕スルホンとイソフタ
ル酸又はテレフタル酸とから得られるポリ(アミ
ド・エーテル・スルホン)のガス分離性能がすぐ
れているという報告がある(特開昭58−55006)。
該ポリアミドから得られた膜は、前記のポリスル
ホンよりはガス分離性能が良く、又耐熱性にもす
ぐれている。しかしながら分離性能は充分なもの
ではない。 (発明が解決しようとする問題点) 前記従来技術における諸欠点即ち、 耐熱性の改善 製膜性に支障をきたさない溶剤溶解性の付与 不充分なガス分離性能 である。 (発明を解決するための手段) すなわち本発明は、ビス(3−アミノフエニ
ル)スルホンを30モル%〜95モル%およびメタフ
エニレンジアミン5モル%〜70モル%をジアミン
成分とし、イソフタル酸成分を主酸成分とするポ
リ(アミド・スルホン)からなるすぐれた耐熱
性、製膜性および分離性能を有するガス分離膜を
得るに到つた。 本発明のポリマーに用いられるジアミンはビス
(3−アミノフエニル)スルホンおよびメタフエ
ニレンジアミンである。メタフエニレンジアミン
の使用量は両者の合計量に対し、5モル%〜70モ
ル%である。70モル%より多い場合は、ポリマー
の溶解性が著しく低下し膜構造を非対称膜化する
際の溶媒条件が厳しく限定され、良好な分離膜を
得ることは困難になる。メタフエニレンジアミン
が5モル%〜70モル%の範囲において、分離性
能、溶解性ともにすぐれた性能を示す。好ましく
はメタフエニレンジアミン10モル%〜70モル%の
範囲が特にすぐれている。 共重合するジアミン成分としては、メタフエニ
レンジアミンがすぐれている。メタフエニレンジ
アミンのかわりに、結合位置の異なる異性体であ
るパラフエニレンジアミンを用いても効果はな
く、分離係数は低下する。 酸成分としては、主としてイソフタル酸成分が
用いられる。他に芳香族ジカルボン酸成分を用い
ることができるが、その使用量は全酸成分に対し
20モル%以下が好ましい。 ポリマーはジアミンとジカルボン酸クロリドと
の反応により得られる。反応の方法は溶液重合法
や界面重合法が採用される。該ポリマーから得ら
れる分離膜の形状は、平膜、スパイラル型あるい
は中空糸型等特に制限はないが、分離性能、特に
ガスの透過量を向上させるために、膜は非対称構
造をとることが望ましい。 該ポリマーはN−メチルピロリドン、N,N−
ジメチルホルムアミドあるいはN,N−ジメチル
アセトアミド等適当な極性溶媒媒に溶解する。 また、非対称膜を形成する際の遅凝固剤である
グリコール類等と上記溶媒との混合溶媒にも溶解
する。従つて膜は通常該ポリマーをこれらの溶媒
に溶解した溶液から作製される。例えば、該ポリ
マーをN−メチルピロリドンと遅凝固剤であるグ
リコール類との混合液に溶解した後ガラス板上に
流延、一定時間放置後水等非溶剤中へ浸漬するこ
とにより非対称膜を得ることができる。 (発明の効果) 本発明のポリマーから得られた膜は高い降状点
を持つため、高温(例えば100℃)でも高い分離
係数を示す。特に該膜は、水素やヘリウム等低分
子量のガスと窒素や一酸化炭素等高分子量のガス
を分離する場合に適している。 本発明において例えばビス(3−アミノフエニ
ル)スルホンとともに用いる低分子量ジアミンと
して、先に提案したパラフエニレンジアミンを用
いた場合に比較して分離係数が格段にすぐれてい
る。 ビス(3−アミノフエニル)スルホンとメタフ
エニレンジアミン成分にイソフタル酸成分を主な
酸成分とする系においてきわだつて優れた分離性
能を示す。 (実施例) 以下に実施例で本発明を具体的に説明するが、
これによつて本発明が限定されるものではない。
なお、実施例において、ガス分離性能や還元比粘
度等は以下の要領に従つて測定した。 (1) 還元比粘度(ηsp/c) 溶媒 N,N−ジメチルアセトアミド 温度 30℃ 濃度 500mg/ml (2) 膜の作製 ポリマー5gを45mlのN−メチルピロリドン
に溶解する。該溶液をガラス板上に固定したポ
リプロピレンフイルム上に流延した後、80℃の
乾燥器中に1時間入れ溶媒を蒸発させる。室温
まで放冷した後ポリプロピレンフイルムから膜
をはがし、ガラス板上に置く。ガラス板上に固
定した後真空乾燥器内に入れ150℃にて14〜16
時間1mmHg以下に保ち、残留溶媒の除去およ
び熱処理を行う。得られた膜を用いて、ガスの
分離性能および耐熱性の測定を行つた。 (3) ガス分離性能の測定 ガス分離性能の測定は製科研式ガス透過測定
装置を用いて30℃で行つた。水素および一酸化
炭素の透過係数を計算し、両者の比から分離係
数を求めた。 (4) 耐熱性(降伏温度)の測定 島津製作所製の熱機械特性測定装置を用いて
試料フイルムが荷重により伸び始める温度を測
定した。昇温速度は10℃/min、雰囲気は混合
ガス(O2/N2=21/79)である。 (5) 溶解性テスト ポリマー14.0gを、N,N−ジメチルホルム
アミド16.9g、プロピレングリコール9.1gの
混合溶媒中100℃で撹拌し、溶解の程度を目視
判定した。 実施例 1 撹拌器、温度計、窒素導入管および試料投入口
付の500mlフラスコ中にビス(3−アミノフエニ
ル)スルホン15.5g(0.0624mol)およびメタフ
エニレンジアミン2.9g(0.0267mol)を入れ、窒
素ガスを導入する。脱水したN−メチルピロリド
ン200mlを加え撹拌する。完全に溶解した後、氷
浴で内温が4℃になるまで冷却する。試薬投入口
からイソフタル酸ジクロリド粉末18.1g
(0.0892mol)を投入し、1時間氷浴で冷却した
まま撹拌する。その後室温で1時間反応させた
後、2lメタノール中に注ぐことによりポリマー固
体を得た。該ポリマーを家庭用ミキサーを用いて
5回水洗した後、140℃で減圧乾燥した。ポリマ
ーの還元比粘度は0.81、降伏温度は207℃であつ
た。水素の透過係数は1.5×10-10cm3.cm/cm2
sec.cmHg、水素一酸化炭素の分離係数は185であ
つた。 また、このポリマーは上記溶解テスト条件で溶
解した。 実施例2及び比較例1、2 実施例1と同様にして、メタフエニレンジアミ
ン含有量の異るポリマーを得た。得られたポリマ
ーの組成、耐熱性、溶解性およびガス分離性能を
第1表に示す。 比較例 3 実施例1と同じ反応器でビス〔4−(4−アミ
ノフエノキシ)フエニル〕スルホン42.3g
(0.0999mol)をN−メチルピロリドン300mlに溶
解、4℃まで氷浴で冷却した後、イソフタル酸ジ
クロリド粉末20.3g(0.1000mol)を投入、他は
実施例1と同様にして還元比粘度1.25のポリマー
を得た。該ポリマーの降伏温度は315℃、水素の
透過係数は3.3×10-10cm3.cm/cm2.sec.cmHg、水
素、一酸化炭素の分離係数は73であつた。
(Industrial Application Field) The present invention relates to a gas separation membrane having good separation performance. (Prior Art) As a gas separation membrane, a composite membrane in which polysulfone and a silicone polymer are combined is known (Japanese Unexamined Patent Publication No. 86684/1984). This membrane is commercially available as a prism separator from Monsanto. The silicone-based polymer used in this membrane has poor heat resistance, and its separation performance decreases significantly at high temperatures (for example, 100°C). Aromatic polyamide is known as one of the polymers with good heat resistance. In particular, it has been reported that poly(amide ether sulfone) obtained from bis[4-(4-aminophenoxy)phenyl]sulfone and isophthalic acid or terephthalic acid has excellent gas separation performance (JP-A-58-55006 ).
A membrane obtained from the polyamide has better gas separation performance than the polysulfone described above, and also has excellent heat resistance. However, the separation performance is not sufficient. (Problems to be Solved by the Invention) Various drawbacks in the prior art, namely: Improvement in heat resistance Improving solvent solubility without interfering with film forming properties Insufficient gas separation performance. (Means for Solving the Invention) That is, the present invention uses bis(3-aminophenyl) sulfone as a diamine component of 30 mol% to 95 mol% and metaphenylenediamine as a diamine component, and an isophthalic acid component as a diamine component. A gas separation membrane made of poly(amide sulfone) as the main acid component and having excellent heat resistance, film formability, and separation performance has been obtained. The diamines used in the polymers of this invention are bis(3-aminophenyl)sulfone and metaphenylenediamine. The amount of metaphenylene diamine used is 5 mol % to 70 mol % based on the total amount of both. If it is more than 70 mol%, the solubility of the polymer will be significantly reduced, and the solvent conditions for forming the membrane structure into an asymmetric membrane will be severely limited, making it difficult to obtain a good separation membrane. In the range of 5 mol % to 70 mol % of metaphenylenediamine, both separation performance and solubility are excellent. Preferably, a range of 10 mol % to 70 mol % of metaphenylene diamine is particularly excellent. As a diamine component to be copolymerized, metaphenylene diamine is excellent. Even if paraphenylenediamine, which is an isomer with a different bonding position, is used instead of metaphenylenediamine, there is no effect and the separation coefficient decreases. As the acid component, an isophthalic acid component is mainly used. Other aromatic dicarboxylic acid components can be used, but the amount used is based on the total acid component.
It is preferably 20 mol% or less. The polymer is obtained by reacting a diamine with a dicarboxylic acid chloride. A solution polymerization method or an interfacial polymerization method is adopted as the reaction method. The shape of the separation membrane obtained from the polymer is not particularly limited, such as flat membrane, spiral type, or hollow fiber type, but in order to improve separation performance, especially the amount of gas permeation, it is desirable that the membrane has an asymmetric structure. . The polymer is N-methylpyrrolidone, N,N-
Dissolve in a suitable polar solvent such as dimethylformamide or N,N-dimethylacetamide. It is also dissolved in a mixed solvent of the above solvent and glycols, which are slow coagulating agents when forming an asymmetric membrane. Membranes are therefore usually prepared from solutions of the polymers in these solvents. For example, an asymmetric membrane is obtained by dissolving the polymer in a mixture of N-methylpyrrolidone and glycols as a slow-coagulating agent, casting it on a glass plate, leaving it for a certain period of time, and then immersing it in a non-solvent such as water. be able to. (Effects of the Invention) Since the membrane obtained from the polymer of the present invention has a high precipitation point, it exhibits a high separation coefficient even at high temperatures (for example, 100° C.). In particular, the membrane is suitable for separating low molecular weight gases such as hydrogen and helium from high molecular weight gases such as nitrogen and carbon monoxide. In the present invention, for example, as the low molecular weight diamine used together with bis(3-aminophenyl)sulfone, the separation coefficient is much better than when the previously proposed paraphenylene diamine is used. It exhibits outstanding separation performance in a system containing bis(3-aminophenyl)sulfone, metaphenylenediamine, and isophthalic acid as the main acid components. (Example) The present invention will be specifically explained below using Examples.
The present invention is not limited thereby.
In the examples, gas separation performance, reduced specific viscosity, etc. were measured according to the following procedures. (1) Reduced specific viscosity (ηsp/c) Solvent: N,N-dimethylacetamide Temperature: 30°C Concentration: 500 mg/ml (2) Preparation of membrane Dissolve 5 g of polymer in 45 ml of N-methylpyrrolidone. The solution was cast onto a polypropylene film fixed on a glass plate, and then placed in a dryer at 80° C. for 1 hour to evaporate the solvent. After cooling to room temperature, the polypropylene film was peeled off and placed on a glass plate. After fixing it on a glass plate, put it in a vacuum dryer at 150℃ for 14 to 16 hours.
Removal of residual solvent and heat treatment are performed while maintaining the temperature at 1 mmHg or less for a time. Using the obtained membrane, gas separation performance and heat resistance were measured. (3) Measurement of gas separation performance Gas separation performance was measured at 30°C using a Seikagaku-style gas permeation measuring device. The permeability coefficients of hydrogen and carbon monoxide were calculated, and the separation coefficient was determined from the ratio of the two. (4) Measurement of heat resistance (yield temperature) The temperature at which the sample film begins to stretch under load was measured using a thermomechanical property measuring device manufactured by Shimadzu Corporation. The temperature increase rate was 10° C./min, and the atmosphere was a mixed gas (O 2 /N 2 = 21/79). (5) Solubility test 14.0 g of polymer was stirred at 100° C. in a mixed solvent of 16.9 g of N,N-dimethylformamide and 9.1 g of propylene glycol, and the degree of dissolution was visually determined. Example 1 15.5 g (0.0624 mol) of bis(3-aminophenyl)sulfone and 2.9 g (0.0267 mol) of metaphenylenediamine were placed in a 500 ml flask equipped with a stirrer, thermometer, nitrogen inlet tube, and sample inlet, and nitrogen was added. Introduce gas. Add 200 ml of dehydrated N-methylpyrrolidone and stir. After completely melting, cool in an ice bath until the internal temperature reaches 4°C. 18.1g of isophthalic acid dichloride powder from the reagent inlet
(0.0892 mol) and stirred while cooling in an ice bath for 1 hour. Thereafter, the mixture was allowed to react at room temperature for 1 hour, and then poured into 2 liters of methanol to obtain a polymer solid. The polymer was washed with water five times using a household mixer, and then dried under reduced pressure at 140°C. The reduced specific viscosity of the polymer was 0.81, and the yield temperature was 207°C. The permeability coefficient of hydrogen is 1.5×10 -10 cm 3 . cm/ cm2 .
sec.cmHg, hydrogen carbon monoxide separation coefficient was 185. Moreover, this polymer dissolved under the above dissolution test conditions. Example 2 and Comparative Examples 1 and 2 Polymers with different metaphenylenediamine contents were obtained in the same manner as in Example 1. Table 1 shows the composition, heat resistance, solubility, and gas separation performance of the obtained polymer. Comparative Example 3 In the same reactor as in Example 1, 42.3 g of bis[4-(4-aminophenoxy)phenyl]sulfone was used.
(0.0999 mol) was dissolved in 300 ml of N-methylpyrrolidone, cooled to 4°C in an ice bath, and then 20.3 g (0.1000 mol) of isophthalic acid dichloride powder was added. A polymer was obtained. The yield temperature of this polymer is 315°C, and the hydrogen permeability coefficient is 3.3×10 -10 cm 3 . cm/ cm2 . The separation coefficient for sec.cmHg, hydrogen, and carbon monoxide was 73.

【表】 第1表から次のことが明らかである。 1 ビス(3−アミノフエニル)スルホンの組成
比が低くなると溶媒溶解性が低下する。 2 ビス(3−アミノフエニル)スルホンとメタ
フエニレンジアミンとの組合せは従来技術(特
開昭58−55006)にもとづく比較例1にくらべ
てすぐれたガス分離性能を示す。ビス(3−ア
ミノフエニル)スルホンの組成比が充分であれ
ば溶媒溶解性もすぐれている。 (作用) 本発明によるとき、製膜性に支障をきたさない
溶媒溶解性を有するポリマーを提供し、かつ、す
ぐれたガス分離性能と耐熱性をもつ分離膜を提供
する。
[Table] The following is clear from Table 1. 1 As the composition ratio of bis(3-aminophenyl)sulfone becomes lower, the solvent solubility decreases. 2. The combination of bis(3-aminophenyl)sulfone and metaphenylenediamine exhibits superior gas separation performance compared to Comparative Example 1 based on the prior art (Japanese Unexamined Patent Publication No. 58-55006). If the composition ratio of bis(3-aminophenyl)sulfone is sufficient, the solvent solubility is also excellent. (Function) According to the present invention, a polymer having solvent solubility that does not impede membrane formability is provided, and a separation membrane having excellent gas separation performance and heat resistance is provided.

Claims (1)

【特許請求の範囲】[Claims] 1 ビス(3−アミノフエニル)スルホン30モル
%〜95モル%およびメタフエニレンジアミン5モ
ル%〜70モル%をジアミン成分とし、イソフタル
酸成分を主酸成分とするポリ(アミド・スルホ
ン)から成ることを特徴とする気体分離膜。
1 Consisting of a poly(amide sulfone) having 30 mol% to 95 mol% of bis(3-aminophenyl) sulfone and 5 mol% to 70 mol% of metaphenylenediamine as a diamine component and an isophthalic acid component as the main acid component. A gas separation membrane featuring:
JP24272285A 1985-10-31 1985-10-31 Separating membrane Granted JPS62102802A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24272285A JPS62102802A (en) 1985-10-31 1985-10-31 Separating membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24272285A JPS62102802A (en) 1985-10-31 1985-10-31 Separating membrane

Publications (2)

Publication Number Publication Date
JPS62102802A JPS62102802A (en) 1987-05-13
JPH0252530B2 true JPH0252530B2 (en) 1990-11-13

Family

ID=17093272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24272285A Granted JPS62102802A (en) 1985-10-31 1985-10-31 Separating membrane

Country Status (1)

Country Link
JP (1) JPS62102802A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63305918A (en) * 1987-06-05 1988-12-13 Agency Of Ind Science & Technol Gas separation membrane

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5099971A (en) * 1972-07-20 1975-08-08
JPS5270989A (en) * 1975-12-06 1977-06-13 Bayer Ag Copolyamide semipermeable membrane
JPS5270990A (en) * 1975-12-06 1977-06-13 Bayer Ag Copolyamide semipermeable membrane
JPS60242723A (en) * 1984-05-17 1985-12-02 Nec Corp Optical switch circuit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5099971A (en) * 1972-07-20 1975-08-08
JPS5270989A (en) * 1975-12-06 1977-06-13 Bayer Ag Copolyamide semipermeable membrane
JPS5270990A (en) * 1975-12-06 1977-06-13 Bayer Ag Copolyamide semipermeable membrane
JPS60242723A (en) * 1984-05-17 1985-12-02 Nec Corp Optical switch circuit

Also Published As

Publication number Publication date
JPS62102802A (en) 1987-05-13

Similar Documents

Publication Publication Date Title
JP2004516131A (en) Copolyimide gas separation membrane
JPH08501978A (en) Gas separation membrane made of alkyl-substituted polyimide, polyamide and polyamide-imide
JPH06269648A (en) Polyimide gas separation membrane for carbon dioxide thickening
JPS6153103B2 (en)
JPH03106426A (en) Semipermeable diaphragm formed of polyimide resin and method of separating one component from gas mixture
US5917137A (en) Gas separation membranes of blends of polyethersulfones with aromatic polyimides
JP3391574B2 (en) Blend of aromatic polyimide, polyamide or polyamide-imide with polyethersulfone, and gas separation membrane made therefrom
JPH03178325A (en) Production of aromatic polyimide membrane
US5939520A (en) Gas separation membranes based on regiospecific polyamide-imides
JPH0477610B2 (en)
CN108114615A (en) A kind of polyimide gas separating film material and preparation and application
JPH04227829A (en) Semipermeable membrane and component separation method of gas mixture
JPH0252530B2 (en)
JPH0550334B2 (en)
JPH0252531B2 (en)
JPH0367733B2 (en)
WO2017175598A1 (en) Gas separation membrane, gas separation module, gas separation device, and gas separation method
EP0437611A1 (en) Separative membrane made of aromatic polyimide
JPH0122001B2 (en)
KR100351628B1 (en) New polyimides and gas separation Membrane
KR100398059B1 (en) Fluorine-based polyimide composite membrane for gas separation
JP3456256B2 (en) Polyimide copolymer and method for producing the same
JP2827212B2 (en) Polyamideimide separation membrane
KR0133427B1 (en) Preparation of polyimide membrane
CN117881722A (en) Block copolymers

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term