WO2017175598A1 - Gas separation membrane, gas separation module, gas separation device, and gas separation method - Google Patents

Gas separation membrane, gas separation module, gas separation device, and gas separation method Download PDF

Info

Publication number
WO2017175598A1
WO2017175598A1 PCT/JP2017/011915 JP2017011915W WO2017175598A1 WO 2017175598 A1 WO2017175598 A1 WO 2017175598A1 JP 2017011915 W JP2017011915 W JP 2017011915W WO 2017175598 A1 WO2017175598 A1 WO 2017175598A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
gas separation
formula
gas
independently
Prior art date
Application number
PCT/JP2017/011915
Other languages
French (fr)
Japanese (ja)
Inventor
敦靖 野崎
基 原田
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2018510297A priority Critical patent/JPWO2017175598A1/en
Publication of WO2017175598A1 publication Critical patent/WO2017175598A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/107Organic support material
    • B01D69/1071Woven, non-woven or net mesh
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1216Three or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/58Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
    • B01D71/62Polycondensates having nitrogen-containing heterocyclic rings in the main chain
    • B01D71/64Polyimides; Polyamide-imides; Polyester-imides; Polyamide acids or similar polyimide precursors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/66Polymers having sulfur in the main chain, with or without nitrogen, oxygen or carbon only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/66Polymers having sulfur in the main chain, with or without nitrogen, oxygen or carbon only
    • B01D71/69Polysulfonamides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors

Definitions

  • the present invention relates to a gas separation membrane, a gas separation module, a gas separation device, and a gas separation method.
  • a material composed of a polymer compound has gas permeability specific to each material. Based on the property, a desired gas component can be selectively permeated and separated by a membrane composed of a specific polymer compound.
  • this gas separation membrane As an industrial utilization mode of this gas separation membrane, it is related to the problem of global warming, and it is separated and recovered from a large-scale carbon dioxide generation source in a thermal power plant and / or a cement plant, a steelworks blast furnace, etc. Is being considered. And this membrane separation technique attracts attention as a means for solving environmental problems that can be achieved with relatively small energy.
  • natural gas and biogas gas generated by fermentation and anaerobic digestion of biological waste, organic fertilizer, biodegradable substances, sewage, garbage, energy crops, etc.
  • a membrane separation method has been studied as a means for removing impurities such as carbon dioxide.
  • Patent Document 1 describes that a crosslinked polyimide compound obtained by crosslinking a polyimide compound via an ester linking group is used as a gas separation layer of a gas separation membrane.
  • the gas separation layer In order to obtain a practical gas separation membrane, the gas separation layer must be made thin to ensure sufficient gas permeability, and a higher degree of gas separation selectivity must be realized.
  • a method for thinning the gas separation layer there is a method in which a polymer compound such as a polyimide compound is made into an asymmetric membrane by a phase separation method, and a portion contributing to separation is made into a thin layer called a dense layer or a skin layer.
  • a portion other than the dense layer is allowed to function as a support layer that bears the mechanical strength of the membrane.
  • the gas separation layer responsible for the gas separation function and the support layer responsible for the mechanical strength are made of different materials, and the gas separation layer having gas separation ability is thinly formed on the gas permeable support layer.
  • the form of the composite film formed in the above is also known.
  • gas permeability and gas separation selectivity are in a so-called trade-off relationship. Therefore, by adjusting the copolymerization component of the polyimide compound used in the gas separation layer, it is possible to improve either the gas permeability or the gas separation selectivity of the gas separation layer, but these characteristics are desired high It is difficult to achieve both levels.
  • polyimide compounds are generally poor in plastic resistance, and gas separation performance tends to deteriorate in the presence of plasticizing impurity components (such as toluene).
  • plasticizing impurity components such as toluene
  • gas permeability and gas separation selectivity can be realized at a desired high level, and the above-described excellent separation performance (gas permeability and separation selectivity) is maintained even in the presence of plasticizing impurities.
  • the present invention relates to a gas separation membrane that can be expressed dynamically.
  • the present invention also relates to a gas separation module, a gas separation apparatus, and a gas separation method using the gas separation membrane.
  • a gas separation membrane comprising at least one selected from the structural units represented.
  • R represents a tetravalent group represented by any of the following formulas (I-1) to (I-28).
  • X 1 to X 3 each independently represents a single bond or a divalent linking group
  • L represents —CH ⁇ CH— or —CH 2 —
  • R 1 and R 2 each independently represents a hydrogen atom or a substituent.
  • Z 1 to Z 4 each independently represents a divalent linking group
  • Q 1 and Q 2 each independently represents a divalent group containing a sulfonamide group
  • Y 1 represents a hydrogen atom, an alkyl group, an aryl group, or any group of formulas (4) to (6)
  • X 1+ represents an organic or inorganic cation
  • n is an integer of 0 or more.
  • R 3 to R 6 each independently represents an alkyl group or an aryl group.
  • * 1 is a binding site with a nitrogen atom.
  • W 1 to W 50 each independently represent a hydrogen atom, a halogen atom, an alkyl group, an alkoxy group, a hydroxyl group, a sulfonamide group, or a carboxy group
  • Z 11 represents —CR 8 2 —, —O—, —NR 8 -, - S- or a single bond
  • L 1 and L 2 -CR each independently 9 -, - O -, - NR 9 -, - S- or a single bond.
  • R 8 and R 9 each independently represents an alkyl group or an aryl group.
  • a gas separation membrane having a gas separation layer containing a polyimide compound wherein the polyimide compound is represented by the structural unit represented by the formula (1), the structural unit represented by the formula (8), and the formula (9).
  • a gas separation membrane comprising at least one selected from the structural units represented.
  • R represents a tetravalent group represented by any of the following formulas (I-1) to (I-28).
  • X 1 to X 3 each independently represents a single bond or a divalent linking group
  • L represents —CH ⁇ CH— or —CH 2 —
  • R 1 and R 2 each independently represents a hydrogen atom or a substituent. * Indicates a binding site with the carbonyl group in formula (1).
  • Z 5 to Z 10 each independently represent a divalent linking group
  • Y 2 and Y 3 each independently represent a hydrogen atom, an alkyl group, an aryl group, or formula (4)
  • X 2+ and X 3+ each independently represent an organic or inorganic cation.
  • R 3 to R 6 each independently represents an alkyl group or an aryl group.
  • * 1 is a binding site with a nitrogen atom.
  • Z 5 to Z 10 are each independently any one of the following formulas A-1 to A-11.
  • W 1 to W 50 each independently represent a hydrogen atom, a halogen atom, an alkyl group, an alkoxy group, a hydroxyl group, a sulfonamide group, or a carboxy group
  • Z 11 represents —CR 8 2 —, —O—, —NR 8 -, - S- or a single bond
  • L 1 and L 2 -CR each independently 9 -, - O -, - NR 9 -, - S- or a single bond.
  • R 8 and R 9 each independently represents an alkyl group or an aryl group.
  • gas separation layer is a gas separation composite membrane provided on the upper side of the gas permeable support layer.
  • Gas separation membrane The gas-permeable support layer includes a porous layer and a nonwoven fabric layer, The gas separation membrane according to any one of [1] to [7], wherein the gas separation layer, the porous layer, and the nonwoven fabric layer are provided in this order. [9] The gas separation membrane according to any one of [1] to [8], which is used for selectively permeating carbon dioxide from a gas containing carbon dioxide and methane.
  • a gas separation module comprising the gas separation membrane according to any one of [1] to [8].
  • a gas separation device comprising the gas separation module according to [10].
  • the numerical value range represented by “to” means that the numerical values described before and after the numerical value range are included as a lower limit value and an upper limit value.
  • substituents when there are a plurality of substituents, linking groups, and the like (hereinafter referred to as substituents) indicated by specific symbols, or when a plurality of substituents are specified simultaneously or alternatively, It means that a substituent etc. may mutually be same or different. The same applies to the definition of the number of substituents and the like. Further, when there are repetitions of a plurality of partial structures represented by the same indication in the formula, each partial structure or constituent unit (repeating unit) may be the same or different.
  • the gas separation membrane, gas separation module, and gas separation apparatus of the present invention can realize both gas permeability and plasticization resistance at a high level, not on a trade-off line, even when used under high pressure conditions. High-speed, high-selectivity gas separation with excellent plasticization resistance is possible. According to the gas separation method of the present invention, gas can be separated with excellent gas permeability and excellent gas separation selectivity even under high pressure conditions, and high speed and high selectivity gas separation is possible. And excellent plasticization resistance.
  • the gas separation membrane of the present invention contains a specific polyimide compound in the gas separation layer.
  • the polyimide compound includes at least one selected from the structural unit represented by the following formula (1), the structural unit represented by the formula (2), and the structural unit represented by the formula (3). .
  • R represents a tetravalent group represented by any of the following formulas (I-1) to (I-28).
  • X 1 to X 3 each independently represents a single bond or a divalent linking group
  • L represents —CH ⁇ CH— or —CH 2 —
  • R 1 and R 2 each independently represents a hydrogen atom or a substituent.
  • * Indicates a binding site with the carbonyl group in formula (1).
  • R is preferably a group represented by the formula (I-1), (I-2) or (I-4), more preferably a group represented by (I-1) or (I-4).
  • a group represented by (I-1) is particularly preferable.
  • X 1 to X 3 each independently represents a single bond or a divalent linking group.
  • the divalent linking group —C (R x ) 2 — (R x represents a hydrogen atom or a substituent. When R x is a substituent, they may be linked to each other to form a ring), —O—, —SO 2 —, —C ( ⁇ O) —, —S—, —NR Y — (R Y represents a hydrogen atom, an alkyl group (preferably a methyl group or an ethyl group) or an aryl group (preferably a phenyl group).
  • R x represents a substituent
  • specific examples thereof include a group selected from the substituent group Z described below, and among them, an alkyl group (preferable range is synonymous with the alkyl group shown in the substituent group Z described later). And an alkyl group having a halogen atom as a substituent is more preferable, and trifluoromethyl is particularly preferable.
  • X 3 is linked to one of the two left carbon atoms and is linked to one of the two right carbon atoms.
  • L represents —CH ⁇ CH— or —CH 2 —.
  • R 1 and R 2 each independently represents a hydrogen atom or a substituent.
  • substituent include a group selected from the substituent group Z described later.
  • R 1 and R 2 may be bonded to each other to form a ring.
  • R 1 and R 2 are preferably each independently a hydrogen atom or an alkyl group, more preferably a hydrogen atom, a methyl group or an ethyl group, and even more preferably a hydrogen atom.
  • a substituent may be further added to the carbon atom shown in the formulas (I-1) to (I-28).
  • Specific examples of the substituent include groups selected from the substituent group Z described later, and among them, an alkyl group or an aryl group is preferable.
  • Z 1 to Z 4 each independently represent a divalent linking group, such as an arylene group (preferably a 1-5 cyclic arylene group, more preferably a phenylene group, A naphthylene group), an alkylene group (preferably a methylene group), an alkyleneoxy group (preferably an ethyleneoxy group, a propyleneoxy group) or two or more groups selected from these groups are linked by a single bond or a divalent group. (Preferably a group formed by connecting two or more arylene groups and / or alkylene groups with a single bond or a divalent group).
  • arylene group preferably a 1-5 cyclic arylene group, more preferably a phenylene group, A naphthylene group
  • an alkylene group preferably a methylene group
  • an alkyleneoxy group preferably an ethyleneoxy group, a propyleneoxy group
  • Two or more groups selected from an arylene group, an alkylene group, and an alkyleneoxy group connected by the above divalent group are connected to each other by the substituents of these groups to form a ring together with the above divalent group. It may be formed.
  • the divalent group include an alkylene group (preferably a methylene group), a cycloalkylene group (preferably a cyclohexylene group), and an alkyleneoxy group (preferably an ethyleneoxy group and a propyleneoxy group).
  • Z 1 to Z 4 are each independently preferably a divalent group containing an arylene group and / or an alkylene group, and more preferably any one of the following formulas A-1 to A-11.
  • W 1 to W 50 each independently represent a hydrogen atom, a halogen atom, an alkyl group, an alkoxy group, a hydroxyl group, a sulfonamide group or a carboxy group, preferably an alkyl group or a carboxy group.
  • Specific examples of the halogen atom, alkyl group, alkoxy group and sulfonamide group that can be taken by W 1 to W 50 include those exemplified in Substituent Group Z below.
  • Z 11 represents —CR 8 2 —, —O—, —NR 8 —, —S— or a single bond, preferably —CR 8 2 —, —O—.
  • L 1 and L 2 each independently represent —CR 9 —, —O—, —NR 9 —, —S— or a single bond, preferably —CR 9 —, —O—.
  • R 8 and R 9 each independently represents an alkyl group or an aryl group.
  • Alkyl groups that can be employed as R 8 and R 9 may be independently linear or branched, and may have a cyclic structure.
  • the alkyl groups that can be taken as R 8 and R 9 each independently preferably have 1 to 20 carbon atoms, more preferably 1 to 10, more preferably 1 to 8, still more preferably 1 to 6, and more preferably 1 to 4 Particularly preferred.
  • this alkyl group include, for example, methyl, ethyl, n-propyl, isopropyl, n-butyl, t-butyl, s-butyl, isobutyl, cyclobutyl, n-hexyl and cyclohexyl. preferable.
  • a halogen-substituted alkyl group is preferred.
  • Preferable specific examples of the halogen-substituted alkyl group include, for example, trifluoromethyl.
  • Q 1 and Q 2 each independently represent a divalent group containing a sulfonamide group, and examples thereof include a divalent group formed by combining a sulfonamide group with a group selected from an arylene group and a methylene group.
  • the sulfonamide group means a divalent group represented by —S ( ⁇ O) ( ⁇ O) NR Q — or —S ( ⁇ O) ( ⁇ O) N + —
  • R Q represents a hydrogen atom or a substituent.
  • the connecting structure of the sulfonamide group and a group selected from an arylene group and a methylene group is preferably a single bond.
  • Y 1 represents a hydrogen atom, an alkyl group, an aryl group, or any group of formulas (4) to (6).
  • R 3 to R 6 each independently represents an alkyl group or an aryl group.
  • * 1 is a binding site with a nitrogen atom.
  • alkyl group or aryl group examples include the above alkyl group or aryl group.
  • Y 1 includes a group represented by any one of the formulas (4) to (6).
  • the groups represented by the formulas (4) to (6) are produced by a polymer reaction between a monovalent acid anhydride or monovalent acid halide compound and a sulfonamide group incorporated in the main chain of the polyimide compound. Can be formed.
  • a monovalent acid anhydride and a monovalent acid halide compound can react with the sulfonamide group in the polyimide compound to form at least one of formula (4), formula (5) and formula (6).
  • a monovalent compound is meant, and preferred examples include carboxylic acid anhydrides, sulfonic acid anhydrides, carboxylic acid chlorides, sulfonic acid chlorides, phosphoric acid chlorides and the like.
  • Examples of the halide in the monovalent acid halide compound include chloride and bromide. Specific examples of the monovalent acid anhydride and monovalent acid halide compound that can be used in the present invention are listed below, but the present invention is not limited thereto.
  • X 1+ represents an organic or inorganic cation, and examples thereof include an ammonium cation and a sodium cation.
  • n is an integer of 0 or more, preferably 1 to 3.
  • the polyimide compound comprises at least one selected from the structural unit represented by the formula (1), the structural unit represented by the formula (8), and the structural unit represented by the formula (9). It is preferable to include.
  • Z 5 to Z 10 each independently represent a divalent linking group, and examples thereof include an arylene group and an alkylene group (including a halogenated alkylene group).
  • Z 5 to Z 10 are preferably each independently a divalent group containing an arylene group and / or an alkylene group, and more preferably any one of formulas A-1 to A-11.
  • Y 2 and Y 3 each independently represent a hydrogen atom, an alkyl group, an aryl group or any one of the above formulas (4) to (6), and examples thereof include a hydrogen atom and an acetyl group.
  • X 2+ and X 3+ each independently represents an organic or inorganic cation, and examples thereof include an ammonium cation and a sodium cation.
  • the structural unit of the polyimide compound has a sulfonamide group in the main chain of the polyimide compound, compared to the case where it is introduced into the side chain, the interaction between the polymers is improved, and the gas permeability and plasticization resistance are improved. Conceivable.
  • a polyimide compound is used for a gas separation layer, it is possible to achieve both excellent gas permeability and plasticization resistance at a high level. Further, by changing the aromatic units of Z 1 to Z 10 , it is possible to satisfactorily adjust the balance of permeability, selectivity, and plasticization resistance.
  • the polyimide compound may have only one type of structural unit, but preferably has two or more types of structural units.
  • the structural unit in a polyimide compound is a structural unit derived from the exemplary compound obtained by making the following diamine compound and a bifunctional acid anhydride and / or a bifunctional sulfonic acid halide compound react.
  • a reaction scheme is shown below for one polyamide compound. This is an example in which a diamine compound, a bifunctional acid anhydride, and a bifunctional sulfonic acid halide compound are reacted one by one.
  • Examples of a diamine compound, a bifunctional acid anhydride, and a bifunctional sulfonic acid halide compound that are suitably obtained for synthesizing a polyimide compound are shown below.
  • the polyimide compound may be generated, for example, by a sequential polymerization reaction between a compound having two or more acid anhydride groups and a compound having two or more amino groups. Alternatively, it may be produced by a sequential polymerization reaction of a compound having two or more acid anhydride groups, a compound having two or more acid halide groups, and a compound having two or more amino groups.
  • the polyimide compound is a sequential polymerization reaction between a compound having two or more acid anhydride groups and a compound having at least one sulfonamide group in the main chain and having two or more amino groups (an acid anhydride compound and And a sequential polymerization reaction with a diamine compound containing at least one sulfonamide group).
  • the polyimide compound is preferably a linear polymer compound. Moreover, it is preferable that a polyimide compound has a carboxy group, it is more preferable to have a carboxy group couple
  • Exemplified compounds PI-1 to PI-28 mean polymer compounds obtained by reacting the diamine compounds described above with compounds having two or more anhydride groups in the proportions (molar ratio) described in the table. To do. Moreover, the weight average molecular weight (Mw) of a polymer is the value measured by GPC (gel filtration chromatography) method.
  • the polyimide compound used in the present invention is not limited to the specific examples described in the following table.
  • the polyimide compound may optionally contain other components as long as the effects of the present invention are not impaired.
  • the monovalent basic compound will be described.
  • the polyimide compound preferably contains a monovalent basic compound.
  • the monovalent basic compound means a monovalent basic compound capable of forming a salt structure with the sulfonamide group in the polyimide compound, and preferable examples include alkali metal hydroxides, oxides or carbonic acid.
  • Hydrogen salts alkoxides (ROM), phenoxides (ArONa), etc., ammonia (gas or aqueous solution), amines other than diarylamines and triarylamines (diarylamines and triarylamines are almost neutral, And a heterocyclic salt such as pyridine, quinoline and piperidine, a hydrazine derivative, an amidine derivative, and a tetraalkylammonium hydroxide.
  • “forms a salt structure” means that a compound or group defined therein forms a salt as it is, and a part of the compound or salt is combined to form a salt. .
  • the anion of a specific compound may dissociate and only the cation moiety may form a salt with a sulfonamide group.
  • the “salt structure” may be dissociated in the gas separation layer.
  • alkali metal hydroxides, oxides or bicarbonates, alkoxides (ROM), phenoxides (ArONa), ammonia (gas or aqueous solution), and salts of nitrogen-containing compounds are preferred.
  • Specific examples of the monovalent basic compound are listed below, but the present invention is not limited thereto.
  • polyimide compounds having a salt structure formed of a polyimide compound and a monovalent basic compound in the molecule are shown below.
  • the polyimide compound used for this invention is not limited to these specific examples.
  • polyimide compounds formed from a polyimide compound and an acid anhydride or acid halide compound are shown below.
  • the polyimide compound used for this invention is not limited to these specific examples.
  • Substituent group Z An alkyl group (preferably an alkyl group having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 10 carbon atoms, such as methyl, ethyl, iso-propyl, tert-butyl, n-octyl) , N-decyl, n-hexadecyl, etc.), a cycloalkyl group (preferably a cycloalkyl group having 3 to 30 carbon atoms, more preferably 3 to 20 carbon atoms, particularly preferably 3 to 10 carbon atoms).
  • an alkyl group preferably an alkyl group having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 10 carbon atoms, such as methyl, ethyl, iso-propyl, tert-butyl, n-octyl) , N-decyl, n-hexa
  • cyclopropyl cyclopentyl, cyclohexyl, etc.
  • an alkenyl group preferably an alkenyl group having 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, and particularly preferably 2 to 10 carbon atoms.
  • alkynyl groups preferably having 2 to 0, more preferably an alkynyl group having 2 to 20 carbon atoms, particularly preferably 2 to 10 carbon atoms, such as propargyl, 3-pentynyl, etc.
  • an aryl group preferably having 6 to 30 carbon atoms, more An aryl group having 6 to 20 carbon atoms, particularly preferably 6 to 12 carbon atoms is preferable, and examples thereof include phenyl, p-methylphenyl, naphthyl, anthranyl, and the like, amino groups (amino groups, alkylamino groups, An arylamino group and a heterocyclic amino group, preferably an amino group having 0 to 30 carbon atoms, more preferably 0 to 20 carbon atoms, and particularly preferably 0 to 10 carbon atoms, such as amino, methylamino, dimethylamino; , Diethylamino,
  • An aryloxy group preferably an aryloxy group having 6 to 30 carbon atoms, more preferably 6 to 20 carbon atoms, particularly preferably 6 to 12 carbon atoms, such as phenyloxy, 1-naphthyloxy, 2-naphthyloxy, etc.
  • a heterocyclic oxy group preferably a heterocyclic oxy group having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as pyridyloxy, pyrazyloxy, Pyrimidyloxy, quinolyloxy, etc.
  • An acyl group (preferably an acyl group having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as acetyl, benzoyl, formyl, pivaloyl, etc.), alkoxy A carbonyl group (preferably an alkoxycarbonyl group having 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, particularly preferably 2 to 12 carbon atoms, such as methoxycarbonyl, ethoxycarbonyl, etc.), aryloxy A carbonyl group (preferably an aryloxycarbonyl group having 7 to 30 carbon atoms, more preferably 7 to 20 carbon atoms, particularly preferably 7 to 12 carbon atoms, such as phenyloxycarbonyl), an acyloxy group ( Preferably 2-30 carbon atoms, more preferably 2-20 carbon atoms, especially Preferably, it is an acyloxy group having 2 to 10 carbon atoms, such as acet
  • alkoxycarbonylamino group preferably an alkoxycarbonylamino group having 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, particularly preferably 2 to 12 carbon atoms, such as methoxycarbonylamino
  • aryl Oxycarbonylamino group preferably an aryloxycarbonylamino group having 7 to 30 carbon atoms, more preferably 7 to 20 carbon atoms, particularly preferably 7 to 12 carbon atoms, and examples thereof include phenyloxycarbonylamino group
  • a sulfonylamino group preferably having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as methanesulfonylamino, benzenesulfonylamino, etc.
  • a sulfamoyl group Preferably 0-30 carbon atoms, more preferred 0 to 20 carbon atoms, particularly preferably a sulfam
  • An alkylthio group preferably an alkylthio group having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as methylthio and ethylthio
  • an arylthio group preferably An arylthio group having 6 to 30 carbon atoms, more preferably 6 to 20 carbon atoms, particularly preferably 6 to 12 carbon atoms, such as phenylthio, and a heterocyclic thio group (preferably having 1 to 30 carbon atoms).
  • heterocyclic thio group having 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as pyridylthio, 2-benzimidazolylthio, 2-benzoxazolylthio, 2-benzthiazolylthio and the like.
  • a sulfonyl group (preferably a sulfonyl group having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as mesyl, tosyl, etc.), a sulfinyl group (preferably A sulfinyl group having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as methanesulfinyl, benzenesulfinyl, etc.), ureido group (preferably having 1 carbon atom) -30, more preferably a ureido group having 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as ureido, methylureido, phenylureido, etc.), a phosphoramide group (preferably having a carbon number) A phosphoric acid amide group having 1 to 30, more preferably 1 to 20 carbon
  • the heteroatom may be a heterocycle, and examples of the heteroatom constituting the heterocycle include a nitrogen atom, an oxygen atom and a sulfur atom, preferably 0 to 30 carbon atoms, more preferably a heterocycle having 1 to 12 carbon atoms.
  • a silyl group (preferably having a carbon number).
  • substituents may be further substituted with any one or more substituents selected from the above substituent group Z.
  • substituents When there are a plurality of substituents in one structural site, these substituents are connected to each other to form a ring, or condensed with a part or all of the structural site to form an aromatic ring or an unsaturated heterocycle. A ring may be formed.
  • a compound or a substituent when a compound or a substituent includes an alkyl group, an alkenyl group, etc., these may be linear or branched, and may be substituted or unsubstituted. When an aryl group, a heterocyclic group, or the like is included, they may be monocyclic or condensed, and may be substituted or unsubstituted.
  • substituent group Z when only the name of each group is described (for example, when only “alkyl group” is described), preferred ranges and specific examples of the corresponding group of this substituent group Z are applied. .
  • the molecular weight of the polyimide compound is preferably 10,000 to 1,000,000 as a weight average molecular weight, more preferably 15,000 to 500,000, and still more preferably 20,000 to 200,000. Even more preferably, it is 50,000 to 150,000.
  • the molecular weight and the dispersity are values measured using a GPC (gel filtration chromatography) method, and the molecular weight is a weight average molecular weight in terms of polystyrene.
  • the gel packed in the column used in the GPC method is preferably a gel having an aromatic compound as a structural unit, for example, a gel made of a styrene-divinylbenzene copolymer. Two to six columns are preferably connected and used.
  • the solvent used include ether solvents such as tetrahydrofuran and amide solvents such as N-methylpyrrolidinone.
  • the measurement is preferably performed at a solvent flow rate in the range of 0.1 to 2 mL / min, and most preferably in the range of 0.5 to 1.5 mL / min. By performing the measurement within this range, the apparatus is not loaded and the measurement can be performed more efficiently.
  • the measurement temperature is preferably 10 to 50 ° C, most preferably 20 to 40 ° C. Note that the column and carrier to be used can be appropriately selected according to the physical properties of the polymer compound that is symmetrical to the measurement.
  • the polyimide compound can be synthesized by condensation polymerization of a bifunctional acid anhydride (tetracarboxylic dianhydride) having a specific structure and a diamine having a specific structure.
  • a bifunctional acid anhydride tetracarboxylic dianhydride
  • a diamine having a specific structure.
  • Etc. a general book (for example, Ikuo Imai, edited by Rikio Yokota, “Latest Polyimide: Fundamentals and Applications”, NTS Corporation, August 25, 2010, p. 3-49). , Etc.) can be carried out with appropriate reference to the methods described in the above.
  • the polyimide compound can be obtained by mixing each of the above raw materials in a solvent and performing condensation polymerization by a conventional method as described above.
  • the solvent include, but are not limited to, ester organic solvents such as methyl acetate, ethyl acetate, and butyl acetate, acetone, methyl ethyl ketone, methyl isobutyl ketone, diacetone alcohol, cyclopentanone, and cyclohexanone.
  • Aliphatic ketone-based organic solvents such as ethylene glycol dimethyl ether, dibutyl ether, tetrahydrofuran, methylcyclopentyl ether, and dioxane, N-methylpyrrolidone, 2-pyrrolidone, dimethylformamide, dimethylimidazolidinone, and dimethylacetamide
  • sulfur-containing organic solvents such as amide organic solvents, dimethyl sulfoxide, and sulfolane.
  • ester type preferably butyl acetate
  • aliphatic ketone type preferably methyl ethyl ketone, methyl isobutyl ketone, diacetone alcohol, cyclopentanone, cyclohexanone
  • ether type diethylene glycol monomethyl ether, methyl cyclopentyl ether
  • amide Solvents based on systems preferably N-methylpyrrolidone
  • sulfur-based systems dimethyl sulfoxide, sulfolane
  • the polymerization reaction temperature is not particularly limited, and a temperature that can be usually employed in the synthesis of a polyimide compound can be employed. Specifically, it is preferably ⁇ 50 to 250 ° C., more preferably ⁇ 25 to 225 ° C., still more preferably 0 ° C. to 200 ° C., and particularly preferably 20 ° C. to 190 ° C.
  • the polyimide compound is obtained by imidizing the polyamic acid produced by the above polymerization reaction by dehydrating and ring-closing reaction in the molecule.
  • a method for dehydrating and ring-closing a general book (for example, Ikuo Imai, edited by Rikio Yokota, “Latest Polyimide: Fundamentals and Applications”), NTS Corporation, August 25, 2010, p. 3 to 49, etc.) can be referred to. For example, it is heated to 120 ° C. to 200 ° C.
  • a technique such as so-called chemical imidization using a dehydration condensing agent such as acetic anhydride, dicyclohexylcarbodiimide, or triphenyl phosphite is preferably used.
  • the total concentration of tetracarboxylic dianhydride and diamine compound in the polymerization reaction solution of the polyimide compound is not particularly limited, but is preferably 5 to 70% by mass, more preferably 5 to 50% by mass, and 5 to 30%. More preferred is mass%.
  • Preferred examples of the polyimide compound represented by the formula (1) are as follows.
  • FIG. 1 is a longitudinal sectional view schematically showing a gas separation composite membrane 10 which is a preferred embodiment of the present invention.
  • 1 is a gas separation layer
  • 2 is a support layer which consists of a porous layer.
  • FIG. 2 is a cross-sectional view schematically showing a gas separation composite membrane 20 which is another preferred embodiment of the present invention.
  • a nonwoven fabric layer 3 is added as a support layer in addition to the gas separation layer 1 and the porous layer 2.
  • the gas permeable support layer includes a porous layer 2 on the gas separation layer 1 side and a nonwoven fabric layer 3 on the opposite side, and the gas separation layer 1 is located above the gas permeable support layer. Is provided. That is, in the gas separation composite membrane 20, the gas separation layer 1, the porous layer 2, and the nonwoven fabric layer 3 are provided in this order. 1 and 2 show an embodiment in which carbon dioxide is selectively permeated from a mixed gas containing carbon dioxide and methane to make the permeated gas rich in carbon dioxide.
  • upper support layer means that another layer may be interposed between the support layer and the gas separation layer.
  • the side to which the gas to be separated is supplied is “upper”, and the side from which the separated gas is discharged is “lower”.
  • the gas separation composite membrane may be formed or disposed on the surface or the inner surface of a porous support (support layer), and can be formed on at least the surface to easily form a composite membrane. .
  • a gas separation layer By forming a gas separation layer on at least the surface of the porous support, a composite membrane having the advantages of having both high separation selectivity, high gas permeability, and mechanical strength can be obtained.
  • the thickness of the separation layer is preferably a thin film as much as possible under the condition of imparting high gas permeability while maintaining mechanical strength and separation selectivity.
  • the thickness of the gas separation layer is not particularly limited.
  • the thickness of the gas separation layer is preferably from 0.01 to 5.0 ⁇ m, and more preferably from 0.05 to 2.0 ⁇ m.
  • the porous support (porous layer) preferably applied to the support layer is not particularly limited as long as it has the purpose of meeting mechanical strength and imparting high gas permeability. It may be a material.
  • An organic polymer porous film is preferable, and the thickness thereof is 1 to 3,000 ⁇ m, preferably 5 to 500 ⁇ m, and more preferably 5 to 150 ⁇ m.
  • the pore structure of this porous membrane usually has an average pore diameter of 10 ⁇ m or less, preferably 0.5 ⁇ m or less, more preferably 0.2 ⁇ m or less.
  • the porosity is preferably 20 to 90%, more preferably 30 to 80%.
  • the support layer has “gas permeability” means that carbon dioxide is supplied to the support layer (a film composed of only the support layer) at a temperature of 40 ° C. with a total pressure of 5 MPa on the gas supply side. This means that the permeation rate of carbon dioxide is 1 ⁇ 10 ⁇ 5 cm 3 (STP) / cm 2 ⁇ sec ⁇ cmHg (10 GPU) or more. Further, the gas permeability of the support layer is such that when carbon dioxide is supplied at a temperature of 40 ° C.
  • the carbon dioxide permeation rate is 3 ⁇ 10 ⁇ 5 cm 3 (STP) / It is preferably cm 2 ⁇ sec ⁇ cmHg (30 GPU) or more, more preferably 100 GPU or more, and further preferably 200 GPU or more.
  • the material for the porous membrane include conventionally known polymers such as polyolefin resins such as polyethylene and polypropylene, fluorine-containing resins such as polytetrafluoroethylene, polyvinyl fluoride, and polyvinylidene fluoride, polystyrene, and cellulose acetate.
  • the shape of the porous membrane can be any shape such as a flat plate shape, a spiral shape, a tubular shape, and a hollow fiber shape.
  • a support is formed in order to impart further mechanical strength to the lower portion of the support layer forming the gas separation membrane.
  • a support include woven fabrics, nonwoven fabrics, nets, and the like, but nonwoven fabrics are preferably used in terms of film forming properties and cost.
  • the nonwoven fabric fibers made of polyester, polypropylene, polyacrylonitrile, polyethylene, polyamide or the like may be used alone or in combination.
  • the nonwoven fabric can be produced, for example, by making a main fiber and a binder fiber uniformly dispersed in water using a circular net or a long net, and drying with a dryer.
  • the production method of the composite membrane is preferably a production method including forming a gas separation layer by applying a coating liquid containing the polyimide compound on a support.
  • the content of the polyimide compound in the coating solution is not particularly limited, but is preferably 0.1 to 30% by mass, and more preferably 0.5 to 10% by mass. If the content of the polyimide compound is too low, when the gas separation layer is formed on the porous support, the coating liquid easily penetrates into the lower layer, which may cause defects in the surface layer that contributes to gas separation. Becomes higher.
  • the coating solution may be filled in the pores at a high concentration, and the gas permeability may be lowered. is there.
  • the gas separation membrane of the present invention can be appropriately produced by adjusting the molecular weight, structure, composition, and solution viscosity of the polymer in the separation layer.
  • the organic solvent used as a medium for the coating solution is not particularly limited, but is a hydrocarbon organic solvent such as n-hexane and n-heptane, or an ester organic such as methyl acetate, ethyl acetate, or butyl acetate.
  • Solvent lower alcohols such as methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, and tert-butanol, aliphatics such as acetone, methyl ethyl ketone, methyl isobutyl ketone, diacetone alcohol, cyclopentanone, and cyclohexanone Ketone, ethylene glycol, diethylene glycol, triethylene glycol, glycerin, propylene glycol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, propylene glycol methyl ether, di Lopylene glycol methyl ether, tripropylene glycol methyl ether, ethylene glycol phenyl ether, propylene glycol phenyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, triethylene glycol monomethyl ether,
  • organic solvents are appropriately selected as long as they do not adversely affect the substrate, such as ester-based (preferably butyl acetate), alcohol-based (preferably methanol, ethanol, isopropanol).
  • ester-based preferably butyl acetate
  • alcohol-based preferably methanol, ethanol, isopropanol
  • Isobutanol aliphatic ketones (preferably methyl ethyl ketone, methyl isobutyl ketone, diacetone alcohol, cyclopentanone, cyclohexanone)
  • ether type ethylene glycol, diethylene glycol monomethyl ether, methyl cyclopentyl ether
  • these can be used 1 type or in combination of 2 or more types.
  • siloxane compound layer By providing the siloxane compound layer, the unevenness on the outermost surface of the support can be smoothed, and the separation layer can be easily thinned.
  • siloxane compound that forms the siloxane compound layer include those in which the main chain is made of polysiloxane and compounds in which the main chain includes a siloxane structure and a non-siloxane structure.
  • siloxane compound means an organopolysiloxane compound unless otherwise specified.
  • siloxane compound having a main chain made of polysiloxane examples include one or more polyorganosiloxanes represented by the following formula (i) or (ii). Moreover, these polyorganosiloxanes may form a crosslinking reaction product.
  • the cross-linking reaction for example, compounds represented by the following formula (i) is cross-linked by a polysiloxane compound having a group capable of linking by reacting with the reactive group X S of the formula (i) at both ends The compound of the form is mentioned.
  • R S is a non-reactive group, and is an alkyl group (preferably an alkyl group having 1 to 18 carbon atoms, more preferably an alkyl group having 1 to 12 carbon atoms) or an aryl group (preferably having 6 to 6 carbon atoms). 15, more preferably an aryl group having 6 to 12 carbon atoms, and still more preferably phenyl).
  • X S is a reactive group, and is selected from a hydrogen atom, a halogen atom, a vinyl group, a hydroxy group, and a substituted alkyl group (preferably an alkyl group having 1 to 18 carbon atoms, more preferably an alkyl group having 1 to 12 carbon atoms). It is preferably a group.
  • Y S and Z S each independently have the same meaning as any of the above R S and X S.
  • m is an integer of 1 or more, preferably 1 to 100,000.
  • n is an integer of 0 or more, preferably 0 to 100,000.
  • X S, Y S, Z S, R S, m and n are X S of each formula (i), Y S, Z S, R S, and m and n synonymous.
  • the non-reactive group R S when the non-reactive group R S is an alkyl group, examples of the alkyl group include methyl, ethyl, hexyl, octyl, decyl, and octadecyl.
  • the non-reactive group R when the non-reactive group R is a fluoroalkyl group, examples of the fluoroalkyl group include —CH 2 CH 2 CF 3 and —CH 2 CH 2 C 6 F 13 .
  • examples of the alkyl group include a hydroxyalkyl group having 1 to 18 carbon atoms and an aminoalkyl group having 1 to 18 carbon atoms.
  • the number of carbon atoms of the alkyl group constituting the hydroxyalkyl group is preferably an integer of 1 to 10, for example, —CH 2 CH 2 CH 2 OH.
  • the number of carbon atoms in the alkyl group constituting the aminoalkyl group is preferably an integer of 1 to 10, for example, —CH 2 CH 2 CH 2 NH 2 .
  • the number of carbon atoms of the alkyl group constituting the carboxyalkyl group is preferably an integer of 1 to 10, and examples thereof include —CH 2 CH 2 CH 2 COOH.
  • the alkyl group constituting the chloroalkyl group preferably has an integer of 1 to 10, and a preferred example is —CH 2 Cl.
  • a preferable carbon number of the alkyl group constituting the glycidoxyalkyl group is an integer of 1 to 10, and a preferred example is 3-glycidyloxypropyl.
  • the preferable number of carbon atoms of the epoxy cyclohexyl alkyl group having 7 to 16 carbon atoms is an integer of 8 to 12.
  • a preferable carbon number of the (1-oxacyclobutan-3-yl) alkyl group having 4 to 18 carbon atoms is an integer of 4 to 10.
  • a preferable carbon number of the alkyl group constituting the methacryloxyalkyl group is an integer of 1 to 10, and examples thereof include —CH 2 CH 2 CH 2 —OOC—C (CH 3 ) ⁇ CH 2 .
  • a preferable carbon number of the alkyl group constituting the mercaptoalkyl group is an integer of 1 to 10, and examples thereof include —CH 2 CH 2 CH 2 SH.
  • m and n are preferably numbers that give a molecular weight of 5,000 to 1,000,000 of the compound.
  • a reactive group-containing siloxane unit (wherein the number is a structural unit represented by n) and a siloxane unit having no reactive group (where the number is m)
  • n a structural unit represented by n
  • m a siloxane unit having no reactive group
  • R S, m and n have the same meanings as R S, m and n, respectively formula (i).
  • R L is —O— or —CH 2 —
  • R S1 is a hydrogen atom or methyl. Both ends of formula (iii) are preferably each independently an amino group, a hydroxyl group, a carboxy group, a trimethylsilyl group, an epoxy group, a vinyl group, a hydrogen atom, or a substituted alkyl group.
  • m and n are synonymous with m and n in the formula (i), respectively.
  • m and n have the same meanings as m and n in the formula (i), respectively.
  • m and n are synonymous with m and n in the formula (i), respectively. It is preferable that both ends of the formula (vi) are independently bonded with an amino group, a hydroxyl group, a carboxy group, a trimethylsilyl group, an epoxy group, a vinyl group, a hydrogen atom, or a substituted alkyl group.
  • m and n are synonymous with m and n in the formula (i), respectively. It is preferable that both ends of the formula (vii) are independently bonded with an amino group, a hydroxyl group, a carboxy group, a trimethylsilyl group, an epoxy, a vinyl group, a hydrogen atom, or a substituted alkyl group.
  • the siloxane structural unit and the non-siloxane structural unit may be randomly distributed.
  • the compound containing a siloxane structure and a non-siloxane structure in the main chain preferably contains 50 mol% or more of siloxane structural units, more preferably 70 mol% or more, based on the total number of moles of all repeating structural units. .
  • the weight average molecular weight of the siloxane compound used in the siloxane compound layer is preferably 5,000 to 1,000,000 from the viewpoint of achieving both a thin film and durability.
  • the method for measuring the weight average molecular weight is as described above.
  • siloxane compound which comprises a siloxane compound layer is enumerated below.
  • the thickness of the siloxane compound layer is preferably 0.01 to 5 ⁇ m and more preferably 0.05 to 1 ⁇ m from the viewpoint of smoothness and gas permeability.
  • the gas permeability at 40 ° C. and 4 MPa of the siloxane compound layer is preferably 100 GPU or more, more preferably 300 GPU or more, and further preferably 1,000 GPU or more in terms of carbon dioxide transmission rate.
  • the gas separation membrane may be an asymmetric membrane.
  • the asymmetric membrane can be formed by a phase change method using a solution containing a polyimide compound.
  • the phase inversion method is a known method for forming a film while bringing a polymer solution into contact with a coagulation liquid to cause phase conversion.
  • a so-called dry / wet method is suitably used.
  • the dry and wet method evaporates the solution on the surface of the polymer solution in the form of a film to form a thin dense layer, and then immerses it in a coagulation liquid (solvent that is compatible with the solvent of the polymer solution and the polymer is insoluble),
  • a coagulation liquid solvent that is compatible with the solvent of the polymer solution and the polymer is insoluble
  • the thickness of the surface layer contributing to gas separation is not particularly limited.
  • the thickness of the surface layer is preferably 0.01 to 5.0 ⁇ m and more preferably 0.05 to 1.0 ⁇ m from the viewpoint of imparting practical gas permeability.
  • the porous layer below the dense layer lowers the gas permeability resistance and at the same time plays a role of imparting mechanical strength, and its thickness is particularly limited as long as it is self-supporting as an asymmetric membrane. It is not limited.
  • This thickness is preferably 5 to 500 ⁇ m, more preferably 5 to 200 ⁇ m, and even more preferably 5 to 100 ⁇ m.
  • the gas separation asymmetric membrane may be a flat membrane or a hollow fiber membrane.
  • the asymmetric hollow fiber membrane can be produced by a dry and wet spinning method.
  • the dry-wet spinning method is a method for producing an asymmetric hollow fiber membrane by applying a dry-wet method to a polymer solution that is discharged from a spinning nozzle and has a hollow fiber-like target shape. More specifically, the polymer solution is discharged from a nozzle into a hollow fiber-shaped target shape, and after passing through an air or nitrogen gas atmosphere immediately after discharge, the polymer is not substantially dissolved and is compatible with the solvent of the polymer solution.
  • an asymmetric structure is formed by immersing in a coagulating liquid containing, then dried, and further heat-treated as necessary to produce a separation membrane.
  • the solution viscosity of the solution containing the polyimide compound discharged from the nozzle is 2 to 17,000 Pa ⁇ s, preferably 10 to 1,500 Pa ⁇ s, particularly preferably 20 to 1,000 Pa ⁇ s at the discharge temperature (for example, 10 ° C.). It is preferable that a shape after discharge such as a hollow fiber shape can be stably obtained.
  • the film is immersed in the primary coagulation liquid and solidified to such an extent that the shape of the hollow fiber or the like can be maintained. It is preferable to solidify. It is efficient to dry the coagulated film after replacing the coagulating liquid with a solvent such as hydrocarbon.
  • the heat treatment for drying is preferably performed at a temperature lower than the softening point or secondary transition point of the used polyimide compound.
  • a siloxane compound layer may be provided as a protective layer on the gas separation layer.
  • Gas separation membranes (composite membranes and asymmetric membranes) can be suitably used in gas separation recovery methods and gas separation purification methods.
  • gas separation membranes for example, hydrogen, helium, carbon monoxide, carbon dioxide, hydrogen sulfide, oxygen, nitrogen, ammonia, sulfur oxides, nitrogen oxides, methane, hydrocarbons such as ethane, unsaturated hydrocarbons such as propylene, tetrafluoroethane
  • a gas separation membrane capable of efficiently separating a specific gas from a gas mixture containing a gas such as a perfluoro compound can be obtained.
  • a gas separation membrane that selectively separates carbon dioxide from a gas mixture containing carbon dioxide / hydrocarbon (methane) is preferable.
  • the permeation rate of carbon dioxide in the mixed gas at 40 ° C. and 5 MPa is preferably more than 20 GPU, more than 30 GPU. Is more preferably 35 to 500 GPU, still more preferably 50 to 500 GPU, and particularly preferably 80 to 500 GPU.
  • the permeation rate ratio of carbon dioxide to methane (R CO2 / R CH4 ) is preferably 10 or more, more preferably 15 or more, further preferably 20 or more, and more preferably 30 or more. Further preferred.
  • R CO2 represents the permeation rate of carbon dioxide
  • R CH4 represents the permeation rate of methane.
  • 1 GPU is 1 ⁇ 10 ⁇ 6 cm 3 (STP) / cm 2 ⁇ sec ⁇ cmHg.
  • Various polymer compounds can be added to the gas separation layer of the gas separation membrane in order to adjust the membrane properties.
  • High molecular compounds include acrylic polymers, polyurethane resins, polyamide resins, polyester resins, epoxy resins, phenol resins, polycarbonate resins, polyvinyl butyral resins, polyvinyl formal resins, shellac, vinyl resins, acrylic resins, rubber resins. Waxes and other natural resins can be used. Two or more of these may be used in combination.
  • a nonionic surfactant, a cationic surfactant, and / or an organic fluoro compound can be added to adjust liquid properties.
  • the surfactant include alkylbenzene sulfonate, alkylnaphthalene sulfonate, higher fatty acid salt, sulfonate of higher fatty acid ester, sulfate ester of higher alcohol ether, sulfonate of higher alcohol ether, higher alkyl Anionic surfactants such as alkyl carboxylates of sulfonamides and alkyl phosphates, polyoxyethylene alkyl ethers, polyoxyethylene alkyl phenyl ethers, polyoxyethylene fatty acid esters, sorbitan fatty acid esters, ethylene oxide adducts of acetylene glycol And nonionic surfactants such as ethylene oxide adduct of glycerin and polyoxyethylene sorbitan fatty acid ester.
  • amphoteric surfactants such as alkyl betaines and amide betaines, silicon surfactants, and fluorosurfactants are also included. Including these, the surfactant can be appropriately selected from conventionally known surfactants and derivatives thereof.
  • the gas separation layer of the gas separation membrane may contain a polymer dispersant.
  • the polymer dispersant include polyvinyl pyrrolidone, polyvinyl alcohol, polyvinyl methyl ether, polyethylene oxide, polyethylene glycol, polypropylene glycol, and polyacrylamide. Among them, polyvinyl pyrrolidone is preferably used.
  • the conditions for forming the gas separation membrane are not particularly limited, but the temperature is preferably ⁇ 30 to 100 ° C., more preferably ⁇ 10 to 80 ° C., and particularly preferably 5 to 50 ° C.
  • the content of the polyimide compound in the gas separation layer is not particularly limited as long as desired gas separation performance can be obtained. From the viewpoint of further improving the gas separation performance, the content of the polyimide compound in the gas separation layer is preferably 20% by mass or more, more preferably 40% by mass or more, and 60% by mass or more. Is more preferable, and 70% by mass or more is particularly preferable.
  • the content of the polyimide compound in the gas separation layer may be 100% by mass, but is usually 99% by mass or less.
  • the gas separation method of the present invention is a method for separating a specific gas from a mixed gas of two or more components using the gas separation membrane of the present invention.
  • the gas separation method includes selectively permeating carbon dioxide from a mixed gas containing carbon dioxide and methane.
  • the pressure during gas separation is preferably 0.5 to 10 MPa, more preferably 1 to 10 MPa, and further preferably 2 to 7 MPa.
  • the gas separation temperature is preferably ⁇ 30 to 90 ° C., more preferably 15 to 70 ° C.
  • a gas separation module can be prepared using the gas separation membrane of the present invention.
  • the module include a spiral type, a hollow fiber type, a pleat type, a tubular type, and a plate and frame type.
  • a gas separation apparatus having means for separating and recovering or purifying gas can be obtained by using the gas separation composite membrane or the gas separation module of the present invention.
  • the gas separation composite membrane of the present invention may be applied to, for example, a membrane used in combination with an absorbing solution and / or a gas separation / recovery device as an absorption hybrid method as described in JP-A-2007-297605.
  • the reaction solution was transferred to a separatory funnel and separated and washed three times with 500 mL of ethyl acetate, and the aqueous phase was recovered.
  • 17.5 g of ammonium chloride manufactured by Kanto Chemical Co., Inc.
  • 2 L of pure water While stirring at room temperature, the recovered aqueous phase was dropped into a 5 L beaker, and the precipitated crystals were collected by filtration. The crystals were reslurry washed with 1 L of pure water, and the crystals were collected by filtration.
  • This ethyl acetate solution was transferred to a separating funnel, and separated and washed twice with pure water, and then separated and washed with saturated saline.
  • the organic phase was transferred to an Erlenmeyer flask, 30 g of magnesium sulfate was added and stirred, and the solid matter was removed by filtration. Then, the ethyl acetate was distilled off using an evaporator, followed by vacuum drying at 40 ° C. for 24 hours.
  • 145 g of precursor (S-6) (disulfonic acid chloride) was obtained.
  • the precursor (S-6) was confirmed from the NMR spectrum.
  • the precursor S-6 was analyzed by 1 NMR. The results are shown below.
  • reaction solution was returned to room temperature and stirred for 2 hours, and then 205 g of 1M sodium hydroxide aqueous solution and 300 g of pure water were added and dissolved.
  • the reaction solution was transferred to a separatory funnel and separated and washed three times with 500 mL of ethyl acetate, and the aqueous phase was recovered.
  • 12.04 g of ammonium chloride manufactured by Kanto Chemical Co., Inc.
  • the crystals were reslurry washed with 1 L of pure water, and the crystals were collected by filtration. Then, the crystals were reslurry washed with 500 mL of methanol, and then the crystals were collected by filtration and then vacuum-dried at 40 ° C. for 24 hours to obtain the target product (SA-6) 26 0.1 g was obtained. The desired product was confirmed from the NMR spectrum. The target product (SA-6) was analyzed by 1 NMR. The results are shown below.
  • weight average molecular weight was calculated by a standard polystyrene conversion method using gel permeation chromatography (GPC).
  • GPC gel permeation chromatography
  • a GPC column packed with polystyrene cross-linked gel TKgel SuperAWM-H; manufactured by Tosoh Corporation
  • N-methylpyrrolidone phosphoric acid and lithium bromide 0.01 mol / L each
  • PIB-1 and PIB-3 to PIB-6 can be synthesized in the same manner as described above except that the raw materials are appropriately changed.
  • Example 1 ⁇ Production of composite membrane> The gas separation composite membrane shown in FIG. 2 was produced (the smooth layer is not shown in FIG. 2).
  • PI-2 polyimide compound
  • methyl ethyl ketone 1-hydroxycyclohexyl phenyl ketone (manufactured by Aldrich, product number: 40,561). 28 mg of -2) was added, and the mixture was further stirred for 30 minutes to obtain a polymer solution.
  • a polyacrylonitrile porous membrane (manufactured by GMT) is allowed to stand on a 10 cm square clean glass plate, and the above polymer solution is cast on the porous support membrane surface using an applicator to obtain a polyimide compound (PI-2).
  • a gas separation layer containing was formed to obtain a composite membrane (Example 1).
  • the thickness of the polyimide compound (PI-2) layer was about 1 ⁇ m, and the thickness of the polyacrylonitrile porous film including the nonwoven fabric was about 180 ⁇ m.
  • These polyacrylonitrile porous membranes had a molecular weight cut-off of 100,000 or less.
  • Examples 2 to 8, Comparative Examples 1 and 2 ⁇ Production of other composite films>
  • the polyimide compounds in Example 1 were changed as shown in Table 4, and composite films of Examples 2 to 8 were produced.
  • the polyimide compounds in Example 1 were changed as shown in Table 4, and composite films of Comparative Examples 1 and 2 were produced.
  • the comparative polyimide compounds used in Comparative Examples 1 and 2 are shown below.
  • the gas separation performance of each obtained composite membrane was evaluated as follows. Use a mass flow controller to adjust the volume ratio of carbon dioxide (CO 2 ) and methane (CH 4 ) to 1: 1 using a SUS316 stainless steel cell (DENISSEN) with high pressure resistance, and mixed gas was adjusted so that the total pressure on the gas supply side was 5 MPa (partial pressure of CO 2 and CH 4 : 2.5 MPa), and was supplied to each composite membrane.
  • the permeability of each gas of CO 2 and CH 4 was measured by TCD detection type gas chromatography. The gas permeability of each composite membrane was compared by calculating the gas permeability (Permeance).
  • a carbon dioxide / methane permeation ratio of 30 or more was evaluated as A, 20 or more and less than 30 as evaluation B, 10 or more and less than 20 as evaluation C, and 0 or more and less than 10 as evaluation D.
  • the gas permeability of carbon dioxide in the mixed gas the gas permeability of 80 GPU or more was evaluated as A, the evaluation of 50 GPU or more and less than 80 GPU was evaluated B, the evaluation of 20 GPU or more and less than 50 GPU was evaluated C, and the evaluation of D was less than 20 GPU.
  • ⁇ Toluene resistance test> A 1% by mass solution of the polyimide compound of each Example and Comparative Example was dried overnight to prepare a bulk sample of about 150 to 180 mg. Next, the mixture was aged at 90 ° C. for 1 week, and allowed to stand in a 25 ° C., 20% RH environment for more than half a day, and the mass was measured as the initial mass. Thereafter, these bulk samples were stored in a vapor atmosphere equilibrium toluene atmosphere container, and mass measurement was performed after 7 days. The change in mass (mass after 7 days / initial mass) was calculated and used as the toluene swelling rate.
  • evaluation A was a toluene swelling ratio of less than 10%
  • evaluation B was 10% or more and less than 25%
  • evaluation C was 25% or more and less than 40%
  • evaluation D was a toluene swelling ratio of 40% or more.
  • the gas separation membrane using the polyimide compound of the comparative example was inferior in toluene resistance (plasticization resistance) (Comparative Examples 1 and 2).
  • the gas separation membrane of the present invention containing the polyimide compound of the example can realize gas permeability and gas separation selectivity at a desired high level, and is excellent in toluene resistance (plasticization resistance). (Examples 1 to 8).
  • the gas separation membrane of the present invention can provide an excellent gas separation method, a gas separation module, and a gas separation apparatus equipped with this gas separation module.

Abstract

Provided are: a gas separation membrane that can realize gas permeability and gas separation selectivity at a desirably high level, and further exhibit the above mentioned excellent separation performances (gas permeability and separation selectivity) sustainably even in the presence of plasticized impurities; and a gas separation module, a gas separation device, and a gas separation method using the gas separation membrane. The gas separation membrane has a gas separation layer containing a specific polyimide compound.

Description

ガス分離膜、ガス分離モジュール、ガス分離装置、及びガス分離方法Gas separation membrane, gas separation module, gas separation device, and gas separation method
 本発明は、ガス分離膜、ガス分離モジュール、ガス分離装置、及びガス分離方法に関する。 The present invention relates to a gas separation membrane, a gas separation module, a gas separation device, and a gas separation method.
 高分子化合物からなる素材には、その素材ごとに特有の気体透過性がある。その性質に基づき、特定の高分子化合物から構成された膜によって、所望の気体成分を選択的に透過させて分離することができる。この気体分離膜の産業上の利用態様として、地球温暖化の問題と関連し、火力発電所及び/又はセメントプラント、製鉄所高炉等において、大規模な二酸化炭素発生源からこれを分離回収することが検討されている。そして、この膜分離技術は、比較的小さなエネルギーで達成できる環境問題の解決手段として着目されている。一方、天然ガスやバイオガス(生物の排泄物、有機質肥料、生分解性物質、汚水、ゴミ、エネルギー作物などの発酵、嫌気性消化により発生するガス)は主としてメタンと二酸化炭素を含む混合ガスであり、不純物である二酸化炭素等を除去する手段として膜分離方法が検討されている。 A material composed of a polymer compound has gas permeability specific to each material. Based on the property, a desired gas component can be selectively permeated and separated by a membrane composed of a specific polymer compound. As an industrial utilization mode of this gas separation membrane, it is related to the problem of global warming, and it is separated and recovered from a large-scale carbon dioxide generation source in a thermal power plant and / or a cement plant, a steelworks blast furnace, etc. Is being considered. And this membrane separation technique attracts attention as a means for solving environmental problems that can be achieved with relatively small energy. On the other hand, natural gas and biogas (gas generated by fermentation and anaerobic digestion of biological waste, organic fertilizer, biodegradable substances, sewage, garbage, energy crops, etc.) are mainly mixed gases containing methane and carbon dioxide. A membrane separation method has been studied as a means for removing impurities such as carbon dioxide.
 膜分離方法を用いた天然ガスの精製では、より効率的にガスを分離するために、優れたガス透過性とガス分離選択性が求められる。また、実際のプラントにおいては、天然ガス中に存在する不純物成分(例えば、ベンゼン、トルエン、キシレン)の影響等によって膜が可塑化し、これによるガス分離選択性の低下が問題となる。したがってガス分離膜には、上記不純物成分の存在下においても所望のガス分離選択性を、持続して発現することができる耐可塑性も求められる。これらを実現するために種々の膜素材が検討されており、その一環としてポリイミド化合物を用いたガス分離膜の検討が行われてきた。例えば特許文献1には、ポリイミド化合物がエステル連結基を介して架橋されてなる架橋ポリイミド化合物を、ガス分離膜のガス分離層として用いることが記載されている。 In the purification of natural gas using a membrane separation method, excellent gas permeability and gas separation selectivity are required in order to separate gas more efficiently. Further, in an actual plant, the membrane is plasticized due to the influence of impurity components (for example, benzene, toluene, xylene) present in natural gas, and this causes a problem of reduction in gas separation selectivity. Therefore, the gas separation membrane is also required to have plastic resistance capable of continuously expressing desired gas separation selectivity even in the presence of the impurity component. In order to realize these, various membrane materials have been studied, and as part of this, gas separation membranes using polyimide compounds have been studied. For example, Patent Document 1 describes that a crosslinked polyimide compound obtained by crosslinking a polyimide compound via an ester linking group is used as a gas separation layer of a gas separation membrane.
 実用的なガス分離膜とするためには、ガス分離層を薄層にして十分なガス透過性を確保した上で、さらに高度なガス分離選択性も実現しなければならない。ガス分離層を薄層化する手法としては、ポリイミド化合物等の高分子化合物を相分離法により非対称膜とし、分離に寄与する部分を緻密層あるいはスキン層と呼ばれる薄層にする方法がある。この非対称膜では、緻密層以外の部分を膜の機械的強度を担う支持層として機能させる。
 また、上記非対称膜の他に、ガス分離機能を担うガス分離層と機械強度を担う支持層とを別素材とし、ガス透過性の支持層上に、ガス分離能を有するガス分離層を薄層に形成する複合膜の形態も知られている。
In order to obtain a practical gas separation membrane, the gas separation layer must be made thin to ensure sufficient gas permeability, and a higher degree of gas separation selectivity must be realized. As a method for thinning the gas separation layer, there is a method in which a polymer compound such as a polyimide compound is made into an asymmetric membrane by a phase separation method, and a portion contributing to separation is made into a thin layer called a dense layer or a skin layer. In this asymmetric membrane, a portion other than the dense layer is allowed to function as a support layer that bears the mechanical strength of the membrane.
In addition to the asymmetric membrane, the gas separation layer responsible for the gas separation function and the support layer responsible for the mechanical strength are made of different materials, and the gas separation layer having gas separation ability is thinly formed on the gas permeable support layer. The form of the composite film formed in the above is also known.
特開2013-169485JP2013-169485A
 一般に、ガス透過性とガス分離選択性は互いにいわゆるトレードオフの関係にある。したがって、ガス分離層に用いるポリイミド化合物の共重合成分を調整することにより、ガス分離層のガス透過性あるいはガス分離選択性のいずれかを改善することはできても、これらの特性を所望の高いレベルで両立するのは困難とされる。
 また、ポリイミド化合物は一般に耐可塑性に劣り、可塑化不純物成分(例えばトルエンなど)の共存下ではガス分離性能が低下しやすい。特にガス透過性の高いポリイミド化合物をガス分離層に用いた場合には、上記不純物成分の影響をより受けやすくなり、ガス分離層の膨潤が促進される。それ故、ポリイミド化合物を用いたガス分離層において、ガス透過性と耐可塑性の両立を所望の高いレベルで実現することは困難であった。
In general, gas permeability and gas separation selectivity are in a so-called trade-off relationship. Therefore, by adjusting the copolymerization component of the polyimide compound used in the gas separation layer, it is possible to improve either the gas permeability or the gas separation selectivity of the gas separation layer, but these characteristics are desired high It is difficult to achieve both levels.
In addition, polyimide compounds are generally poor in plastic resistance, and gas separation performance tends to deteriorate in the presence of plasticizing impurity components (such as toluene). In particular, when a polyimide compound having a high gas permeability is used for the gas separation layer, the gas separation layer is more easily affected and the swelling of the gas separation layer is promoted. Therefore, it has been difficult to achieve both gas permeability and plastic resistance at a desired high level in a gas separation layer using a polyimide compound.
 本発明は、ガス透過性とガス分離選択性を所望の高いレベルで実現することができ、さらに可塑化不純物の存在下においても上記の優れた分離性能(ガス透過性、分離選択性)を持続的に発現することができるガス分離膜に関する。また、本発明は、上記ガス分離膜を用いたガス分離モジュール、ガス分離装置、及びガス分離方法にも関する。 In the present invention, gas permeability and gas separation selectivity can be realized at a desired high level, and the above-described excellent separation performance (gas permeability and separation selectivity) is maintained even in the presence of plasticizing impurities. The present invention relates to a gas separation membrane that can be expressed dynamically. The present invention also relates to a gas separation module, a gas separation apparatus, and a gas separation method using the gas separation membrane.
 本発明者らは鋭意検討を重ねた結果、ポリイミド化合物の主鎖構造中にスルホンアミド基を導入し、かかるポリイミド化合物をガス分離膜のガス分離層に用いた場合に、ガス透過性と可塑化耐性の両立を、従来のトレードオフの関係を克服して実現できることを見い出した。さらにこのガス分離膜は高圧条件下でも優れたガス分離選択性を示すことを見出した。本発明は、これらの知見に基づきさらに検討を重ね完成させるに至ったものである。 As a result of intensive studies, the present inventors have introduced a sulfonamide group into the main chain structure of a polyimide compound, and when such a polyimide compound is used in a gas separation layer of a gas separation membrane, gas permeability and plasticization are achieved. We have found that the coexistence of tolerance can be achieved by overcoming the traditional trade-off relationship. Furthermore, it has been found that this gas separation membrane exhibits excellent gas separation selectivity even under high pressure conditions. The present invention has been further studied and completed based on these findings.
 本発明は下記の態様を含む。
[1]
 ポリイミド化合物を含有するガス分離層を有するガス分離膜であって、上記ポリイミド化合物が、式(1)で表される構成単位、並びに式(2)で表される構成単位及び式(3)で表される構成単位から選ばれる少なくとも1つを含むガス分離膜。
Figure JPOXMLDOC01-appb-C000011

 式(1)中、Rは下記式(I-1)~(I-28)のいずれかで示される4価の基を示す。
Figure JPOXMLDOC01-appb-C000012

ここでX~Xはそれぞれ独立に単結合又は2価の連結基を、Lは-CH=CH-又は-CH-を、R及びRはそれぞれ独立に水素原子又は置換基を示し、*は式(1)中のカルボニル基との結合部位を示す。 
Figure JPOXMLDOC01-appb-C000013

 式(2)及び式(3)中、Z~Zはそれぞれ独立に2価の連結基を示し、Q及びQはそれぞれ独立にスルホンアミド基を含む2価の基を示し、Yは水素原子、アルキル基、アリール基又は式(4)~式(6)のいずれかの基を示し、X1+は有機または無機のカチオンを示し、nは0以上の整数である。
Figure JPOXMLDOC01-appb-C000014

 式(4)~式(6)中、R~Rはそれぞれ独立にアルキル基又はアリール基を示す。*1は、窒素原子との結合部位である。
[2]
 Z~Zがそれぞれ独立にアリーレン基及び/又はアルキレン基を含む2価の基である、[1]に記載のガス分離膜。
[3]
 Z~Zがそれぞれ独立に下記式A-1~A-11のいずれかである、[1]に記載のガス分離膜。
Figure JPOXMLDOC01-appb-C000015

 式中、W~W50はそれぞれ独立に水素原子、ハロゲン原子、アルキル基、アルコキシ基、水酸基、スルホンアミド基又はカルボキシ基を示し、Z11は-CR -、-O-、-NR-、-S-又は単結合を示し、L及びLはそれぞれ独立に-CR-、-O-、-NR-、-S-又は単結合を示す。R及びRはそれぞれ独立にアルキル基又はアリール基を示す。
[4]
 ポリイミド化合物を含有するガス分離層を有するガス分離膜であって、上記ポリイミド化合物が、式(1)で表される構成単位、並びに式(8)で表される構成単位及び式(9)で表される構成単位から選ばれる少なくとも1つを含むガス分離膜。
Figure JPOXMLDOC01-appb-C000016

 式(1)中、Rは下記式(I-1)~(I-28)のいずれかで示される4価の基を示す。
Figure JPOXMLDOC01-appb-C000017

ここでX~Xはそれぞれ独立に単結合又は2価の連結基を、Lは-CH=CH-又は-CH-を、R及びRはそれぞれ独立に水素原子又は置換基を示し、*は式(1)中のカルボニル基との結合部位を示す。
Figure JPOXMLDOC01-appb-C000018

 式(8)及び式(9)中、Z~Z10はそれぞれ独立に2価の連結基を示し、Y及びYはそれぞれ独立に水素原子、アルキル基、アリール基又は式(4)~式(6)のいずれかの基を示し、X2+及びX3+はそれぞれ独立に有機又は無機のカチオンを示す。
Figure JPOXMLDOC01-appb-C000019

 式(4)~式(6)中、R~Rはそれぞれ独立にアルキル基又はアリール基を示す。*1は、窒素原子との結合部位である。
[5]
 Z~Z10がそれぞれ独立にアリーレン基及び/又はアルキレン基を含む2価の基である、[4]に記載のガス分離膜。
[6]
 Z~Z10がそれぞれ独立に下記式A-1~A-11のいずれかである、[4]に記載のガス分離膜。
Figure JPOXMLDOC01-appb-C000020

 式中、W~W50はそれぞれ独立に水素原子、ハロゲン原子、アルキル基、アルコキシ基、水酸基、スルホンアミド基又はカルボキシ基を示し、Z11は-CR -、-O-、-NR-、-S-又は単結合を示し、L及びLはそれぞれ独立に-CR-、-O-、-NR-、-S-又は単結合を示す。R及びRはそれぞれ独立にアルキル基又はアリール基を示す。
[7]
 さらにガス透過性の支持層を有し、上記ガス分離層が上記ガス透過性の支持層の上側に備えられたガス分離複合膜である、[1]~[6]のいずれか1つに記載のガス分離膜。
[8]
 上記ガス透過性の支持層が、多孔質層と、不織布層とを含み、
上記ガス分離層と、上記多孔質層と、上記不織布層とが、この順に設けられている、[1]~[7]のいずれか1つに記載のガス分離膜。
[9]
 二酸化炭素及びメタンを含むガスから二酸化炭素を選択的に透過させるために用いられる、[1]~[8]のいずれか1つに記載のガス分離膜。
[10]
 [1]~[8]のいずれか1つに記載のガス分離膜を具備するガス分離モジュール。
[11]
 [10]に記載のガス分離モジュールを備えたガス分離装置。
[12]
 [1]~[9]のいずれか1つに記載のガス分離膜を用いて、二酸化炭素及びメタンを含むガスから二酸化炭素を選択的に透過させるガス分離方法。
The present invention includes the following embodiments.
[1]
A gas separation membrane having a gas separation layer containing a polyimide compound, wherein the polyimide compound is a structural unit represented by formula (1), a structural unit represented by formula (2), and formula (3). A gas separation membrane comprising at least one selected from the structural units represented.
Figure JPOXMLDOC01-appb-C000011

In the formula (1), R represents a tetravalent group represented by any of the following formulas (I-1) to (I-28).
Figure JPOXMLDOC01-appb-C000012

Here, X 1 to X 3 each independently represents a single bond or a divalent linking group, L represents —CH═CH— or —CH 2 —, and R 1 and R 2 each independently represents a hydrogen atom or a substituent. * Indicates a binding site with the carbonyl group in formula (1).
Figure JPOXMLDOC01-appb-C000013

In formula (2) and formula (3), Z 1 to Z 4 each independently represents a divalent linking group, Q 1 and Q 2 each independently represents a divalent group containing a sulfonamide group, Y 1 represents a hydrogen atom, an alkyl group, an aryl group, or any group of formulas (4) to (6), X 1+ represents an organic or inorganic cation, and n is an integer of 0 or more.
Figure JPOXMLDOC01-appb-C000014

In the formulas (4) to (6), R 3 to R 6 each independently represents an alkyl group or an aryl group. * 1 is a binding site with a nitrogen atom.
[2]
The gas separation membrane according to [1], wherein Z 1 to Z 4 are each independently a divalent group containing an arylene group and / or an alkylene group.
[3]
The gas separation membrane according to [1], wherein Z 1 to Z 4 are each independently any one of the following formulas A-1 to A-11.
Figure JPOXMLDOC01-appb-C000015

In the formula, W 1 to W 50 each independently represent a hydrogen atom, a halogen atom, an alkyl group, an alkoxy group, a hydroxyl group, a sulfonamide group, or a carboxy group, and Z 11 represents —CR 8 2 —, —O—, —NR 8 -, - S- or a single bond, L 1 and L 2 -CR each independently 9 -, - O -, - NR 9 -, - S- or a single bond. R 8 and R 9 each independently represents an alkyl group or an aryl group.
[4]
A gas separation membrane having a gas separation layer containing a polyimide compound, wherein the polyimide compound is represented by the structural unit represented by the formula (1), the structural unit represented by the formula (8), and the formula (9). A gas separation membrane comprising at least one selected from the structural units represented.
Figure JPOXMLDOC01-appb-C000016

In the formula (1), R represents a tetravalent group represented by any of the following formulas (I-1) to (I-28).
Figure JPOXMLDOC01-appb-C000017

Here, X 1 to X 3 each independently represents a single bond or a divalent linking group, L represents —CH═CH— or —CH 2 —, and R 1 and R 2 each independently represents a hydrogen atom or a substituent. * Indicates a binding site with the carbonyl group in formula (1).
Figure JPOXMLDOC01-appb-C000018

In formula (8) and formula (9), Z 5 to Z 10 each independently represent a divalent linking group, and Y 2 and Y 3 each independently represent a hydrogen atom, an alkyl group, an aryl group, or formula (4) Represents any group of formula (6), and X 2+ and X 3+ each independently represent an organic or inorganic cation.
Figure JPOXMLDOC01-appb-C000019

In the formulas (4) to (6), R 3 to R 6 each independently represents an alkyl group or an aryl group. * 1 is a binding site with a nitrogen atom.
[5]
The gas separation membrane according to [4], wherein Z 5 to Z 10 are each independently a divalent group containing an arylene group and / or an alkylene group.
[6]
The gas separation membrane according to [4], wherein Z 5 to Z 10 are each independently any one of the following formulas A-1 to A-11.
Figure JPOXMLDOC01-appb-C000020

In the formula, W 1 to W 50 each independently represent a hydrogen atom, a halogen atom, an alkyl group, an alkoxy group, a hydroxyl group, a sulfonamide group, or a carboxy group, and Z 11 represents —CR 8 2 —, —O—, —NR 8 -, - S- or a single bond, L 1 and L 2 -CR each independently 9 -, - O -, - NR 9 -, - S- or a single bond. R 8 and R 9 each independently represents an alkyl group or an aryl group.
[7]
[1] to [6], further comprising a gas permeable support layer, wherein the gas separation layer is a gas separation composite membrane provided on the upper side of the gas permeable support layer. Gas separation membrane.
[8]
The gas-permeable support layer includes a porous layer and a nonwoven fabric layer,
The gas separation membrane according to any one of [1] to [7], wherein the gas separation layer, the porous layer, and the nonwoven fabric layer are provided in this order.
[9]
The gas separation membrane according to any one of [1] to [8], which is used for selectively permeating carbon dioxide from a gas containing carbon dioxide and methane.
[10]
[1] A gas separation module comprising the gas separation membrane according to any one of [1] to [8].
[11]
A gas separation device comprising the gas separation module according to [10].
[12]
A gas separation method for selectively permeating carbon dioxide from a gas containing carbon dioxide and methane, using the gas separation membrane according to any one of [1] to [9].
 本明細書において「~」で表される数値範囲は、その前後に記載される数値を下限値及び上限値として含む意味である。
 本明細書において、特定の符号で表示された置換基や連結基等(以下、置換基等という)が複数あるとき、あるいは複数の置換基等を同時もしくは択一的に規定するときには、それぞれの置換基等は互いに同一でも異なっていてもよいことを意味する。このことは、置換基等の数の規定についても同様である。また、式中に同一の表示で表された複数の部分構造の繰り返しがある場合は、各部分構造ないし構成単位(繰り返し単位)は同一でも異なっていてもよい。
In the present specification, the numerical value range represented by “to” means that the numerical values described before and after the numerical value range are included as a lower limit value and an upper limit value.
In the present specification, when there are a plurality of substituents, linking groups, and the like (hereinafter referred to as substituents) indicated by specific symbols, or when a plurality of substituents are specified simultaneously or alternatively, It means that a substituent etc. may mutually be same or different. The same applies to the definition of the number of substituents and the like. Further, when there are repetitions of a plurality of partial structures represented by the same indication in the formula, each partial structure or constituent unit (repeating unit) may be the same or different.
 本明細書において化合物ないし基の表示については、化合物ないし基そのもののほか、それらの塩、それらのイオンを含む意味に用いる。また、目的の効果を奏する範囲で、構造の一部を変化させたものを含む意味である。
 本明細書において置換又は無置換を明記していない置換基(連結基についても同様)については、所望の効果を奏する範囲で、その基に任意の置換基を有していてもよい意味である。これは置換又は無置換を明記していない化合物についても同義である。
 本明細書において置換基というときには、特に断らない限り、後記置換基群Zをその好ましい範囲とする。
In this specification, about the display of a compound thru | or group, it uses for the meaning containing those salts and those ions other than a compound thru | or group itself. In addition, it means that a part of the structure is changed as long as the desired effect is achieved.
In the present specification, a substituent that does not clearly indicate substitution or non-substitution (the same applies to a linking group) means that the group may have an arbitrary substituent as long as a desired effect is achieved. . This is also the same for compounds that do not specify substitution or non-substitution.
In the present specification, the substituent group Z is a preferred range unless otherwise specified.
 本発明のガス分離膜、ガス分離モジュール、及びガス分離装置は、高圧条件下の使用においても、ガス透過性と可塑化耐性の両立をトレードオフライン上ではない、高度なレベルで実現することができ、高速、高選択性で可塑化耐性にも優れたガス分離を可能とする。
 本発明のガス分離方法によれば、高圧条件下においても、優れたガス透過性で、且つ、優れたガス分離選択性でガスを分離することができ、高速、高選択性のガス分離が可能となるとともに、可塑化耐性にも優れる。
The gas separation membrane, gas separation module, and gas separation apparatus of the present invention can realize both gas permeability and plasticization resistance at a high level, not on a trade-off line, even when used under high pressure conditions. High-speed, high-selectivity gas separation with excellent plasticization resistance is possible.
According to the gas separation method of the present invention, gas can be separated with excellent gas permeability and excellent gas separation selectivity even under high pressure conditions, and high speed and high selectivity gas separation is possible. And excellent plasticization resistance.
本発明のガス分離複合膜の一実施形態を模式的に示す断面図である。It is sectional drawing which shows typically one Embodiment of the gas separation composite membrane of this invention. 本発明のガス分離複合膜の別の実施形態を模式的に示す断面図である。It is sectional drawing which shows typically another embodiment of the gas separation composite membrane of this invention.
 以下、本発明の好ましい実施形態について説明する。
 本発明のガス分離膜は、ガス分離層に特定のポリイミド化合物を含む。
Hereinafter, preferred embodiments of the present invention will be described.
The gas separation membrane of the present invention contains a specific polyimide compound in the gas separation layer.
[ポリイミド化合物]
 一態様において、ポリイミド化合物は、下記式(1)で表される構成単位、並びに式(2)で表される構成単位及び式(3)で表される構成単位から選ばれる少なくとも1つを含む。
[Polyimide compound]
In one embodiment, the polyimide compound includes at least one selected from the structural unit represented by the following formula (1), the structural unit represented by the formula (2), and the structural unit represented by the formula (3). .
Figure JPOXMLDOC01-appb-C000021

 式(1)中、Rは下記式(I-1)~(I-28)のいずれかで示される4価の基を示す。ここでX~Xはそれぞれ独立に単結合又は2価の連結基を、Lは-CH=CH-又は-CH-を、R及びRはそれぞれ独立に水素原子又は置換基を示し、*は式(1)中のカルボニル基との結合部位を示す。
 Rは式(I-1)、(I-2)又は(I-4)で示される基であることが好ましく、(I-1)又は(I-4)で示される基であることがより好ましく、(I-1)で示される基であることが特に好ましい。
Figure JPOXMLDOC01-appb-C000021

In the formula (1), R represents a tetravalent group represented by any of the following formulas (I-1) to (I-28). Here, X 1 to X 3 each independently represents a single bond or a divalent linking group, L represents —CH═CH— or —CH 2 —, and R 1 and R 2 each independently represents a hydrogen atom or a substituent. * Indicates a binding site with the carbonyl group in formula (1).
R is preferably a group represented by the formula (I-1), (I-2) or (I-4), more preferably a group represented by (I-1) or (I-4). A group represented by (I-1) is particularly preferable.
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
 式(I-1)、(I-9)及び(I-18)中、X~Xはそれぞれ独立に単結合又は2価の連結基を示す。この2価の連結基としては、-C(R-(Rは水素原子又は置換基を示す。Rが置換基の場合、互いに連結して環を形成してもよい)、-O-、-SO-、-C(=O)-、-S-、-NR-(Rは水素原子、アルキル基(好ましくはメチル基又はエチル基)又はアリール基(好ましくはフェニル基))、-C-(フェニレン基)、又はこれらの組み合わせが好ましく、単結合又は-C(R-がより好ましい。Rが置換基を示すとき、その具体例としては、後記置換基群Zから選ばれる基が挙げられ、なかでもアルキル基(好ましい範囲は後記置換基群Zに示されたアルキル基と同義である)が好ましく、ハロゲン原子を置換基として有するアルキル基がより好ましく、トリフルオロメチルが特に好ましい。なお、式(I-18)において、Xはその左側の2つの炭素原子のいずれか一方と連結し、かつ、その右側の2つの炭素原子のうちいずれか一方と連結している。 In formulas (I-1), (I-9) and (I-18), X 1 to X 3 each independently represents a single bond or a divalent linking group. As the divalent linking group, —C (R x ) 2 — (R x represents a hydrogen atom or a substituent. When R x is a substituent, they may be linked to each other to form a ring), —O—, —SO 2 —, —C (═O) —, —S—, —NR Y — (R Y represents a hydrogen atom, an alkyl group (preferably a methyl group or an ethyl group) or an aryl group (preferably a phenyl group). group)), - C 6 H 4 - ( phenylene group), or a combination thereof, more preferably a single bond or -C (R x) 2 - are more preferable. When R x represents a substituent, specific examples thereof include a group selected from the substituent group Z described below, and among them, an alkyl group (preferable range is synonymous with the alkyl group shown in the substituent group Z described later). And an alkyl group having a halogen atom as a substituent is more preferable, and trifluoromethyl is particularly preferable. In the formula (I-18), X 3 is linked to one of the two left carbon atoms and is linked to one of the two right carbon atoms.
 式(I-4)、(I-15)、(I-17)、(I-20)、(I-21)及び(I-23)中、Lは-CH=CH-又は-CH-を示す。 In the formulas (I-4), (I-15), (I-17), (I-20), (I-21) and (I-23), L represents —CH═CH— or —CH 2 —. Indicates.
 式(I-7)中、R及びRはそれぞれ独立に水素原子又は置換基を示す。かかる置換基としては、後述する置換基群Zから選ばれる基が挙げられる。R及びRは互いに結合して環を形成していてもよい。
 R及びRはそれぞれ独立に水素原子又はアルキル基であることが好ましく、水素原子、メチル基又はエチル基であることがより好ましく、水素原子であることが更に好ましい。
In formula (I-7), R 1 and R 2 each independently represents a hydrogen atom or a substituent. Examples of the substituent include a group selected from the substituent group Z described later. R 1 and R 2 may be bonded to each other to form a ring.
R 1 and R 2 are preferably each independently a hydrogen atom or an alkyl group, more preferably a hydrogen atom, a methyl group or an ethyl group, and even more preferably a hydrogen atom.
 式(I-1)~(I-28)中に示された炭素原子にさらに置換基が付加されていてもよい。この置換基の具体例としては、後記置換基群Zから選ばれる基が挙げられ、なかでもアルキル基又はアリール基が好ましい。 A substituent may be further added to the carbon atom shown in the formulas (I-1) to (I-28). Specific examples of the substituent include groups selected from the substituent group Z described later, and among them, an alkyl group or an aryl group is preferable.
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
 式(2)及び式(3)中、Z~Zはそれぞれ独立に2価の連結基を示し、例えば、アリーレン基(好ましくは1~5環式のアリーレン基、より好ましくはフェニレン基、ナフチレン基)、アルキレン基(好ましくはメチレン基)、アルキレンオキシ基(好ましくはエチレンオキシ基、プロピレンオキシ基)又はこれらの基から選ばれる2つ以上の基を単結合又は2価の基で連結してなる基(好ましくは2つ以上のアリーレン基及び/又はアルキレン基を単結合又は2価の基で連結してなる基)が挙げられる。上記の2価の基で連結されたアリーレン基、アルキレン基及びアルキレンオキシ基から選ばれる2つ以上の基は、これらの基が有する置換基同士が連結して、上記2価の基と共に環を形成してもよい。かかる2価の基としては、例えばアルキレン基(好ましくはメチレン基)、シクロアルキレン基(好ましくはシクロへキシレン基)、アルキレンオキシ基(好ましくはエチレンオキシ基、プロピレンオキシ基)が挙げられる。Z~Zはそれぞれ独立にアリーレン基及び/又はアルキレン基を含む2価の基であることが好ましく、下記式A-1~A-11のいずれかであることがより好ましい。 In formula (2) and formula (3), Z 1 to Z 4 each independently represent a divalent linking group, such as an arylene group (preferably a 1-5 cyclic arylene group, more preferably a phenylene group, A naphthylene group), an alkylene group (preferably a methylene group), an alkyleneoxy group (preferably an ethyleneoxy group, a propyleneoxy group) or two or more groups selected from these groups are linked by a single bond or a divalent group. (Preferably a group formed by connecting two or more arylene groups and / or alkylene groups with a single bond or a divalent group). Two or more groups selected from an arylene group, an alkylene group, and an alkyleneoxy group connected by the above divalent group are connected to each other by the substituents of these groups to form a ring together with the above divalent group. It may be formed. Examples of the divalent group include an alkylene group (preferably a methylene group), a cycloalkylene group (preferably a cyclohexylene group), and an alkyleneoxy group (preferably an ethyleneoxy group and a propyleneoxy group). Z 1 to Z 4 are each independently preferably a divalent group containing an arylene group and / or an alkylene group, and more preferably any one of the following formulas A-1 to A-11.
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
 W~W50はそれぞれ独立に水素原子、ハロゲン原子、アルキル基、アルコキシ基、水酸基、スルホンアミド基又はカルボキシ基を示し、好ましくはアルキル基、カルボキシ基である。W~W50が採りうるハロゲン原子、アルキル基、アルコキシ基、スルホンアミド基として具体的には、後記置換基群Zで例示したものが挙げられる。 W 1 to W 50 each independently represent a hydrogen atom, a halogen atom, an alkyl group, an alkoxy group, a hydroxyl group, a sulfonamide group or a carboxy group, preferably an alkyl group or a carboxy group. Specific examples of the halogen atom, alkyl group, alkoxy group and sulfonamide group that can be taken by W 1 to W 50 include those exemplified in Substituent Group Z below.
 Z11は-CR -、-O-、-NR-、-S-又は単結合を示し、好ましくは-CR -、-O-である。 Z 11 represents —CR 8 2 —, —O—, —NR 8 —, —S— or a single bond, preferably —CR 8 2 —, —O—.
 L及びLはそれぞれ独立に-CR-、-O-、-NR-、-S-又は単結合を示し、好ましくは-CR-、-O-である。 L 1 and L 2 each independently represent —CR 9 —, —O—, —NR 9 —, —S— or a single bond, preferably —CR 9 —, —O—.
 R及びRはそれぞれ独立にアルキル基又はアリール基を示す。R及びRとして採り得るアルキル基はそれぞれ独立に直鎖でも分岐を有してもよく、環状構造でもよい。R及びRとして採り得るアルキル基はそれぞれ独立にその炭素数が1~20が好ましく、1~10がより好ましく、1~8がさらに好ましく、1~6がよりさらに好ましく、1~4が特に好ましい。このアルキル基の好ましい具体例として、例えばメチル、エチル、n-プロピル、イソプロピル、n-ブチル、t-ブチル、s-ブチル、イソブチル、シクロブチル、n-ヘキシル、シクロヘキシルを挙げることができ、メチルが特に好ましい。また、ハロゲン置換アルキル基が好ましい。ハロゲン置換アルキル基の好ましい具体例として、例えば、トリフルオロメチルを挙げることができる。 R 8 and R 9 each independently represents an alkyl group or an aryl group. Alkyl groups that can be employed as R 8 and R 9 may be independently linear or branched, and may have a cyclic structure. The alkyl groups that can be taken as R 8 and R 9 each independently preferably have 1 to 20 carbon atoms, more preferably 1 to 10, more preferably 1 to 8, still more preferably 1 to 6, and more preferably 1 to 4 Particularly preferred. Preferred examples of this alkyl group include, for example, methyl, ethyl, n-propyl, isopropyl, n-butyl, t-butyl, s-butyl, isobutyl, cyclobutyl, n-hexyl and cyclohexyl. preferable. A halogen-substituted alkyl group is preferred. Preferable specific examples of the halogen-substituted alkyl group include, for example, trifluoromethyl.
 Q及びQはそれぞれ独立にスルホンアミド基を含む2価の基を示し、例えば、それぞれスルホンアミド基と、アリーレン基、メチレン基から選ばれる基とを組合せてなる2価の基が挙げられる。本明細書においてスルホンアミド基とは、-S(=O)(=O)NR-又は-S(=O)(=O)N-で表される2価の基を意味し、Rは水素原子又は置換基を示す。この2価の基において、スルホンアミド基と、アリーレン基、メチレン基から選ばれる基との連結構造は、単結合であることが好ましい。 Q 1 and Q 2 each independently represent a divalent group containing a sulfonamide group, and examples thereof include a divalent group formed by combining a sulfonamide group with a group selected from an arylene group and a methylene group. . In the present specification, the sulfonamide group means a divalent group represented by —S (═O) (═O) NR Q — or —S (═O) (═O) N + —, and R Q represents a hydrogen atom or a substituent. In this divalent group, the connecting structure of the sulfonamide group and a group selected from an arylene group and a methylene group is preferably a single bond.
 Yは水素原子、アルキル基、アリール基又は式(4)~式(6)のいずれかの基を示す。 Y 1 represents a hydrogen atom, an alkyl group, an aryl group, or any group of formulas (4) to (6).
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
 R~Rはそれぞれ独立にアルキル基又はアリール基を示す。
 *1は窒素原子との結合部位である。
R 3 to R 6 each independently represents an alkyl group or an aryl group.
* 1 is a binding site with a nitrogen atom.
 Y及びR~Rが採りうるアルキル基又はアリール基としては、上記アルキル基又はアリール基が挙げられる。 Examples of the alkyl group or aryl group that Y 1 and R 3 to R 6 can take include the above alkyl group or aryl group.
<式(4)~式(6)のいずれかで表される基>
 ポリイミド化合物が式(2)で表される構成単位を含む場合、Yが式(4)~式(6)のいずれかで表される基を含むことが好ましい。式(4)~式(6)で表される基は、1価の酸無水物又は1価の酸ハライド化合物とポリイミド化合物中の主鎖中に組み込まれたスルホンアミド基との高分子反応により形成されうる。1価の酸無水物、1価の酸ハライド化合物とは、上記ポリイミド化合物中のスルホンアミド基と反応し、式(4)、式(5)及び式(6)の少なくとも1つを形成可能な1価の化合物を意味し、好ましい例としては、カルボン酸無水物、スルホン酸無水物、カルボン酸クロライド、スルホン酸クロライド、リン酸クロライドなどを挙げることができる。1価の酸ハライド化合物におけるハライドは、クロライド、ブロマイドが挙げられる。
 本発明に使用しうる1価の酸無水物、1価の酸ハライド化合物の具体例を以下に挙げるが、本発明はこれらに制限されない。
<Group represented by any one of formulas (4) to (6)>
When the polyimide compound includes a structural unit represented by the formula (2), it is preferable that Y 1 includes a group represented by any one of the formulas (4) to (6). The groups represented by the formulas (4) to (6) are produced by a polymer reaction between a monovalent acid anhydride or monovalent acid halide compound and a sulfonamide group incorporated in the main chain of the polyimide compound. Can be formed. A monovalent acid anhydride and a monovalent acid halide compound can react with the sulfonamide group in the polyimide compound to form at least one of formula (4), formula (5) and formula (6). A monovalent compound is meant, and preferred examples include carboxylic acid anhydrides, sulfonic acid anhydrides, carboxylic acid chlorides, sulfonic acid chlorides, phosphoric acid chlorides and the like. Examples of the halide in the monovalent acid halide compound include chloride and bromide.
Specific examples of the monovalent acid anhydride and monovalent acid halide compound that can be used in the present invention are listed below, but the present invention is not limited thereto.
<1価の酸無水物>
Figure JPOXMLDOC01-appb-C000026
<Monovalent acid anhydride>
Figure JPOXMLDOC01-appb-C000026
<1価の酸ハライド化合物>
Figure JPOXMLDOC01-appb-C000027
<Monovalent acid halide compound>
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-I000029
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-I000029
 X1+は有機または無機のカチオンを示し、例えば、アンモニウムカチオン、ナトリウムカチオンを挙げることができる。
 nは0以上の整数であり、好ましくは1~3である。
X 1+ represents an organic or inorganic cation, and examples thereof include an ammonium cation and a sodium cation.
n is an integer of 0 or more, preferably 1 to 3.
 別の態様において、ポリイミド化合物は、上記式(1)で表される構成単位、並びに式(8)で表される構成単位及び式(9)で表される構成単位から選ばれる少なくとも1つを含むことが好ましい。 In another embodiment, the polyimide compound comprises at least one selected from the structural unit represented by the formula (1), the structural unit represented by the formula (8), and the structural unit represented by the formula (9). It is preferable to include.
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
 式(8)及び式(9)中、Z~Z10はそれぞれ独立に2価の連結基を示し、例えば、アリーレン基、アルキレン基(ハロゲン化アルキレン基を含む)が挙げられる。Z~Z10はそれぞれ独立にアリーレン基及び/又はアルキレン基を含む2価の基であることが好ましく、式A-1~A-11のいずれかであることがより好ましい。 In formula (8) and formula (9), Z 5 to Z 10 each independently represent a divalent linking group, and examples thereof include an arylene group and an alkylene group (including a halogenated alkylene group). Z 5 to Z 10 are preferably each independently a divalent group containing an arylene group and / or an alkylene group, and more preferably any one of formulas A-1 to A-11.
 Y及びYはそれぞれ独立に水素原子、アルキル基、アリール基又は上記式(4)~式(6)のいずれかの基を示し、例えば、水素原子、アセチル基を挙げることができる。 Y 2 and Y 3 each independently represent a hydrogen atom, an alkyl group, an aryl group or any one of the above formulas (4) to (6), and examples thereof include a hydrogen atom and an acetyl group.
 X2+及びX3+はそれぞれ独立に有機または無機のカチオンを示し、例えば、アンモニウムカチオン、ナトリウムカチオンを挙げることができる。 X 2+ and X 3+ each independently represents an organic or inorganic cation, and examples thereof include an ammonium cation and a sodium cation.
 ポリイミド化合物の構成単位が、ポリイミド化合物の主鎖にスルホンアミド基を有することによって、側鎖に導入した場合と比べて、ポリマー間の相互作用が向上し、ガス透過性と可塑化耐性が向上すると考えられる。かかるポリイミド化合物をガス分離層に用いた際に、優れたガス透過性と可塑化耐性の両立を高度なレベルで実現することが可能となる。
 また、Z~Z10の芳香族単位を変更する事で、透過性、選択性、可塑化耐性のバランスを良好に調整する事が可能となる。
When the structural unit of the polyimide compound has a sulfonamide group in the main chain of the polyimide compound, compared to the case where it is introduced into the side chain, the interaction between the polymers is improved, and the gas permeability and plasticization resistance are improved. Conceivable. When such a polyimide compound is used for a gas separation layer, it is possible to achieve both excellent gas permeability and plasticization resistance at a high level.
Further, by changing the aromatic units of Z 1 to Z 10 , it is possible to satisfactorily adjust the balance of permeability, selectivity, and plasticization resistance.
 ポリイミド化合物は、1種類のみの構成単位を有しても良いが、2種以上の構成単位を有することが好ましい。
 また、ポリイミド化合物中の構成単位は、下記ジアミン化合物、並びに2官能酸無水物及び/又は2官能スルホン酸ハライド化合物を反応させて得られる例示化合物に由来する構成単位であることが好ましい。
 例えば、1つのポリアミド化合物について、反応スキームを以下に示す。これは、ジアミン化合物、2官能酸無水物及び2官能スルホン酸ハライド化合物を、各1種ずつ反応させた例である。
Figure JPOXMLDOC01-appb-C000031
The polyimide compound may have only one type of structural unit, but preferably has two or more types of structural units.
Moreover, it is preferable that the structural unit in a polyimide compound is a structural unit derived from the exemplary compound obtained by making the following diamine compound and a bifunctional acid anhydride and / or a bifunctional sulfonic acid halide compound react.
For example, a reaction scheme is shown below for one polyamide compound. This is an example in which a diamine compound, a bifunctional acid anhydride, and a bifunctional sulfonic acid halide compound are reacted one by one.
Figure JPOXMLDOC01-appb-C000031
 ポリイミド化合物を合成するために好適に得られるジアミン化合物及び2官能酸無水物と2官能スルホン酸ハライド化合物を以下に例示する。 Examples of a diamine compound, a bifunctional acid anhydride, and a bifunctional sulfonic acid halide compound that are suitably obtained for synthesizing a polyimide compound are shown below.
<ジアミン化合物>
Figure JPOXMLDOC01-appb-C000032
<Diamine compound>
Figure JPOXMLDOC01-appb-C000032
<併用してもよいジアミン化合物>
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-I000034
<Diamine compound that may be used in combination>
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-I000034
<2官能酸無水物>
Figure JPOXMLDOC01-appb-C000035
<Bifunctional acid anhydride>
Figure JPOXMLDOC01-appb-C000035
<2官能スルホンンハライド化合物>
Figure JPOXMLDOC01-appb-C000036
<Bifunctional sulfone halide compound>
Figure JPOXMLDOC01-appb-C000036
 ポリイミド化合物は、例えば、酸無水物基を2つ以上有する化合物と、アミノ基を2つ以上有する化合物との逐次重合反応により生成してもよい。また、酸無水物基を2つ以上有する化合物と、酸ハライド基を2つ以上有する化合物と、アミノ基を2つ以上有する化合物との逐次重合反応により生成してもよい。
 ポリイミド化合物は、酸無水物基を2つ以上有する化合物と、少なくとも1つのスルホンアミド基を主鎖に含み、かつ、2つ以上のアミノ基を有する化合物との逐次重合反応(酸無水物化合物と、少なくとも1つのスルホンアミド基を含むジアミン化合物との逐次重合反応)により生成することが好ましい。
The polyimide compound may be generated, for example, by a sequential polymerization reaction between a compound having two or more acid anhydride groups and a compound having two or more amino groups. Alternatively, it may be produced by a sequential polymerization reaction of a compound having two or more acid anhydride groups, a compound having two or more acid halide groups, and a compound having two or more amino groups.
The polyimide compound is a sequential polymerization reaction between a compound having two or more acid anhydride groups and a compound having at least one sulfonamide group in the main chain and having two or more amino groups (an acid anhydride compound and And a sequential polymerization reaction with a diamine compound containing at least one sulfonamide group).
 ポリイミド化合物は、直鎖状の高分子化合物であることが好ましい。
 また、ポリイミド化合物は、カルボキシ基を有することが好ましく、芳香環に結合したカルボキシ基を有することがより好ましく、下記構成単位を少なくとも有することが更に好ましい。
 上記式(1)で表される構成単位100モルに対して、下記式(10)で表される構成単位を5モル~30モル含有することが好ましい。
The polyimide compound is preferably a linear polymer compound.
Moreover, it is preferable that a polyimide compound has a carboxy group, it is more preferable to have a carboxy group couple | bonded with the aromatic ring, and it is still more preferable to have at least the following structural unit.
It is preferable that 5 to 30 mol of the structural unit represented by the following formula (10) is contained with respect to 100 mol of the structural unit represented by the above formula (1).
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
 ポリイミド化合物の好ましい具体例を下記表に示す。例示化合物PI-1~PI-28は、上記に記載されたジアミン化合物と無水物基を2つ以上有する化合物とを表に記載の割合(モル比)で反応してできた高分子化合物を意味する。
 また、ポリマーの重量平均分子量(Mw)は、GPC(ゲルろ過クロマトグラフィー)法により測定した値である。
 本発明に用いられるポリイミド化合物は、下記表に記載された具体例に限定されるものではない。
Preferred specific examples of the polyimide compound are shown in the following table. Exemplified compounds PI-1 to PI-28 mean polymer compounds obtained by reacting the diamine compounds described above with compounds having two or more anhydride groups in the proportions (molar ratio) described in the table. To do.
Moreover, the weight average molecular weight (Mw) of a polymer is the value measured by GPC (gel filtration chromatography) method.
The polyimide compound used in the present invention is not limited to the specific examples described in the following table.
Figure JPOXMLDOC01-appb-T000038
Figure JPOXMLDOC01-appb-T000038
Figure JPOXMLDOC01-appb-T000039
Figure JPOXMLDOC01-appb-T000039
 ポリイミド化合物には、本発明の効果を損なわない限りにおいて、所望により他の成分を含有しても良い。
 以下、1価の塩基性化合物について説明する。
The polyimide compound may optionally contain other components as long as the effects of the present invention are not impaired.
Hereinafter, the monovalent basic compound will be described.
<1価の塩基性化合物>
 ポリイミド化合物には、1価の塩基性化合物を含むことが好ましい。
 1価の塩基性化合物とは、上記ポリイミド化合物中のスルホンアミド基と塩構造を形成可能な1価の塩基性化合物を意味し、好ましい例としては、アルカリ金属の水酸化物、酸化物又は炭酸水素塩、アルコキシド(ROM)、フェノキシド(ArONa)等、アンモニア(気体又は水溶液)、ジアリールアミン及びトリアリールアミンを除くアミン類(ジアリールアミン及びトリアリールアミンは、ほぼ中性に近く、酸基との塩形成性が不十分であるため除外される)、ピリジン、キノリン、ピペリジン等の複素環塩、ヒドラジン誘導体、アミジン誘導体、水酸化テトラアルキルアンモニウムなどを挙げることができる。
 また、本明細書において「塩構造を形成する」とは、そこで定義される化合物ないし基がそのまま塩をなすことのほか、その化合物ないし塩の一部が組み合わされて塩をなすことを意味する。例えば、特定の化合物のアニオンが解離してカチオン部分のみがスルホンアミド基と塩を形成してもよい。また、上記「塩構造」がガス分離層中で解離して存在していてもよい。
 上記1価の塩基性化合物のなかでも、アルカリ金属の水酸化物、酸化物又は炭酸水素塩、アルコキシド(ROM)、フェノキシド(ArONa)、アンモニア(気体又は水溶液)、及び含窒素化合物の塩が好ましく挙げられる。
 1価の塩基性化合物の具体例を以下に挙げるが、本発明はこれらに限定されない。
<Monovalent basic compound>
The polyimide compound preferably contains a monovalent basic compound.
The monovalent basic compound means a monovalent basic compound capable of forming a salt structure with the sulfonamide group in the polyimide compound, and preferable examples include alkali metal hydroxides, oxides or carbonic acid. Hydrogen salts, alkoxides (ROM), phenoxides (ArONa), etc., ammonia (gas or aqueous solution), amines other than diarylamines and triarylamines (diarylamines and triarylamines are almost neutral, And a heterocyclic salt such as pyridine, quinoline and piperidine, a hydrazine derivative, an amidine derivative, and a tetraalkylammonium hydroxide.
In the present specification, “forms a salt structure” means that a compound or group defined therein forms a salt as it is, and a part of the compound or salt is combined to form a salt. . For example, the anion of a specific compound may dissociate and only the cation moiety may form a salt with a sulfonamide group. Further, the “salt structure” may be dissociated in the gas separation layer.
Among the above monovalent basic compounds, alkali metal hydroxides, oxides or bicarbonates, alkoxides (ROM), phenoxides (ArONa), ammonia (gas or aqueous solution), and salts of nitrogen-containing compounds are preferred. Can be mentioned.
Specific examples of the monovalent basic compound are listed below, but the present invention is not limited thereto.
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000043
 以下に、ポリイミド化合物と1価の塩基性化合物とで形成された塩構造を分子内に有する好適なポリイミド化合物の具体例を示す。なお、本発明に用いられるポリイミド化合物は、これらの具体例に限定されない。 Specific examples of suitable polyimide compounds having a salt structure formed of a polyimide compound and a monovalent basic compound in the molecule are shown below. In addition, the polyimide compound used for this invention is not limited to these specific examples.
Figure JPOXMLDOC01-appb-T000044
Figure JPOXMLDOC01-appb-T000044
 以下に、ポリイミド化合物と、酸無水物又は酸ハライド化合物とで形成された好適なポリイミド化合物の具体例を示す。なお、本発明に用いられるポリイミド化合物は、これらの具体例に限定されない。 Specific examples of suitable polyimide compounds formed from a polyimide compound and an acid anhydride or acid halide compound are shown below. In addition, the polyimide compound used for this invention is not limited to these specific examples.
Figure JPOXMLDOC01-appb-T000045
Figure JPOXMLDOC01-appb-T000045
 置換基群Z:
 アルキル基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~10のアルキル基であり、例えばメチル、エチル、iso-プロピル、tert-ブチル、n-オクチル、n-デシル、n-ヘキサデシルなどが挙げられる。)、シクロアルキル基(好ましくは炭素数3~30、より好ましくは炭素数3~20、特に好ましくは炭素数3~10のシクロアルキル基であり、例えばシクロプロピル、シクロペンチル、シクロヘキシルなどが挙げられる。)、アルケニル基(好ましくは炭素数2~30、より好ましくは炭素数2~20、特に好ましくは炭素数2~10のアルケニル基であり、例えばビニル、アリル、2-ブテニル、3-ペンテニルなどが挙げられる。)、アルキニル基(好ましくは炭素数2~30、より好ましくは炭素数2~20、特に好ましくは炭素数2~10のアルキニル基であり、例えばプロパルギル、3-ペンチニルなどが挙げられる。)、アリール基(好ましくは炭素数6~30、より好ましくは炭素数6~20、特に好ましくは炭素数6~12のアリール基であり、例えばフェニル、p-メチルフェニル、ナフチル、アントラニルなどが挙げられる。)、アミノ基(アミノ基、アルキルアミノ基、アリールアミノ基及びヘテロ環アミノ基を含み、好ましくは炭素数0~30、より好ましくは炭素数0~20、特に好ましくは炭素数0~10のアミノ基であり、例えばアミノ、メチルアミノ、ジメチルアミノ、ジエチルアミノ、ジベンジルアミノ、ジフェニルアミノ、ジトリルアミノなどが挙げられる。)、アルコキシ基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~10のアルコキシ基であり、例えばメトキシ、エトキシ、ブトキシ、2-エチルヘキシロキシなどが挙げられる。)、アリールオキシ基(好ましくは炭素数6~30、より好ましくは炭素数6~20、特に好ましくは炭素数6~12のアリールオキシ基であり、例えばフェニルオキシ、1-ナフチルオキシ、2-ナフチルオキシなどが挙げられる。)、ヘテロ環オキシ基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~12のヘテロ環オキシ基であり、例えばピリジルオキシ、ピラジルオキシ、ピリミジルオキシ、キノリルオキシなどが挙げられる。)、
Substituent group Z:
An alkyl group (preferably an alkyl group having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 10 carbon atoms, such as methyl, ethyl, iso-propyl, tert-butyl, n-octyl) , N-decyl, n-hexadecyl, etc.), a cycloalkyl group (preferably a cycloalkyl group having 3 to 30 carbon atoms, more preferably 3 to 20 carbon atoms, particularly preferably 3 to 10 carbon atoms). For example, cyclopropyl, cyclopentyl, cyclohexyl, etc.), an alkenyl group (preferably an alkenyl group having 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, and particularly preferably 2 to 10 carbon atoms. Vinyl, allyl, 2-butenyl, 3-pentenyl, etc.), alkynyl groups (preferably having 2 to 0, more preferably an alkynyl group having 2 to 20 carbon atoms, particularly preferably 2 to 10 carbon atoms, such as propargyl, 3-pentynyl, etc.), an aryl group (preferably having 6 to 30 carbon atoms, more An aryl group having 6 to 20 carbon atoms, particularly preferably 6 to 12 carbon atoms is preferable, and examples thereof include phenyl, p-methylphenyl, naphthyl, anthranyl, and the like, amino groups (amino groups, alkylamino groups, An arylamino group and a heterocyclic amino group, preferably an amino group having 0 to 30 carbon atoms, more preferably 0 to 20 carbon atoms, and particularly preferably 0 to 10 carbon atoms, such as amino, methylamino, dimethylamino; , Diethylamino, dibenzylamino, diphenylamino, ditolylamino, etc.), alkoxy group Preferably an alkoxy group having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, and particularly preferably 1 to 10 carbon atoms, and examples thereof include methoxy, ethoxy, butoxy, 2-ethylhexyloxy and the like. An aryloxy group (preferably an aryloxy group having 6 to 30 carbon atoms, more preferably 6 to 20 carbon atoms, particularly preferably 6 to 12 carbon atoms, such as phenyloxy, 1-naphthyloxy, 2-naphthyloxy, etc. A heterocyclic oxy group (preferably a heterocyclic oxy group having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as pyridyloxy, pyrazyloxy, Pyrimidyloxy, quinolyloxy, etc.),
 アシル基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~12のアシル基であり、例えばアセチル、ベンゾイル、ホルミル、ピバロイルなどが挙げられる。)、アルコキシカルボニル基(好ましくは炭素数2~30、より好ましくは炭素数2~20、特に好ましくは炭素数2~12のアルコキシカルボニル基であり、例えばメトキシカルボニル、エトキシカルボニルなどが挙げられる。)、アリールオキシカルボニル基(好ましくは炭素数7~30、より好ましくは炭素数7~20、特に好ましくは炭素数7~12のアリールオキシカルボニル基であり、例えばフェニルオキシカルボニルなどが挙げられる。)、アシルオキシ基(好ましくは炭素数2~30、より好ましくは炭素数2~20、特に好ましくは炭素数2~10のアシルオキシ基であり、例えばアセトキシ、ベンゾイルオキシなどが挙げられる。)、アシルアミノ基(好ましくは炭素数2~30、より好ましくは炭素数2~20、特に好ましくは炭素数2~10のアシルアミノ基であり、例えばアセチルアミノ、ベンゾイルアミノなどが挙げられる。)、 An acyl group (preferably an acyl group having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as acetyl, benzoyl, formyl, pivaloyl, etc.), alkoxy A carbonyl group (preferably an alkoxycarbonyl group having 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, particularly preferably 2 to 12 carbon atoms, such as methoxycarbonyl, ethoxycarbonyl, etc.), aryloxy A carbonyl group (preferably an aryloxycarbonyl group having 7 to 30 carbon atoms, more preferably 7 to 20 carbon atoms, particularly preferably 7 to 12 carbon atoms, such as phenyloxycarbonyl), an acyloxy group ( Preferably 2-30 carbon atoms, more preferably 2-20 carbon atoms, especially Preferably, it is an acyloxy group having 2 to 10 carbon atoms, such as acetoxy, benzoyloxy, etc.), an acylamino group (preferably having 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, particularly preferably carbon atoms). An acylamino group of 2 to 10, for example, acetylamino, benzoylamino and the like),
 アルコキシカルボニルアミノ基(好ましくは炭素数2~30、より好ましくは炭素数2~20、特に好ましくは炭素数2~12のアルコキシカルボニルアミノ基であり、例えばメトキシカルボニルアミノなどが挙げられる。)、アリールオキシカルボニルアミノ基(好ましくは炭素数7~30、より好ましくは炭素数7~20、特に好ましくは炭素数7~12のアリールオキシカルボニルアミノ基であり、例えばフェニルオキシカルボニルアミノなどが挙げられる。)、スルホニルアミノ基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~12であり、例えばメタンスルホニルアミノ、ベンゼンスルホニルアミノなどが挙げられる。)、スルファモイル基(好ましくは炭素数0~30、より好ましくは炭素数0~20、特に好ましくは炭素数0~12のスルファモイル基であり、例えばスルファモイル、メチルスルファモイル、ジメチルスルファモイル、フェニルスルファモイルなどが挙げられる。)、 An alkoxycarbonylamino group (preferably an alkoxycarbonylamino group having 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, particularly preferably 2 to 12 carbon atoms, such as methoxycarbonylamino), aryl Oxycarbonylamino group (preferably an aryloxycarbonylamino group having 7 to 30 carbon atoms, more preferably 7 to 20 carbon atoms, particularly preferably 7 to 12 carbon atoms, and examples thereof include phenyloxycarbonylamino group) A sulfonylamino group (preferably having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as methanesulfonylamino, benzenesulfonylamino, etc.), a sulfamoyl group (Preferably 0-30 carbon atoms, more preferred 0 to 20 carbon atoms, particularly preferably a sulfamoyl group having 0 to 12 carbon atoms, such as sulfamoyl, methylsulfamoyl, dimethylsulfamoyl, and the like phenylsulfamoyl.),
 アルキルチオ基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~12のアルキルチオ基であり、例えばメチルチオ、エチルチオなどが挙げられる。)、アリールチオ基(好ましくは炭素数6~30、より好ましくは炭素数6~20、特に好ましくは炭素数6~12のアリールチオ基であり、例えばフェニルチオなどが挙げられる。)、ヘテロ環チオ基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~12のヘテロ環チオ基であり、例えばピリジルチオ、2-ベンズイミゾリルチオ、2-ベンズオキサゾリルチオ、2-ベンズチアゾリルチオなどが挙げられる。)、 An alkylthio group (preferably an alkylthio group having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as methylthio and ethylthio), an arylthio group (preferably An arylthio group having 6 to 30 carbon atoms, more preferably 6 to 20 carbon atoms, particularly preferably 6 to 12 carbon atoms, such as phenylthio, and a heterocyclic thio group (preferably having 1 to 30 carbon atoms). More preferably a heterocyclic thio group having 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as pyridylthio, 2-benzimidazolylthio, 2-benzoxazolylthio, 2-benzthiazolylthio and the like. ),
 スルホニル基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~12のスルホニル基であり、例えばメシル、トシルなどが挙げられる。)、スルフィニル基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~12のスルフィニル基であり、例えばメタンスルフィニル、ベンゼンスルフィニルなどが挙げられる。)、ウレイド基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~12のウレイド基であり、例えばウレイド、メチルウレイド、フェニルウレイドなどが挙げられる。)、リン酸アミド基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~12のリン酸アミド基であり、例えばジエチルリン酸アミド、フェニルリン酸アミドなどが挙げられる。)、ヒドロキシ基、メルカプト基、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子であり、より好ましくはフッ素原子が挙げられる。)、 A sulfonyl group (preferably a sulfonyl group having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as mesyl, tosyl, etc.), a sulfinyl group (preferably A sulfinyl group having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as methanesulfinyl, benzenesulfinyl, etc.), ureido group (preferably having 1 carbon atom) -30, more preferably a ureido group having 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as ureido, methylureido, phenylureido, etc.), a phosphoramide group (preferably having a carbon number) A phosphoric acid amide group having 1 to 30, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, For example, diethyl phosphoric acid amide, phenylphosphoric acid amide, etc.), hydroxy group, mercapto group, halogen atom (for example, fluorine atom, chlorine atom, bromine atom, iodine atom, more preferably fluorine atom). ),
 シアノ基、カルボキシ基、オキソ基、ニトロ基、ヒドロキサム酸基、スルフィノ基、ヒドラジノ基、イミノ基、ヘテロ環基(好ましくは3~7員環のヘテロ環基で、芳香族ヘテロ環でも芳香族でないヘテロ環であってもよく、ヘテロ環を構成するヘテロ原子としては、窒素原子、酸素原子及び硫黄原子が挙げられる。炭素数は0~30が好ましく、より好ましくは炭素数1~12のヘテロ環基であり、具体的には例えばイミダゾリル、ピリジル、キノリル、フリル、チエニル、ピペリジル、モルホリノ、ベンズオキサゾリル、ベンズイミダゾリル、ベンズチアゾリル、カルバゾリル、アゼピニルなどが挙げられる。)、シリル基(好ましくは炭素数3~40、より好ましくは炭素数3~30、特に好ましくは炭素数3~24のシリル基であり、例えばトリメチルシリル、トリフェニルシリルなどが挙げられる。)、シリルオキシ基(好ましくは炭素数3~40、より好ましくは炭素数3~30、特に好ましくは炭素数3~24のシリルオキシ基であり、例えばトリメチルシリルオキシ、トリフェニルシリルオキシなどが挙げられる。)などが挙げられる。
これらの置換基は、上記置換基群Zより選択されるいずれか1つ以上の置換基により更に置換されてもよい。
 なお、1つの構造部位に複数の置換基があるときには、それらの置換基は互いに連結して環を形成したり、上記構造部位の一部又は全部と縮環して芳香族環もしくは不飽和複素環を形成していてもよい。
A cyano group, a carboxy group, an oxo group, a nitro group, a hydroxamic acid group, a sulfino group, a hydrazino group, an imino group, a heterocyclic group (preferably a 3- to 7-membered heterocyclic group, neither an aromatic heterocyclic ring nor aromatic The heteroatom may be a heterocycle, and examples of the heteroatom constituting the heterocycle include a nitrogen atom, an oxygen atom and a sulfur atom, preferably 0 to 30 carbon atoms, more preferably a heterocycle having 1 to 12 carbon atoms. Specific examples include imidazolyl, pyridyl, quinolyl, furyl, thienyl, piperidyl, morpholino, benzoxazolyl, benzimidazolyl, benzthiazolyl, carbazolyl, azepinyl, and the like, and a silyl group (preferably having a carbon number). A silyl group having 3 to 40 carbon atoms, more preferably 3 to 30 carbon atoms, and particularly preferably 3 to 24 carbon atoms. Examples thereof include trimethylsilyl and triphenylsilyl), silyloxy groups (preferably silyloxy groups having 3 to 40 carbon atoms, more preferably 3 to 30 carbon atoms, and particularly preferably 3 to 24 carbon atoms. , Triphenylsilyloxy, etc.).
These substituents may be further substituted with any one or more substituents selected from the above substituent group Z.
When there are a plurality of substituents in one structural site, these substituents are connected to each other to form a ring, or condensed with a part or all of the structural site to form an aromatic ring or an unsaturated heterocycle. A ring may be formed.
 化合物又は置換基等がアルキル基、アルケニル基等を含むとき、これらは直鎖状でも分岐状でもよく、置換されていても無置換でもよい。またアリール基、ヘテロ環基等を含むとき、それらは単環でも縮環でもよく、置換されていても無置換でもよい。
 本明細書において、単に置換基として記載されているものは、特に断わりのない限りこの置換基群Zを参照する。また、各々の基の名称のみが記載されているとき(例えば、「アルキル基」とのみ記載されているとき)は、この置換基群Zの対応する基における好ましい範囲、具体例が適用される。
When a compound or a substituent includes an alkyl group, an alkenyl group, etc., these may be linear or branched, and may be substituted or unsubstituted. When an aryl group, a heterocyclic group, or the like is included, they may be monocyclic or condensed, and may be substituted or unsubstituted.
In the present specification, what is simply described as a substituent refers to this substituent group Z unless otherwise specified. Further, when only the name of each group is described (for example, when only “alkyl group” is described), preferred ranges and specific examples of the corresponding group of this substituent group Z are applied. .
 ポリイミド化合物の分子量は、重量平均分子量として10,000~1,000,000であることが好ましく、より好ましくは15,000~500,000であり、さらに好ましくは20,000~200,000であり、さらにより好ましくは50,000~150,000である。 The molecular weight of the polyimide compound is preferably 10,000 to 1,000,000 as a weight average molecular weight, more preferably 15,000 to 500,000, and still more preferably 20,000 to 200,000. Even more preferably, it is 50,000 to 150,000.
 本明細書において分子量及び分散度は特に断らない限りGPC(ゲルろ過クロマトグラフィー)法を用いて測定した値とし、分子量はポリスチレン換算の重量平均分子量とする。GPC法に用いるカラムに充填されているゲルは芳香族化合物を構成単位に持つゲルが好ましく、例えばスチレン-ジビニルベンゼン共重合体からなるゲルが挙げられる。カラムは2~6本連結させて用いることが好ましい。用いる溶媒は、テトラヒドロフラン等のエーテル系溶媒、N-メチルピロリジノン等のアミド系溶媒が挙げられる。測定は、溶媒の流速が0.1~2mL/minの範囲で行うことが好ましく、0.5~1.5mL/minの範囲で行うことが最も好ましい。この範囲内で測定を行うことで、装置に負荷がかからず、さらに効率的に測定ができる。測定温度は10~50℃で行うことが好ましく、20~40℃で行うことが最も好ましい。なお、使用するカラム及びキャリアは測定対称となる高分子化合物の物性に応じて適宜選定することができる。 In the present specification, unless otherwise specified, the molecular weight and the dispersity are values measured using a GPC (gel filtration chromatography) method, and the molecular weight is a weight average molecular weight in terms of polystyrene. The gel packed in the column used in the GPC method is preferably a gel having an aromatic compound as a structural unit, for example, a gel made of a styrene-divinylbenzene copolymer. Two to six columns are preferably connected and used. Examples of the solvent used include ether solvents such as tetrahydrofuran and amide solvents such as N-methylpyrrolidinone. The measurement is preferably performed at a solvent flow rate in the range of 0.1 to 2 mL / min, and most preferably in the range of 0.5 to 1.5 mL / min. By performing the measurement within this range, the apparatus is not loaded and the measurement can be performed more efficiently. The measurement temperature is preferably 10 to 50 ° C, most preferably 20 to 40 ° C. Note that the column and carrier to be used can be appropriately selected according to the physical properties of the polymer compound that is symmetrical to the measurement.
〔ポリイミド化合物の合成〕
 ポリイミド化合物は、特定構造の2官能酸無水物(テトラカルボン酸二無水物)と特定構造のジアミンとを縮合重合させることで合成することができる。その方法としては一般的な成書(例えば、今井淑夫、横田力男編著、「最新ポリイミド~基礎と応用~」、株式会社エヌ・ティー・エス、2010年8月25日、p.3~49、など)に記載の手法を適宜参照して実施することができる。
[Synthesis of polyimide compounds]
The polyimide compound can be synthesized by condensation polymerization of a bifunctional acid anhydride (tetracarboxylic dianhydride) having a specific structure and a diamine having a specific structure. As a method for this, a general book (for example, Ikuo Imai, edited by Rikio Yokota, “Latest Polyimide: Fundamentals and Applications”, NTS Corporation, August 25, 2010, p. 3-49). , Etc.) can be carried out with appropriate reference to the methods described in the above.
 ポリイミド化合物は、上記各原料を溶媒中に混合して、上記のように通常の方法で縮合重合させて得ることができる。
 上記溶媒としては、特に限定されるものではないが、酢酸メチル、酢酸エチル、及び酢酸ブチル等のエステル系有機溶剤、アセトン、メチルエチルケトン、メチルイソブチルケトン、ジアセトンアルコール、シクロペンタノン、及びシクロヘキサノン等の脂肪族ケトン系有機溶剤、エチレングリコールジメチルエーテル、ジブチルエーテル、テトラヒドロフラン、メチルシクロペンチルエーテル、及びジオキサン等のエーテル系有機溶剤、N-メチルピロリドン、2-ピロリドン、ジメチルホルムアミド、ジメチルイミダゾリジノン、及びジメチルアセトアミド等のアミド系有機溶剤、ジメチルスルホキシド、及びスルホラン等の含硫黄系有機溶剤などが挙げられる。これらの有機溶剤は反応基質であるテトラカルボン酸二無水物、ジアミン化合物、反応中間体であるポリアミック酸、さらに最終生成物であるポリイミド化合物を溶解させることを可能とする範囲で適切に選択されるものである。好ましくは、エステル系(好ましくは酢酸ブチル)、脂肪族ケトン系(好ましくは、メチルエチルケトン、メチルイソブチルケトン、ジアセトンアルコール、シクロペンタノン、シクロヘキサノン)、エーテル系(ジエチレングリコールモノメチルエーテル、メチルシクロペンチルエーテル)、アミド系(好ましくはN-メチルピロリドン)、含硫黄系(ジメチルスルホキシド、スルホラン)の溶媒が好ましい。また、これらは、1種又は2種以上の溶媒を組み合わせて用いることができる。
The polyimide compound can be obtained by mixing each of the above raw materials in a solvent and performing condensation polymerization by a conventional method as described above.
Examples of the solvent include, but are not limited to, ester organic solvents such as methyl acetate, ethyl acetate, and butyl acetate, acetone, methyl ethyl ketone, methyl isobutyl ketone, diacetone alcohol, cyclopentanone, and cyclohexanone. Aliphatic ketone-based organic solvents, ether-based organic solvents such as ethylene glycol dimethyl ether, dibutyl ether, tetrahydrofuran, methylcyclopentyl ether, and dioxane, N-methylpyrrolidone, 2-pyrrolidone, dimethylformamide, dimethylimidazolidinone, and dimethylacetamide Examples thereof include sulfur-containing organic solvents such as amide organic solvents, dimethyl sulfoxide, and sulfolane. These organic solvents are appropriately selected as long as it is possible to dissolve tetracarboxylic dianhydride as a reaction substrate, diamine compound, polyamic acid as a reaction intermediate, and polyimide compound as a final product. Is. Preferably, ester type (preferably butyl acetate), aliphatic ketone type (preferably methyl ethyl ketone, methyl isobutyl ketone, diacetone alcohol, cyclopentanone, cyclohexanone), ether type (diethylene glycol monomethyl ether, methyl cyclopentyl ether), amide Solvents based on systems (preferably N-methylpyrrolidone) and sulfur-based systems (dimethyl sulfoxide, sulfolane) are preferred. Moreover, these can be used combining 1 type (s) or 2 or more types of solvent.
 重合反応温度に特に制限はなくポリイミド化合物の合成において通常採用されうる温度を採用することができる。具体的には-50~250℃であることが好ましく、より好ましくは-25~225℃であり、更に好ましくは0℃~200℃であり、特に好ましくは20℃~190℃である。 The polymerization reaction temperature is not particularly limited, and a temperature that can be usually employed in the synthesis of a polyimide compound can be employed. Specifically, it is preferably −50 to 250 ° C., more preferably −25 to 225 ° C., still more preferably 0 ° C. to 200 ° C., and particularly preferably 20 ° C. to 190 ° C.
 上記の重合反応により生成したポリアミック酸を分子内で脱水閉環反応させてイミド化することで、ポリイミド化合物が得られる。脱水閉環させる方法としては、一般的な成書(例えば、今井淑夫、横田力男編著、「最新ポリイミド~基礎と応用~」、株式会社エヌ・ティー・エス、2010年8月25日、p.3~49、など)に記載の方法を参考とすることができる。例えば、120℃~200℃に加熱して、副生する水を系外に除去しながら反応させる熱イミド化法や、ピリジンやトリエチルアミン、DBU(1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン)のような塩基性触媒共存下で、無水酢酸やジシクロヘキシルカルボジイミド、亜リン酸トリフェニルのような脱水縮合剤を用いるいわゆる化学イミド化等の手法が好適に用いられる。 The polyimide compound is obtained by imidizing the polyamic acid produced by the above polymerization reaction by dehydrating and ring-closing reaction in the molecule. As a method for dehydrating and ring-closing, a general book (for example, Ikuo Imai, edited by Rikio Yokota, “Latest Polyimide: Fundamentals and Applications”), NTS Corporation, August 25, 2010, p. 3 to 49, etc.) can be referred to. For example, it is heated to 120 ° C. to 200 ° C. to react while removing by-produced water out of the system, pyridine, triethylamine, DBU (1,8-diazabicyclo [5.4.0] undeca In the presence of a basic catalyst such as -7-ene), a technique such as so-called chemical imidization using a dehydration condensing agent such as acetic anhydride, dicyclohexylcarbodiimide, or triphenyl phosphite is preferably used.
 ポリイミド化合物の重合反応液中のテトラカルボン酸二無水物及びジアミン化合物の総濃度は特に限定されるものではないが、5~70質量%が好ましく、5~50質量%がより好ましく、5~30質量%がさらに好ましい。 The total concentration of tetracarboxylic dianhydride and diamine compound in the polymerization reaction solution of the polyimide compound is not particularly limited, but is preferably 5 to 70% by mass, more preferably 5 to 50% by mass, and 5 to 30%. More preferred is mass%.
 式(1)で表されるポリイミド化合物の好ましい例を挙げると、以下に示すとおりである。 Preferred examples of the polyimide compound represented by the formula (1) are as follows.
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-I000047
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-I000047
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-I000049
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-I000049
<中和体>
Figure JPOXMLDOC01-appb-C000050
<Neutralized product>
Figure JPOXMLDOC01-appb-C000050
<N置換体>
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-I000052
<N-substituted product>
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-I000052
[ガス分離膜]
〔ガス分離複合膜〕
 本発明のガス分離膜の好ましい態様であるガス分離複合膜は、ガス透過性の支持層の上側に、特定のポリイミド化合物を含有するガス分離層が形成されている。この複合膜は、多孔質の支持体の少なくとも表面に、上記ポリイミド化合物を含有する塗布液(ドープ)を塗布して上記ガス分離層を形成することにより製造することが好ましい。本明細書において塗布とは、浸漬により表面に塗布液を付着させる態様を含む。
 図1は、本発明の好ましい実施形態であるガス分離複合膜10を模式的に示す縦断面図である。1はガス分離層、2は多孔質層からなる支持層である。図2は、本発明の別の好ましい実施形態であるガス分離複合膜20を模式的に示す断面図である。この実施形態では、ガス分離層1及び多孔質層2に加え、支持層として不織布層3が追加されている。この実施形態では、ガス透過性の支持層が、ガス分離層1側の多孔質層2、及びその逆側の不織布層3を含み、上記ガス分離層1は上記ガス透過性の支持層の上側に備えられている。すなわち、ガス分離複合膜20では、ガス分離層1と、多孔質層2と、不織布層3とが、この順に設けられている。
 図1及び2は、二酸化炭素及びメタンを含む混合ガスから二酸化炭素を選択的に透過させることにより、透過ガスを二酸化炭素リッチにした態様を示す。
[Gas separation membrane]
[Gas separation composite membrane]
In the gas separation composite membrane which is a preferred embodiment of the gas separation membrane of the present invention, a gas separation layer containing a specific polyimide compound is formed on the upper side of the gas permeable support layer. This composite membrane is preferably produced by applying the coating liquid (dope) containing the polyimide compound on at least the surface of the porous support to form the gas separation layer. In this specification, the application includes an aspect in which a coating solution is attached to the surface by dipping.
FIG. 1 is a longitudinal sectional view schematically showing a gas separation composite membrane 10 which is a preferred embodiment of the present invention. 1 is a gas separation layer, 2 is a support layer which consists of a porous layer. FIG. 2 is a cross-sectional view schematically showing a gas separation composite membrane 20 which is another preferred embodiment of the present invention. In this embodiment, a nonwoven fabric layer 3 is added as a support layer in addition to the gas separation layer 1 and the porous layer 2. In this embodiment, the gas permeable support layer includes a porous layer 2 on the gas separation layer 1 side and a nonwoven fabric layer 3 on the opposite side, and the gas separation layer 1 is located above the gas permeable support layer. Is provided. That is, in the gas separation composite membrane 20, the gas separation layer 1, the porous layer 2, and the nonwoven fabric layer 3 are provided in this order.
1 and 2 show an embodiment in which carbon dioxide is selectively permeated from a mixed gas containing carbon dioxide and methane to make the permeated gas rich in carbon dioxide.
 本明細書において「支持層上側」とは、支持層とガス分離層との間に他の層が介在してもよい意味である。また、上下の表現については、特に断らない限り、分離対象となるガスが供給される側を「上」とし、分離されたガスが排出される側を「下」とする。 In the present specification, “upper support layer” means that another layer may be interposed between the support layer and the gas separation layer. As for the upper and lower expressions, unless otherwise specified, the side to which the gas to be separated is supplied is “upper”, and the side from which the separated gas is discharged is “lower”.
 ガス分離複合膜は、多孔質性の支持体(支持層)の表面又は内面にガス分離層を形成又は配置するようにしてもよく、少なくとも表面に形成して簡便に複合膜とすることができる。多孔質性の支持体の少なくとも表面にガス分離層を形成することで、高分離選択性と高ガス透過性、更には機械的強度を兼ね備えるという利点を有する複合膜とすることができる。分離層の膜厚としては機械的強度、分離選択性を維持しつつ高ガス透過性を付与する条件において可能な限り薄膜であることが好ましい。 The gas separation composite membrane may be formed or disposed on the surface or the inner surface of a porous support (support layer), and can be formed on at least the surface to easily form a composite membrane. . By forming a gas separation layer on at least the surface of the porous support, a composite membrane having the advantages of having both high separation selectivity, high gas permeability, and mechanical strength can be obtained. The thickness of the separation layer is preferably a thin film as much as possible under the condition of imparting high gas permeability while maintaining mechanical strength and separation selectivity.
 ガス分離複合膜において、ガス分離層の厚さは特に限定されない。ガス分離層の厚さは、0.01~5.0μmであることが好ましく、0.05~2.0μmであることがより好ましい。 In the gas separation composite membrane, the thickness of the gas separation layer is not particularly limited. The thickness of the gas separation layer is preferably from 0.01 to 5.0 μm, and more preferably from 0.05 to 2.0 μm.
 支持層に好ましく適用される多孔質支持体(多孔質層)は、機械的強度及び高気体透過性の付与に合致する目的のものであれば、特に限定されるものではなく有機、無機どちらの素材であっても構わない。好ましくは有機高分子の多孔質膜であり、その厚さは1~3,000μm、好ましくは5~500μmであり、より好ましくは5~150μmである。この多孔質膜の細孔構造は、通常平均細孔直径が10μm以下、好ましくは0.5μm以下、より好ましくは0.2μm以下である。空孔率は好ましくは20~90%であり、より好ましくは30~80%である。
 ここで、支持層が「ガス透過性」を有するとは、支持層(支持層のみからなる膜)に対して、40℃の温度下、ガス供給側の全圧力を5MPaにして二酸化炭素を供給した際に、二酸化炭素の透過速度が1×10-5cm(STP)/cm・sec・cmHg(10GPU)以上であることを意味する。さらに、支持層のガス透過性は、40℃の温度下、ガス供給側の全圧力を5MPaにして二酸化炭素を供給した際に、二酸化炭素透過速度が3×10-5cm(STP)/cm・sec・cmHg(30GPU)以上であることが好ましく、100GPU以上であることがより好ましく、200GPU以上であることがさらに好ましい。
多孔質膜の素材としては、従来公知の高分子、例えばポリエチレン、及びポリプロピレン等のポリオレフィン系樹脂等、ポリテトラフルオロエチレン、ポリフッ化ビニル、及びポリフッ化ビニリデン等の含フッ素樹脂等、ポリスチレン、酢酸セルロース、ポリウレタン、ポリアクリロニトリル、ポリフェニレンオキシド、ポリスルホン、ポリエーテルスルホン、ポリイミド、並びにポリアラミド等の各種樹脂を挙げることができる。多孔質膜の形状としては、平板状、スパイラル状、管状、及び中空糸状などいずれの形状をとることもできる。
The porous support (porous layer) preferably applied to the support layer is not particularly limited as long as it has the purpose of meeting mechanical strength and imparting high gas permeability. It may be a material. An organic polymer porous film is preferable, and the thickness thereof is 1 to 3,000 μm, preferably 5 to 500 μm, and more preferably 5 to 150 μm. The pore structure of this porous membrane usually has an average pore diameter of 10 μm or less, preferably 0.5 μm or less, more preferably 0.2 μm or less. The porosity is preferably 20 to 90%, more preferably 30 to 80%.
Here, that the support layer has “gas permeability” means that carbon dioxide is supplied to the support layer (a film composed of only the support layer) at a temperature of 40 ° C. with a total pressure of 5 MPa on the gas supply side. This means that the permeation rate of carbon dioxide is 1 × 10 −5 cm 3 (STP) / cm 2 · sec · cmHg (10 GPU) or more. Further, the gas permeability of the support layer is such that when carbon dioxide is supplied at a temperature of 40 ° C. and the total pressure on the gas supply side is 5 MPa, the carbon dioxide permeation rate is 3 × 10 −5 cm 3 (STP) / It is preferably cm 2 · sec · cmHg (30 GPU) or more, more preferably 100 GPU or more, and further preferably 200 GPU or more.
Examples of the material for the porous membrane include conventionally known polymers such as polyolefin resins such as polyethylene and polypropylene, fluorine-containing resins such as polytetrafluoroethylene, polyvinyl fluoride, and polyvinylidene fluoride, polystyrene, and cellulose acetate. And various resins such as polyurethane, polyacrylonitrile, polyphenylene oxide, polysulfone, polyethersulfone, polyimide, and polyaramid. The shape of the porous membrane can be any shape such as a flat plate shape, a spiral shape, a tubular shape, and a hollow fiber shape.
 ガス分離複合膜においては、ガス分離膜を形成する支持層の下部にさらに機械的強度を付与するために支持体が形成されていることが好ましい。このような支持体としては、織布、不織布、ネット等が挙げられるが、製膜性及びコスト面から不織布が好適に用いられる。不織布としてはポリエステル、ポリプロピレン、ポリアクリロニトリル、ポリエチレン、ポリアミド等からなる繊維を単独あるいは複数を組み合わせて用いてもよい。不織布は、例えば、水に均一に分散した主体繊維とバインダー繊維を円網や長網等で抄造し、ドライヤーで乾燥することにより製造できる。また、毛羽を除去したり機械的性質を向上させたりする等の目的で、不織布を2本のロールで挟んで圧熱加工を施すことも好ましい。 In the gas separation composite membrane, it is preferable that a support is formed in order to impart further mechanical strength to the lower portion of the support layer forming the gas separation membrane. Examples of such a support include woven fabrics, nonwoven fabrics, nets, and the like, but nonwoven fabrics are preferably used in terms of film forming properties and cost. As the nonwoven fabric, fibers made of polyester, polypropylene, polyacrylonitrile, polyethylene, polyamide or the like may be used alone or in combination. The nonwoven fabric can be produced, for example, by making a main fiber and a binder fiber uniformly dispersed in water using a circular net or a long net, and drying with a dryer. In addition, for the purpose of removing fluff or improving mechanical properties, it is also preferable to apply a heat treatment by sandwiching the nonwoven fabric between two rolls.
<ガス分離複合膜の製造方法>
 複合膜の製造方法は、好ましくは、上記ポリイミド化合物を含有する塗布液を支持体上に塗布してガス分離層を形成することを含む製造方法が好ましい。塗布液中のポリイミド化合物の含有量は特に限定されないが、0.1~30質量%であることが好ましく、0.5~10質量%であることがより好ましい。ポリイミド化合物の含有量が低すぎると、多孔質支持体上にガス分離層を形成した際に、塗布液が容易に下層に浸透してしまうためにガス分離に寄与する表層に欠陥が生じる可能性が高くなる。また、ポリイミド化合物の含有量が高すぎると、多孔質支持体上にガス分離層を形成した際に、塗布液が孔内に高濃度に充填されてしまい、ガス透過性が低くなる可能性がある。本発明のガス分離膜は、分離層のポリマーの分子量、構造、組成さらには溶液粘度を調整することで適切に製造することができる。
<Method for producing gas separation composite membrane>
The production method of the composite membrane is preferably a production method including forming a gas separation layer by applying a coating liquid containing the polyimide compound on a support. The content of the polyimide compound in the coating solution is not particularly limited, but is preferably 0.1 to 30% by mass, and more preferably 0.5 to 10% by mass. If the content of the polyimide compound is too low, when the gas separation layer is formed on the porous support, the coating liquid easily penetrates into the lower layer, which may cause defects in the surface layer that contributes to gas separation. Becomes higher. In addition, if the content of the polyimide compound is too high, when the gas separation layer is formed on the porous support, the coating solution may be filled in the pores at a high concentration, and the gas permeability may be lowered. is there. The gas separation membrane of the present invention can be appropriately produced by adjusting the molecular weight, structure, composition, and solution viscosity of the polymer in the separation layer.
 塗布液の媒体とする有機溶剤としては、特に限定されるものではないが、n-ヘキサン、及びn-ヘプタン等の炭化水素系有機溶剤、酢酸メチル、酢酸エチル、及び酢酸ブチル等のエステル系有機溶剤、メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、イソブタノール、及びtert-ブタノール等の低級アルコール、アセトン、メチルエチルケトン、メチルイソブチルケトン、ジアセトンアルコール、シクロペンタノン、及びシクロヘキサノン等の脂肪族ケトン、エチレングリコール、ジエチレングリコール、トリエチレングリコール、グリセリン、プロピレングリコール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールメチルエーテル、ジプロピレングリコールメチルエーテル、トリプロピレングリコールメチルエーテル、エチレングリコールフェニルエーテル、プロピレングリコールフェニルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、ジブチルエーテル、テトラヒドロフラン、メチルシクロペンチルエーテル、及びジオキサン等のエーテル系有機溶剤、N-メチルピロリドン、2-ピロリドン、ジメチルホルムアミド、ジメチルイミダゾリジノン、ジメチルスルホキシド、並びにジメチルアセトアミドなどが挙げられる。これらの有機溶剤は支持体を浸蝕するなどの悪影響を及ぼさない範囲で適切に選択されるものであるが、好ましくは、エステル系(好ましくは酢酸ブチル)、アルコール系(好ましくはメタノール、エタノール、イソプロパノール、イソブタノール)、脂肪族ケトン(好ましくは、メチルエチルケトン、メチルイソブチルケトン、ジアセトンアルコール、シクロペンタノン、シクロヘキサノン)、エーテル系(エチレングリコール、ジエチレングリコールモノメチルエーテル、メチルシクロペンチルエーテル)が好ましく、さらに好ましくは脂肪族ケトン系、アルコール系、エーテル系である。またこれらは、1種又は2種以上を組み合わせて用いることができる。 The organic solvent used as a medium for the coating solution is not particularly limited, but is a hydrocarbon organic solvent such as n-hexane and n-heptane, or an ester organic such as methyl acetate, ethyl acetate, or butyl acetate. Solvent, lower alcohols such as methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, and tert-butanol, aliphatics such as acetone, methyl ethyl ketone, methyl isobutyl ketone, diacetone alcohol, cyclopentanone, and cyclohexanone Ketone, ethylene glycol, diethylene glycol, triethylene glycol, glycerin, propylene glycol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, propylene glycol methyl ether, di Lopylene glycol methyl ether, tripropylene glycol methyl ether, ethylene glycol phenyl ether, propylene glycol phenyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, triethylene glycol monomethyl ether, triethylene glycol monoethyl ether, dibutyl ether, Examples include ether organic solvents such as tetrahydrofuran, methylcyclopentyl ether, and dioxane, N-methylpyrrolidone, 2-pyrrolidone, dimethylformamide, dimethylimidazolidinone, dimethylsulfoxide, and dimethylacetamide. These organic solvents are appropriately selected as long as they do not adversely affect the substrate, such as ester-based (preferably butyl acetate), alcohol-based (preferably methanol, ethanol, isopropanol). , Isobutanol), aliphatic ketones (preferably methyl ethyl ketone, methyl isobutyl ketone, diacetone alcohol, cyclopentanone, cyclohexanone), ether type (ethylene glycol, diethylene glycol monomethyl ether, methyl cyclopentyl ether) are preferred, and more preferred are fats Group-based ketones, alcohols, and ethers. Moreover, these can be used 1 type or in combination of 2 or more types.
(支持層とガス分離層の間の他の層)
 ガス分離複合膜において、支持層とガス分離層との間には他の層が存在していてもよい。他の層の好ましい例として、シロキサン化合物層が挙げられる。シロキサン化合物層を設けることで、支持体最表面の凹凸を平滑化することができ、分離層の薄層化が容易になる。シロキサン化合物層を形成するシロキサン化合物としては、主鎖がポリシロキサンからなるものと、主鎖にシロキサン構造及び非シロキサン構造を含む化合物とが挙げられる。
 本明細書において「シロキサン化合物」という場合、特に断りのない限り、オルガノポリシロキサン化合物を意味する。
(Other layers between the support layer and the gas separation layer)
In the gas separation composite membrane, another layer may exist between the support layer and the gas separation layer. A preferred example of the other layer is a siloxane compound layer. By providing the siloxane compound layer, the unevenness on the outermost surface of the support can be smoothed, and the separation layer can be easily thinned. Examples of the siloxane compound that forms the siloxane compound layer include those in which the main chain is made of polysiloxane and compounds in which the main chain includes a siloxane structure and a non-siloxane structure.
In the present specification, the term “siloxane compound” means an organopolysiloxane compound unless otherwise specified.
-主鎖がポリシロキサンからなるシロキサン化合物-
 シロキサン化合物層に用いうる、主鎖がポリシロキサンからなるシロキサン化合物としては、下記式(i)又は(ii)で表されるポリオルガノシロキサンの1種又は2種以上が挙げられる。また、これらのポリオルガノシロキサンは架橋反応物を形成していてもよい。この架橋反応物としては、例えば、下記式(i)で表される化合物が、下記式(i)の反応性基Xと反応して連結する基を両末端に有するポリシロキサン化合物により架橋された形態の化合物が挙げられる。
-Siloxane compounds whose main chain consists of polysiloxane-
Examples of the siloxane compound having a main chain made of polysiloxane that can be used in the siloxane compound layer include one or more polyorganosiloxanes represented by the following formula (i) or (ii). Moreover, these polyorganosiloxanes may form a crosslinking reaction product. As the cross-linking reaction, for example, compounds represented by the following formula (i) is cross-linked by a polysiloxane compound having a group capable of linking by reacting with the reactive group X S of the formula (i) at both ends The compound of the form is mentioned.
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000053
 式(i)中、Rは非反応性基であって、アルキル基(好ましくは炭素数1~18、より好ましくは炭素数1~12のアルキル基)又はアリール基(好ましくは炭素数6~15、より好ましくは炭素数6~12のアリール基、さらに好ましくはフェニル)であることが好ましい。
 Xは反応性基であって、水素原子、ハロゲン原子、ビニル基、ヒドロキシ基、及び置換アルキル基(好ましくは炭素数1~18、より好ましくは炭素数1~12のアルキル基)から選ばれる基であることが好ましい。
 Y及びZはそれぞれ独立に上記R及びXのいずれかと同義である。
 mは1以上の整数であり、好ましくは1~100,000である。
 nは0以上の整数であり、好ましくは0~100,000である。
In the formula (i), R S is a non-reactive group, and is an alkyl group (preferably an alkyl group having 1 to 18 carbon atoms, more preferably an alkyl group having 1 to 12 carbon atoms) or an aryl group (preferably having 6 to 6 carbon atoms). 15, more preferably an aryl group having 6 to 12 carbon atoms, and still more preferably phenyl).
X S is a reactive group, and is selected from a hydrogen atom, a halogen atom, a vinyl group, a hydroxy group, and a substituted alkyl group (preferably an alkyl group having 1 to 18 carbon atoms, more preferably an alkyl group having 1 to 12 carbon atoms). It is preferably a group.
Y S and Z S each independently have the same meaning as any of the above R S and X S.
m is an integer of 1 or more, preferably 1 to 100,000.
n is an integer of 0 or more, preferably 0 to 100,000.
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000054
 式(ii)中、X、Y、Z、R、m及びnは、それぞれ式(i)のX、Y、Z、R、m及びnと同義である。 Wherein (ii), X S, Y S, Z S, R S, m and n are X S of each formula (i), Y S, Z S, R S, and m and n synonymous.
 式(i)及び(ii)において、非反応性基Rがアルキル基である場合、このアルキル基の例としては、メチル、エチル、へキシル、オクチル、デシル、及びオクタデシルを挙げることができる。また、非反応性基Rがフルオロアルキル基である場合、このフルオロアルキル基としては、例えば、-CHCHCF、-CHCH13が挙げられる。 In the formulas (i) and (ii), when the non-reactive group R S is an alkyl group, examples of the alkyl group include methyl, ethyl, hexyl, octyl, decyl, and octadecyl. When the non-reactive group R is a fluoroalkyl group, examples of the fluoroalkyl group include —CH 2 CH 2 CF 3 and —CH 2 CH 2 C 6 F 13 .
 式(i)及び(ii)において、反応性基Xが置換アルキル基である場合、このアルキル基の例としては、炭素数1~18のヒドロキシアルキル基、炭素数1~18のアミノアルキル基、炭素数1~18のカルボキシアルキル基、炭素数1~18のクロロアルキル基、炭素数1~18のグリシドキシアルキル基、グリシジル基、炭素数7~16のエポキシシクロへキシルアルキル基、炭素数4~18の(1-オキサシクロブタン-3-イル)アルキル基、メタクリロキシアルキル基、及びメルカプトアルキル基が挙げられる。
 上記ヒドロキシアルキル基を構成するアルキル基の炭素数は1~10の整数であることが好ましく、例えば、-CHCHCHOHが挙げられる。
 上記アミノアルキル基を構成するアルキル基の炭素数は1~10の整数であることが好ましく、例えば、-CHCHCHNHが挙げられる。
 上記カルボキシアルキル基を構成するアルキル基の炭素数は1~10の整数であることが好ましく、例えば、-CHCHCHCOOHが挙げられる。
 上記クロロアルキル基を構成するアルキル基の炭素数は1~10の整数であることが好ましく、好ましい例としては-CHClが挙げられる。
 上記グリシドキシアルキル基を構成するアルキル基の好ましい炭素数は1~10の整数であり、好ましい例としては、3-グリシジルオキシプロピルが挙げられる。
 上記炭素数7~16のエポキシシクロへキシルアルキル基の好ましい炭素数は8~12の整数である。
 炭素数4~18の(1-オキサシクロブタン-3-イル)アルキル基の好ましい炭素数は4~10の整数である。
 上記メタクリロキシアルキル基を構成するアルキル基の好ましい炭素数は1~10の整数であり、例えば、-CHCHCH-OOC-C(CH)=CHが挙げられる。
 上記メルカプトアルキル基を構成するアルキル基の好ましい炭素数は1~10の整数であり、例えば、-CHCHCHSHが挙げられる。
 m及びnは、化合物の分子量が5,000~1,000,000になる数であることが好ましい。
In the formulas (i) and (ii), when the reactive group XS is a substituted alkyl group, examples of the alkyl group include a hydroxyalkyl group having 1 to 18 carbon atoms and an aminoalkyl group having 1 to 18 carbon atoms. A carboxyalkyl group having 1 to 18 carbon atoms, a chloroalkyl group having 1 to 18 carbon atoms, a glycidoxyalkyl group having 1 to 18 carbon atoms, a glycidyl group, an epoxycyclohexylalkyl group having 7 to 16 carbon atoms, carbon Examples thereof include a (1-oxacyclobutan-3-yl) alkyl group, a methacryloxyalkyl group, and a mercaptoalkyl group having 4 to 18.
The number of carbon atoms of the alkyl group constituting the hydroxyalkyl group is preferably an integer of 1 to 10, for example, —CH 2 CH 2 CH 2 OH.
The number of carbon atoms in the alkyl group constituting the aminoalkyl group is preferably an integer of 1 to 10, for example, —CH 2 CH 2 CH 2 NH 2 .
The number of carbon atoms of the alkyl group constituting the carboxyalkyl group is preferably an integer of 1 to 10, and examples thereof include —CH 2 CH 2 CH 2 COOH.
The alkyl group constituting the chloroalkyl group preferably has an integer of 1 to 10, and a preferred example is —CH 2 Cl.
A preferable carbon number of the alkyl group constituting the glycidoxyalkyl group is an integer of 1 to 10, and a preferred example is 3-glycidyloxypropyl.
The preferable number of carbon atoms of the epoxy cyclohexyl alkyl group having 7 to 16 carbon atoms is an integer of 8 to 12.
A preferable carbon number of the (1-oxacyclobutan-3-yl) alkyl group having 4 to 18 carbon atoms is an integer of 4 to 10.
A preferable carbon number of the alkyl group constituting the methacryloxyalkyl group is an integer of 1 to 10, and examples thereof include —CH 2 CH 2 CH 2 —OOC—C (CH 3 ) ═CH 2 .
A preferable carbon number of the alkyl group constituting the mercaptoalkyl group is an integer of 1 to 10, and examples thereof include —CH 2 CH 2 CH 2 SH.
m and n are preferably numbers that give a molecular weight of 5,000 to 1,000,000 of the compound.
 式(i)及び(ii)において、反応性基含有シロキサン単位(式中、その数がnで表される構成単位)と反応性基を有さないシロキサン単位(式中、その数がmで表される構成単位)の分布に特に制限はない。すなわち、式(i)及び(ii)中、(Si(R)(R)-O)単位と(Si(R)(X)-O)単位はランダムに分布していてもよい。 In the formulas (i) and (ii), a reactive group-containing siloxane unit (wherein the number is a structural unit represented by n) and a siloxane unit having no reactive group (where the number is m) There is no particular limitation on the distribution of the structural units represented. That is, in formulas (i) and (ii), (Si (R S ) (R S ) —O) units and (Si (R S ) (X S ) —O) units may be randomly distributed. .
-主鎖にシロキサン構造及び非シロキサン構造を含む化合物-
 シロキサン化合物層に用いうる、主鎖にシロキサン構造及び非シロキサン構造を含む化合物としては、例えば、下記式(iii)~(vi)で表される化合物が挙げられる。
-Compounds containing siloxane and non-siloxane structures in the main chain-
Examples of the compound containing a siloxane structure and a non-siloxane structure in the main chain that can be used in the siloxane compound layer include compounds represented by the following formulas (iii) to (vi).
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000055
 式(iii)中、R、m及びnは、それぞれ式(i)のR、m及びnと同義である。Rは-O-又は-CH-であり、RS1は水素原子又はメチルである。式(iii)の両末端はそれぞれ独立にアミノ基、水酸基、カルボキシ基、トリメチルシリル基、エポキシ基、ビニル基、水素原子、又は置換アルキル基であることが好ましい。 Wherein (iii), R S, m and n have the same meanings as R S, m and n, respectively formula (i). R L is —O— or —CH 2 —, and R S1 is a hydrogen atom or methyl. Both ends of formula (iii) are preferably each independently an amino group, a hydroxyl group, a carboxy group, a trimethylsilyl group, an epoxy group, a vinyl group, a hydrogen atom, or a substituted alkyl group.
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000056
 式(iv)中、m及びnは、それぞれ式(i)におけるm及びnと同義である。 In the formula (iv), m and n are synonymous with m and n in the formula (i), respectively.
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000057
 式(v)中、m及びnは、それぞれ式(i)におけるm及びnと同義である。 In the formula (v), m and n have the same meanings as m and n in the formula (i), respectively.
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000058
 式(vi)中、m及びnは、それぞれ式(i)におけるm及びnと同義である。式(vi)の両末端はそれぞれ独立にアミノ基、水酸基、カルボキシ基、トリメチルシリル基、エポキシ基、ビニル基、水素原子、又は置換アルキル基が結合していることが好ましい。 In the formula (vi), m and n are synonymous with m and n in the formula (i), respectively. It is preferable that both ends of the formula (vi) are independently bonded with an amino group, a hydroxyl group, a carboxy group, a trimethylsilyl group, an epoxy group, a vinyl group, a hydrogen atom, or a substituted alkyl group.
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000059
 式(vii)中、m及びnは、それぞれ式(i)におけるm及びnと同義である。式(vii)の両末端はそれぞれ独立にアミノ基、水酸基、カルボキシ基、トリメチルシリル基、エポキシ、ビニル基、水素原子、又は置換アルキル基が結合していることが好ましい。 In the formula (vii), m and n are synonymous with m and n in the formula (i), respectively. It is preferable that both ends of the formula (vii) are independently bonded with an amino group, a hydroxyl group, a carboxy group, a trimethylsilyl group, an epoxy, a vinyl group, a hydrogen atom, or a substituted alkyl group.
 式(iii)~(vii)において、シロキサン構造単位と非シロキサン構造単位とは、ランダムに分布していてもよい。 In the formulas (iii) to (vii), the siloxane structural unit and the non-siloxane structural unit may be randomly distributed.
 主鎖にシロキサン構造及び非シロキサン構造を含む化合物は、全繰り返し構造単位の合計モル数に対して、シロキサン構造単位を50モル%以上含有することが好ましく、70モル%以上含有することがさらに好ましい。 The compound containing a siloxane structure and a non-siloxane structure in the main chain preferably contains 50 mol% or more of siloxane structural units, more preferably 70 mol% or more, based on the total number of moles of all repeating structural units. .
 シロキサン化合物層に用いるシロキサン化合物の重量平均分子量は、薄膜化と耐久性の両立の観点から、5,000~1,000,000であることが好ましい。重量平均分子量の測定方法は上述したとおりである。 The weight average molecular weight of the siloxane compound used in the siloxane compound layer is preferably 5,000 to 1,000,000 from the viewpoint of achieving both a thin film and durability. The method for measuring the weight average molecular weight is as described above.
 さらに、シロキサン化合物層を構成するシロキサン化合物の好ましい例を以下に列挙する。
 ポリジメチルシロキサン、ポリメチルフェニルシロキサン、ポリジフェニルシロキサン、ポリスルホン/ポリヒドロキシスチレン/ポリジメチルシロキサン共重合体、ジメチルシロキサン/メチルビニルシロキサン共重合体、ジメチルシロキサン/ジフェニルシロキサン/メチルビニルシロキサン共重合体、メチル-3,3,3-トリフルオロプロピルシロキサン/メチルビニルシロキサン共重合体、ジメチルシロキサン/メチルフェニルシロキサン/メチルビニルシロキサン共重合体、ジフェニルシロキサン/ジメチルシロキサン共重合体末端ビニル、ポリジメチルシロキサン末端ビニル、ポリジメチルシロキサン末端H、及びジメチルシロキサン/メチルハイドロシロキサン共重合体から選ばれる1種又は2種以上。なお、これらの化合物には架橋反応物を形成している形態も含まれる。
Furthermore, the preferable example of the siloxane compound which comprises a siloxane compound layer is enumerated below.
Polydimethylsiloxane, polymethylphenylsiloxane, polydiphenylsiloxane, polysulfone / polyhydroxystyrene / polydimethylsiloxane copolymer, dimethylsiloxane / methylvinylsiloxane copolymer, dimethylsiloxane / diphenylsiloxane / methylvinylsiloxane copolymer, methyl -3,3,3-trifluoropropylsiloxane / methylvinylsiloxane copolymer, dimethylsiloxane / methylphenylsiloxane / methylvinylsiloxane copolymer, diphenylsiloxane / dimethylsiloxane copolymer terminal vinyl, polydimethylsiloxane terminal vinyl, One or more selected from polydimethylsiloxane terminal H and dimethylsiloxane / methylhydrosiloxane copolymer. In addition, the form which forms the crosslinking reaction material is also contained in these compounds.
 ガス分離複合膜において、シロキサン化合物層の厚さは、平滑性及びガス透過性の観点から、0.01~5μmであることが好ましく、0.05~1μmであることがより好ましい。
 また、シロキサン化合物層の40℃、4MPaにおける気体透過率は二酸化炭素透過速度で100GPU以上であることが好ましく、300GPU以上であることがより好ましく、1,000GPU以上であることがさらに好ましい。
In the gas separation composite membrane, the thickness of the siloxane compound layer is preferably 0.01 to 5 μm and more preferably 0.05 to 1 μm from the viewpoint of smoothness and gas permeability.
Further, the gas permeability at 40 ° C. and 4 MPa of the siloxane compound layer is preferably 100 GPU or more, more preferably 300 GPU or more, and further preferably 1,000 GPU or more in terms of carbon dioxide transmission rate.
〔ガス分離非対称膜〕
 ガス分離膜は、非対称膜であってもよい。非対称膜は、ポリイミド化合物を含む溶液を用いて相転換法によって形成することができる。相転換法は、ポリマー溶液を凝固液と接触させて相転換させながら膜を形成する公知の方法であり、本発明ではいわゆる乾湿式法が好適に用いられる。乾湿式法は、膜形状にしたポリマー溶液の表面の溶液を蒸発させて薄い緻密層を形成し、ついで凝固液(ポリマー溶液の溶媒とは相溶し、ポリマーは不溶な溶剤)に浸漬し、その際生じる相分離現象を利用して微細孔を形成して多孔質層を形成させる方法であり、ロブ・スリラージャンらが提案(例えば、米国特許第3,133,132号明細書)したものである。
[Gas separation asymmetric membrane]
The gas separation membrane may be an asymmetric membrane. The asymmetric membrane can be formed by a phase change method using a solution containing a polyimide compound. The phase inversion method is a known method for forming a film while bringing a polymer solution into contact with a coagulation liquid to cause phase conversion. In the present invention, a so-called dry / wet method is suitably used. The dry and wet method evaporates the solution on the surface of the polymer solution in the form of a film to form a thin dense layer, and then immerses it in a coagulation liquid (solvent that is compatible with the solvent of the polymer solution and the polymer is insoluble), This is a method of forming a porous layer by forming micropores using the phase separation phenomenon that occurs at that time, and proposed by Rob Thrillerjan et al. (For example, US Pat. No. 3,133,132) It is.
 ガス分離非対称膜において、緻密層あるいはスキン層と呼ばれるガス分離に寄与する表層の厚さは特に限定されない。表層の厚さは、実用的なガス透過性を付与する観点から、0.01~5.0μmであることが好ましく、0.05~1.0μmであることがより好ましい。一方、緻密層より下部の多孔質層はガス透過性の抵抗を下げると同時に機械強度の付与の役割を担うものであり、その厚さは非対称膜としての自立性が付与される限りにおいては特に限定されるものではない。この厚さは、5~500μmであることが好ましく、5~200μmであることがより好ましく、5~100μmであることがさらに好ましい。 In the gas separation asymmetric membrane, the thickness of the surface layer contributing to gas separation called a dense layer or skin layer is not particularly limited. The thickness of the surface layer is preferably 0.01 to 5.0 μm and more preferably 0.05 to 1.0 μm from the viewpoint of imparting practical gas permeability. On the other hand, the porous layer below the dense layer lowers the gas permeability resistance and at the same time plays a role of imparting mechanical strength, and its thickness is particularly limited as long as it is self-supporting as an asymmetric membrane. It is not limited. This thickness is preferably 5 to 500 μm, more preferably 5 to 200 μm, and even more preferably 5 to 100 μm.
 ガス分離非対称膜は、平膜であってもあるいは中空糸膜であってもよい。非対称中空糸膜は乾湿式紡糸法により製造することができる。乾湿式紡糸法は、紡糸ノズルから吐出して中空糸状の目的形状としたポリマー溶液に乾湿式法を適用して非対称中空糸膜を製造する方法である。より詳しくは、ポリマー溶液をノズルから中空糸状の目的形状に吐出させ、吐出直後に空気又は窒素ガス雰囲気中に通した後、ポリマーを実質的には溶解せず且つポリマー溶液の溶媒とは相溶性を有する凝固液に浸漬して非対称構造を形成し、その後乾燥し、さらに必要に応じて加熱処理して分離膜を製造する方法である。 The gas separation asymmetric membrane may be a flat membrane or a hollow fiber membrane. The asymmetric hollow fiber membrane can be produced by a dry and wet spinning method. The dry-wet spinning method is a method for producing an asymmetric hollow fiber membrane by applying a dry-wet method to a polymer solution that is discharged from a spinning nozzle and has a hollow fiber-like target shape. More specifically, the polymer solution is discharged from a nozzle into a hollow fiber-shaped target shape, and after passing through an air or nitrogen gas atmosphere immediately after discharge, the polymer is not substantially dissolved and is compatible with the solvent of the polymer solution. In this method, an asymmetric structure is formed by immersing in a coagulating liquid containing, then dried, and further heat-treated as necessary to produce a separation membrane.
 ノズルから吐出させるポリイミド化合物を含む溶液の溶液粘度は、吐出温度(例えば10℃)で2~17,000Pa・s、好ましくは10~1,500Pa・s、特に好ましくは20~1,000Pa・sであることが、中空糸状などの吐出後の形状を安定に得ることができるので好ましい。凝固液への浸漬は、一次凝固液に浸漬して中空糸状等の膜の形状が保持出来る程度に凝固させた後、案内ロールに巻き取り、ついで二次凝固液に浸漬して膜全体を十分に凝固させることが好ましい。凝固した膜の乾燥は、凝固液を炭化水素などの溶媒に置換してから行うのが効率的である。乾燥のための加熱処理は、用いたポリイミド化合物の軟化点又は二次転移点よりも低い温度で実施することが好ましい。 The solution viscosity of the solution containing the polyimide compound discharged from the nozzle is 2 to 17,000 Pa · s, preferably 10 to 1,500 Pa · s, particularly preferably 20 to 1,000 Pa · s at the discharge temperature (for example, 10 ° C.). It is preferable that a shape after discharge such as a hollow fiber shape can be stably obtained. For immersion in the coagulation liquid, the film is immersed in the primary coagulation liquid and solidified to such an extent that the shape of the hollow fiber or the like can be maintained. It is preferable to solidify. It is efficient to dry the coagulated film after replacing the coagulating liquid with a solvent such as hydrocarbon. The heat treatment for drying is preferably performed at a temperature lower than the softening point or secondary transition point of the used polyimide compound.
 ガス分離膜は、上記ガス分離層上にシロキサン化合物層が保護層として設けられていてもよい。 In the gas separation membrane, a siloxane compound layer may be provided as a protective layer on the gas separation layer.
〔ガス分離膜の用途と特性〕
 ガス分離膜(複合膜及び非対称膜)は、ガス分離回収法、ガス分離精製法において好適に用いることができる。例えば、水素、ヘリウム、一酸化炭素、二酸化炭素、硫化水素、酸素、窒素、アンモニア、硫黄酸化物、窒素酸化物、メタン、及びエタンなどの炭化水素、プロピレンなどの不飽和炭化水素、テトラフルオロエタンなどのパーフルオロ化合物などのガスを含有する気体混合物から特定の気体を効率よく分離し得るガス分離膜とすることができる。特に二酸化炭素/炭化水素(メタン)を含む気体混合物から二酸化炭素を選択分離するガス分離膜とすることが好ましい。
[Uses and characteristics of gas separation membranes]
Gas separation membranes (composite membranes and asymmetric membranes) can be suitably used in gas separation recovery methods and gas separation purification methods. For example, hydrogen, helium, carbon monoxide, carbon dioxide, hydrogen sulfide, oxygen, nitrogen, ammonia, sulfur oxides, nitrogen oxides, methane, hydrocarbons such as ethane, unsaturated hydrocarbons such as propylene, tetrafluoroethane Thus, a gas separation membrane capable of efficiently separating a specific gas from a gas mixture containing a gas such as a perfluoro compound can be obtained. In particular, a gas separation membrane that selectively separates carbon dioxide from a gas mixture containing carbon dioxide / hydrocarbon (methane) is preferable.
 とりわけ、分離処理されるガスが二酸化炭素及びメタンを含む混合ガスである場合においては、40℃、5MPaにおける混合ガス中の二酸化炭素の透過速度が20GPU超であることが好ましく、30GPU超であることがより好ましく、35~500GPUであることがさらに好ましく、50~500GPUであることがよりさらに好ましく、80~500GPUであることが特に好ましい。二酸化炭素とメタンとの透過速度比(RCO2/RCH4)は10以上であることが好ましく、15以上であることがより好ましく、20以上であることがさらに好ましく、30以上であることがよりさらに好ましい。RCO2は二酸化炭素の透過速度、RCH4はメタンの透過速度を示す。
 なお、1GPUは1×10-6cm(STP)/cm・sec・cmHgである。
In particular, when the gas to be separated is a mixed gas containing carbon dioxide and methane, the permeation rate of carbon dioxide in the mixed gas at 40 ° C. and 5 MPa is preferably more than 20 GPU, more than 30 GPU. Is more preferably 35 to 500 GPU, still more preferably 50 to 500 GPU, and particularly preferably 80 to 500 GPU. The permeation rate ratio of carbon dioxide to methane (R CO2 / R CH4 ) is preferably 10 or more, more preferably 15 or more, further preferably 20 or more, and more preferably 30 or more. Further preferred. R CO2 represents the permeation rate of carbon dioxide, and R CH4 represents the permeation rate of methane.
1 GPU is 1 × 10 −6 cm 3 (STP) / cm 2 · sec · cmHg.
〔その他の成分等〕
 ガス分離膜のガス分離層には、膜物性を調整するため、各種高分子化合物を添加することもできる。高分子化合物としては、アクリル系重合体、ポリウレタン樹脂、ポリアミド樹脂、ポリエステル樹脂、エポキシ樹脂、フェノール樹脂、ポリカーボネート樹脂、ポリビニルブチラール樹脂、ポリビニルホルマール樹脂、シェラック、ビニル系樹脂、アクリル系樹脂、ゴム系樹脂、ワックス類、その他の天然樹脂等が使用できる。また、これらは2種以上併用してもよい。
 また、液物性調整のためにノニオン性界面活性剤、カチオン性界面活性剤及び/又は有機フルオロ化合物などを添加することもできる。
[Other ingredients]
Various polymer compounds can be added to the gas separation layer of the gas separation membrane in order to adjust the membrane properties. High molecular compounds include acrylic polymers, polyurethane resins, polyamide resins, polyester resins, epoxy resins, phenol resins, polycarbonate resins, polyvinyl butyral resins, polyvinyl formal resins, shellac, vinyl resins, acrylic resins, rubber resins. Waxes and other natural resins can be used. Two or more of these may be used in combination.
In addition, a nonionic surfactant, a cationic surfactant, and / or an organic fluoro compound can be added to adjust liquid properties.
 界面活性剤の具体例としては、アルキルベンゼンスルホン酸塩、アルキルナフタレンスルホン酸塩、高級脂肪酸塩、高級脂肪酸エステルのスルホン酸塩、高級アルコールエーテルの硫酸エステル塩、高級アルコールエーテルのスルホン酸塩、高級アルキルスルホンアミドのアルキルカルボン酸塩、及びアルキルリン酸塩などのアニオン界面活性剤、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレン脂肪酸エステル、ソルビタン脂肪酸エステル、アセチレングリコールのエチレンオキサイド付加物、グリセリンのエチレンオキサイド付加物、及びポリオキシエチレンソルビタン脂肪酸エステルなどの非イオン性界面活性剤が挙げられる。この他にもアルキルベタイン、及びアミドベタインなどの両性界面活性剤、シリコン系界面活性剤、フッソ系界面活性剤なども挙げられる。界面活性剤はこれらを含めて、従来公知である界面活性剤及びその誘導体から適宜選ぶことができる。 Specific examples of the surfactant include alkylbenzene sulfonate, alkylnaphthalene sulfonate, higher fatty acid salt, sulfonate of higher fatty acid ester, sulfate ester of higher alcohol ether, sulfonate of higher alcohol ether, higher alkyl Anionic surfactants such as alkyl carboxylates of sulfonamides and alkyl phosphates, polyoxyethylene alkyl ethers, polyoxyethylene alkyl phenyl ethers, polyoxyethylene fatty acid esters, sorbitan fatty acid esters, ethylene oxide adducts of acetylene glycol And nonionic surfactants such as ethylene oxide adduct of glycerin and polyoxyethylene sorbitan fatty acid ester. In addition, amphoteric surfactants such as alkyl betaines and amide betaines, silicon surfactants, and fluorosurfactants are also included. Including these, the surfactant can be appropriately selected from conventionally known surfactants and derivatives thereof.
 ガス分離膜のガス分離層には、高分子分散剤を含んでいてもよい。高分子分散剤として、具体的にはポリビニルピロリドン、ポリビニルアルコール、ポリビニルメチルエーテル、ポリエチレンオキシド、ポリエチレングリコール、ポリプロピレングリコール、ポリアクリルアミド等が挙げられ、中でもポリビニルピロリドンを用いることが好ましい。 The gas separation layer of the gas separation membrane may contain a polymer dispersant. Specific examples of the polymer dispersant include polyvinyl pyrrolidone, polyvinyl alcohol, polyvinyl methyl ether, polyethylene oxide, polyethylene glycol, polypropylene glycol, and polyacrylamide. Among them, polyvinyl pyrrolidone is preferably used.
 ガス分離膜を形成する条件に特に制限はないが、温度は-30~100℃が好ましく、-10~80℃がより好ましく、5~50℃が特に好ましい。 The conditions for forming the gas separation membrane are not particularly limited, but the temperature is preferably −30 to 100 ° C., more preferably −10 to 80 ° C., and particularly preferably 5 to 50 ° C.
 膜の形成時には、空気や酸素などの気体を共存させてもよいが、不活性ガス雰囲気下であることが望ましい。
 ガス分離膜において、ガス分離層中のポリイミド化合物の含有量は、所望のガス分離性能が得られれば特に制限はない。ガス分離性能をより向上させる観点から、ガス分離層中のポリイミド化合物の含有量は、20質量%以上であることが好ましく、40質量%以上であることがより好ましく、60質量%以上であることがさらに好ましく、70質量%以上であることが特に好ましい。また、ガス分離層中のポリイミド化合物の含有量は、100質量%であってもよいが、通常は99質量%以下である。
When forming the film, a gas such as air or oxygen may coexist, but an inert gas atmosphere is desirable.
In the gas separation membrane, the content of the polyimide compound in the gas separation layer is not particularly limited as long as desired gas separation performance can be obtained. From the viewpoint of further improving the gas separation performance, the content of the polyimide compound in the gas separation layer is preferably 20% by mass or more, more preferably 40% by mass or more, and 60% by mass or more. Is more preferable, and 70% by mass or more is particularly preferable. The content of the polyimide compound in the gas separation layer may be 100% by mass, but is usually 99% by mass or less.
[ガス混合物の分離方法]
 本発明のガス分離方法は、本発明のガス分離膜を用いて2成分以上の混合ガスから特定のガスを分離する方法である。ガス分離方法は、二酸化炭素及びメタンを含む混合ガスから二酸化炭素を選択的に透過させることを含む。ガス分離の際の圧力は0.5~10MPaであることが好ましく、1~10MPaであることがより好ましく、2~7MPaであることがさらに好ましい。また、ガス分離温度は、-30~90℃であることが好ましく、15~70℃であることがさらに好ましい。二酸化炭素とメタンガスとを含む混合ガスにおいて、二酸化炭素とメタンガスの混合比に特に制限はないが、二酸化炭素:メタンガス=1:99~99:1(体積比)であることが好ましく、二酸化炭素:メタンガス=5:95~90:10であることがより好ましい。
[Separation method of gas mixture]
The gas separation method of the present invention is a method for separating a specific gas from a mixed gas of two or more components using the gas separation membrane of the present invention. The gas separation method includes selectively permeating carbon dioxide from a mixed gas containing carbon dioxide and methane. The pressure during gas separation is preferably 0.5 to 10 MPa, more preferably 1 to 10 MPa, and further preferably 2 to 7 MPa. The gas separation temperature is preferably −30 to 90 ° C., more preferably 15 to 70 ° C. In the mixed gas containing carbon dioxide and methane gas, the mixing ratio of carbon dioxide and methane gas is not particularly limited, but is preferably carbon dioxide: methane gas = 1: 99 to 99: 1 (volume ratio). More preferably, methane gas = 5: 95 to 90:10.
[ガス分離モジュール又はガス分離装置]
 本発明のガス分離膜を用いてガス分離モジュールを調製することができる。モジュールの例としては、スパイラル型、中空糸型、プリーツ型、管状型、プレートアンドフレーム型などが挙げられる。
 また、本発明のガス分離複合膜又はガス分離モジュールを用いて、ガスを分離回収又は分離精製させるための手段を有するガス分離装置を得ることができる。本発明のガス分離複合膜は、例えば、特開2007-297605号公報に記載されるような吸収液と併用した膜及び/又は吸収ハイブリッド法としてのガス分離回収装置に適用してもよい。
[Gas separation module or gas separation device]
A gas separation module can be prepared using the gas separation membrane of the present invention. Examples of the module include a spiral type, a hollow fiber type, a pleat type, a tubular type, and a plate and frame type.
In addition, a gas separation apparatus having means for separating and recovering or purifying gas can be obtained by using the gas separation composite membrane or the gas separation module of the present invention. The gas separation composite membrane of the present invention may be applied to, for example, a membrane used in combination with an absorbing solution and / or a gas separation / recovery device as an absorption hybrid method as described in JP-A-2007-297605.
 以下に実施例に基づき本発明を更に詳細に説明するが、本発明はこれらの実施例により限定されるものではない。なお、本実施例において、「部」、「%」とは、特に断りのない限り、「質量部」、「質量%」を意味する。 Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited to these examples. In this example, “parts” and “%” mean “parts by mass” and “mass%” unless otherwise specified.
(合成例)
<スルホンアミド含有ジアミン(SA-1)の合成>
 コンデンサー及び撹拌機を取り付けた3つ口フラスコに、1,4-フェニレンジアミン(東京化成工業(株)製)51.9g、及びアセトニトリル250gを秤量し、0~5℃に冷却しながら攪拌した。次いで、4,4’―ビフェニルジスルホニルクロリド(東京化成工業(株)製)28.1gをテトラヒドロフラン300gに溶解した後、滴下ロートに移し、攪拌中の上記3つ口フラスコ内に1時間かけて滴下し、次いで1時間攪拌した。この反応液を室温に戻し、2時間攪拌した後、1M水酸化ナトリウム水溶液328g、及び純水500gを添加して溶解した。この反応液を分液ロートに移し、酢酸エチル500mLで3回分液洗浄し、水相を回収した。5Lのビーカーに塩化アンモニウム(関東化学(株)製)17.5gを秤量し、純水2Lに溶解した。室温にて攪拌しながら、回収した上記水相を5Lビーカーに滴下し、析出した結晶を濾収した。結晶を純水1Lでリスラリー洗浄後、結晶を濾収し、次いで結晶をクロロホルム500mLでリスラリー洗浄後、結晶を濾収し、その後40℃で24時間真空乾燥し、目的物(SA-1)20.5gを得た。目的物であることはNMRスペクトルから確認した。
 原料を適宜変更した以外は上記と同様にして、SA-2~SA-18を合成した。
(Synthesis example)
<Synthesis of sulfonamide-containing diamine (SA-1)>
In a three-necked flask equipped with a condenser and a stirrer, 51.9 g of 1,4-phenylenediamine (manufactured by Tokyo Chemical Industry Co., Ltd.) and 250 g of acetonitrile were weighed and stirred while cooling to 0 to 5 ° C. Next, after dissolving 28.1 g of 4,4′-biphenyldisulfonyl chloride (manufactured by Tokyo Chemical Industry Co., Ltd.) in 300 g of tetrahydrofuran, the solution was transferred to a dropping funnel and placed in the above-mentioned three-necked flask for 1 hour. Added dropwise and then stirred for 1 hour. The reaction solution was returned to room temperature, stirred for 2 hours, and then dissolved by adding 328 g of a 1M aqueous sodium hydroxide solution and 500 g of pure water. The reaction solution was transferred to a separatory funnel and separated and washed three times with 500 mL of ethyl acetate, and the aqueous phase was recovered. In a 5 L beaker, 17.5 g of ammonium chloride (manufactured by Kanto Chemical Co., Inc.) was weighed and dissolved in 2 L of pure water. While stirring at room temperature, the recovered aqueous phase was dropped into a 5 L beaker, and the precipitated crystals were collected by filtration. The crystals were reslurry washed with 1 L of pure water, and the crystals were collected by filtration. Then, the crystals were reslurry washed with 500 mL of chloroform, and then the crystals were collected by filtration and then vacuum-dried at 40 ° C. for 24 hours to obtain the target product (SA-1) 20 .5 g was obtained. The desired product was confirmed from the NMR spectrum.
SA-2 to SA-18 were synthesized in the same manner as described above except that the raw materials were appropriately changed.
<スルホンアミド含有ジアミン(SA-6)の合成>
 コンデンサー及び撹拌機を取り付けた3つ口フラスコに、クロロスルホン酸500.0gを秤取し、次いで、室温中、ジフェニルスルホン(Aldrich社製)130.96gを添加し、室温にて1時間攪拌した。反応液を80℃まで昇温し、8時間攪拌した。この反応液を攪拌しながら、室温まで冷却し、2Lの氷冷水に晶析し、30分攪拌した後、これを濾取し、6Lの酢酸エチルに溶解した。この酢酸エチル溶液を分液ロートに移し、純水にて2回分液洗浄し、次いで、飽和食塩水にて分液洗浄した。有機相を三角フラスコに移し、硫酸マグネシウム30gを添加して攪拌し、固形物をろ過で取り除いた後、エバポレーターを用いて酢酸エチルを留去し、40℃で24時間真空乾燥し、目的物の前駆体(S-6)(ジスルホン酸クロリド体)145gを得た。前駆体(S-6)であることはNMRスペクトルから確認した。前駆体S-6についてNMRによる分析を行った。その結果を以下に示す。
NMRデータ(重Dテトラヒドロフラン、400MHz、内部標準:テトラメチルシラン)
δ(ppm)=8.00-8.04(t、2H)、8.43-8.48(d、2H)、8.56-8.59(d、2H)、8.76(s、2H)
<Synthesis of sulfonamide-containing diamine (SA-6)>
In a three-necked flask equipped with a condenser and a stirrer, 500.0 g of chlorosulfonic acid was weighed, and then 130.96 g of diphenylsulfone (manufactured by Aldrich) was added at room temperature, followed by stirring at room temperature for 1 hour. . The reaction solution was heated to 80 ° C. and stirred for 8 hours. The reaction solution was cooled to room temperature with stirring, crystallized in 2 L of ice-cold water, stirred for 30 minutes, and then collected by filtration and dissolved in 6 L of ethyl acetate. This ethyl acetate solution was transferred to a separating funnel, and separated and washed twice with pure water, and then separated and washed with saturated saline. The organic phase was transferred to an Erlenmeyer flask, 30 g of magnesium sulfate was added and stirred, and the solid matter was removed by filtration. Then, the ethyl acetate was distilled off using an evaporator, followed by vacuum drying at 40 ° C. for 24 hours. 145 g of precursor (S-6) (disulfonic acid chloride) was obtained. The precursor (S-6) was confirmed from the NMR spectrum. The precursor S-6 was analyzed by 1 NMR. The results are shown below.
1 NMR data (heavy D tetrahydrofuran, 400 MHz, internal standard: tetramethylsilane)
δ (ppm) = 8.00-8.04 (t, 2H), 8.43-8.48 (d, 2H), 8.56-8.59 (d, 2H), 8.76 (s, 2H)
 コンデンサー及び撹拌機を取り付けた3つ口フラスコに、1,4-フェニレンジアミン(東京化成工業(株)製)43.26g、及びアセトニトリル200gを秤量し、0~5℃に冷却しながら攪拌した。上記で得られた前駆体(S-6)20.76gをテトラヒドロフラン200gに溶解した後、滴下ロートに移し、攪拌中の上記3つ口フラスコ内に1時間かけて滴下し、次いで1時間攪拌した。この反応液を室温に戻し、2時間攪拌した後、1M水酸化ナトリウム水溶液205g、及び純水300gを添加して溶解した。この反応液を分液ロートに移し、酢酸エチル500mLで3回分液洗浄し、水相を回収した。3Lのビーカーに塩化アンモニウム(関東化学(株)製)12.04gを秤量し、純水1Lに溶解した。室温にて攪拌しながら、回収した上記水相を3Lビーカーに滴下し、析出した結晶を濾収した。結晶を純水1Lでリスラリー洗浄後、結晶を濾収し、次いで結晶をメタノール500mLでリスラリー洗浄後、結晶を濾収し、その後40℃で24時間真空乾燥し、目的物(SA-6)26.1gを得た。目的物であることはNMRスペクトルから確認した。
 目的物(SA-6)についてNMRによる分析を行った。その結果を以下に示す。
NMRデータ(重DMSO、400MHz、内部標準:テトラメチルシラン)
δ(ppm)=5.04(s、4H)、6.32-6.34(d、4H)、6.56-6.59(d、4H)、7.82-7.86(t、2H)、7.89-7.91(d、2H)、7.98-8.00(d、2H)、8.15(s、2H)、9.69(s、2H)
In a three-necked flask equipped with a condenser and a stirrer, 43.26 g of 1,4-phenylenediamine (manufactured by Tokyo Chemical Industry Co., Ltd.) and 200 g of acetonitrile were weighed and stirred while cooling to 0 to 5 ° C. After dissolving 20.76 g of the precursor (S-6) obtained above in 200 g of tetrahydrofuran, it was transferred to a dropping funnel, dropped into the stirring three-necked flask over 1 hour, and then stirred for 1 hour. . The reaction solution was returned to room temperature and stirred for 2 hours, and then 205 g of 1M sodium hydroxide aqueous solution and 300 g of pure water were added and dissolved. The reaction solution was transferred to a separatory funnel and separated and washed three times with 500 mL of ethyl acetate, and the aqueous phase was recovered. In a 3 L beaker, 12.04 g of ammonium chloride (manufactured by Kanto Chemical Co., Inc.) was weighed and dissolved in 1 L of pure water. While stirring at room temperature, the recovered aqueous phase was dropped into a 3 L beaker, and the precipitated crystals were collected by filtration. The crystals were reslurry washed with 1 L of pure water, and the crystals were collected by filtration. Then, the crystals were reslurry washed with 500 mL of methanol, and then the crystals were collected by filtration and then vacuum-dried at 40 ° C. for 24 hours to obtain the target product (SA-6) 26 0.1 g was obtained. The desired product was confirmed from the NMR spectrum.
The target product (SA-6) was analyzed by 1 NMR. The results are shown below.
1 NMR data (heavy DMSO, 400 MHz, internal standard: tetramethylsilane)
δ (ppm) = 5.04 (s, 4H), 6.32-6.34 (d, 4H), 6.56-6.59 (d, 4H), 7.82-7.86 (t, 2H), 7.89-7.91 (d, 2H), 7.98-8.00 (d, 2H), 8.15 (s, 2H), 9.69 (s, 2H)
<ポリイミド化合物(PI-1)の合成>
 コンデンサー及び撹拌機を取り付けた3つ口フラスコに、上記合成法と同様の方法で得られたSA-1を12.37g、及びN-メチル-2-ピロリドン93.8gを秤量し、氷冷しながら攪拌し、均一溶液とした。4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物(東京化成工業(株)製)11.11gをこの均一溶液に添加し、0~10℃で1時間攪拌後、室温で6時間反応させた。次いでN-メチル-2-ピロリドン29.3g、ピリジン7.91g、及び無水酢酸6.38gをこの順に添加し、80℃で3時間反応させた。反応液をメタノール0.4Lに添加し、ポリイミドを析出させた。これを濾取、洗浄、乾燥し、重量平均分子量115,000のポリイミド化合物(PI-1)19.2gを得た。目的物であることは、NMRスペクトル、IRスペクトル、GPC(ポリスチレン換算)から確認した。
 原料を適宜変更した以外は上記と同様にして、PI-2~PI-28を合成した。
<Synthesis of polyimide compound (PI-1)>
In a three-necked flask equipped with a condenser and a stirrer, 12.37 g of SA-1 and 93.8 g of N-methyl-2-pyrrolidone obtained by the same method as the above synthesis method were weighed and cooled on ice. While stirring, a uniform solution was obtained. 11.11 g of 4,4 ′-(hexafluoroisopropylidene) diphthalic anhydride (manufactured by Tokyo Chemical Industry Co., Ltd.) was added to this homogeneous solution, stirred at 0-10 ° C. for 1 hour, and then reacted at room temperature for 6 hours. I let you. Next, 29.3 g of N-methyl-2-pyrrolidone, 7.91 g of pyridine, and 6.38 g of acetic anhydride were added in this order, and reacted at 80 ° C. for 3 hours. The reaction solution was added to 0.4 L of methanol to precipitate polyimide. This was collected by filtration, washed and dried to obtain 19.2 g of a polyimide compound (PI-1) having a weight average molecular weight of 115,000. It was confirmed from the NMR spectrum, IR spectrum, and GPC (polystyrene conversion) that it was the target product.
PI-2 to PI-28 were synthesized in the same manner as described above except that the raw materials were appropriately changed.
<ポリイミド化合物(PIC-3)の合成例>
 コンデンサー及び撹拌機を取り付けた3つ口フラスコに、上記合成方法で得られたポリイミド化合物PI-1を3.00g、及びN-メチル-2-ピロリドン27.0gを秤量し、室温で攪拌し、均一溶液とした。ピリジン(東京化成工業(株)製)3.00g、及び無水酢酸(東京化成工業(株)製)1.96gを添加し、室温で1時間攪拌後、80℃で3時間反応させた。次いでN-メチル-2-ピロリドン10g、アセトン20g、及び酢酸5.00gをこの順に添加し、溶解させた。反応液をメタノール0.2Lに添加し、ポリイミド化合物を析出させた。これを濾取、洗浄、乾燥し、重量平均分子量125,000のポリイミド化合物(PIC-3)2.8gを得た。目的物であることは、NMRスペクトル、IRスペクトル、GPC(ポリスチレン換算)から確認した。
 原料を適宜変更した以外は上記と同様にして、PIC-1~PIC-2とPIC-4~PIC-11を合成することができる。
<Synthesis Example of Polyimide Compound (PIC-3)>
In a three-necked flask equipped with a condenser and a stirrer, 3.00 g of polyimide compound PI-1 obtained by the above synthesis method and 27.0 g of N-methyl-2-pyrrolidone were weighed and stirred at room temperature. A homogeneous solution was obtained. 3.00 g of pyridine (manufactured by Tokyo Chemical Industry Co., Ltd.) and 1.96 g of acetic anhydride (manufactured by Tokyo Chemical Industry Co., Ltd.) were added, stirred at room temperature for 1 hour, and reacted at 80 ° C. for 3 hours. Next, 10 g of N-methyl-2-pyrrolidone, 20 g of acetone and 5.00 g of acetic acid were added in this order and dissolved. The reaction solution was added to 0.2 L of methanol to precipitate a polyimide compound. This was collected by filtration, washed and dried to obtain 2.8 g of a polyimide compound (PIC-3) having a weight average molecular weight of 125,000. It was confirmed from the NMR spectrum, IR spectrum, and GPC (polystyrene conversion) that it was the target product.
PIC-1 to PIC-2 and PIC-4 to PIC-11 can be synthesized in the same manner as described above except that the raw materials are appropriately changed.
 実施例中、「重量平均分子量」は、ゲルパーミエーションクロマトグラフィー(GPC)を用いた標準ポリスチレン換算法により算出した。ただし、GPCカラムとしてポリスチレン架橋ゲルを充填したもの(TSKgel SuperAWM-H;東ソー(株)製)、GPC溶媒としてN-メチルピロリドン(リン酸、臭化リチウム各0.01mol/L)を用いた。 In the examples, “weight average molecular weight” was calculated by a standard polystyrene conversion method using gel permeation chromatography (GPC). However, a GPC column packed with polystyrene cross-linked gel (TSKgel SuperAWM-H; manufactured by Tosoh Corporation) and N-methylpyrrolidone (phosphoric acid and lithium bromide 0.01 mol / L each) were used as a GPC solvent.
<ポリイミド化合物(PIB-2)の合成例>
 200mlの3つ口フラスコにN-メチル-2-ピロリドン(和光純薬(株)製)95gを秤量し、次いで、ポリイミド化合物PI-1を5g添加し、攪拌しながら溶解させた。次いで、トリエタノールアミン(東京化成工業(株)製)0.079gを秤量して添加し、室温で1時間攪拌した。反応液をメタノール0.5Lに添加し、ポリイミド化合物を析出させた。これをろ取、洗浄、乾燥し、重量平均分子量119,000のポリイミド化合物(PIB-2)4.5gを得た。目的物であることは、NMRスペクトル、IRスペクトル、GPC(ポリスチレン換算)から確認した。
 原料を適宜変更した以外は上記と同様にして、PIB-1とPIB-3~PIB-6を合成することができる。
<Synthesis Example of Polyimide Compound (PIB-2)>
In a 200 ml three-necked flask, 95 g of N-methyl-2-pyrrolidone (manufactured by Wako Pure Chemical Industries, Ltd.) was weighed, and then 5 g of polyimide compound PI-1 was added and dissolved while stirring. Next, 0.079 g of triethanolamine (manufactured by Tokyo Chemical Industry Co., Ltd.) was weighed and added, and stirred at room temperature for 1 hour. The reaction solution was added to 0.5 L of methanol to precipitate a polyimide compound. This was collected by filtration, washed and dried to obtain 4.5 g of a polyimide compound (PIB-2) having a weight average molecular weight of 119,000. It was confirmed from the NMR spectrum, IR spectrum, and GPC (polystyrene conversion) that it was the target product.
PIB-1 and PIB-3 to PIB-6 can be synthesized in the same manner as described above except that the raw materials are appropriately changed.
[実施例1]
<複合膜の作製>
 図2に示すガス分離複合膜を作製した(図2には平滑層は図示していない)。
 30ml褐色バイアル瓶に、ポリイミド化合物(PI-2)を1.4g、メチルエチルケトン8.6gを混合して30分攪拌したのち、更に1-ヒドロキシシクロヘキシルフェニルケトン(Aldrich社製、製品番号:40,561-2)を28mg加えて、更に30分攪拌して、ポリマー液を得た。10cm四方の清浄なガラス板上に、ポリアクリロニトリル多孔質膜(GMT社製)を静置し、アプリケータを用いて上記ポリマー液を多孔質支持膜表面にキャストさせ、ポリイミド化合物(PI-2)を含んでなるガス分離層を形成し、複合膜(実施例1)を得た。ポリイミド化合物(PI-2)層の厚さは約1μmであり、ポリアクリロニトリル多孔質膜の厚さは不織布を含めて約180μmであった。
 なお、これらのポリアクリロニトリル多孔質膜の分画分子量は100,000以下のものを使用した。
[Example 1]
<Production of composite membrane>
The gas separation composite membrane shown in FIG. 2 was produced (the smooth layer is not shown in FIG. 2).
In a 30 ml brown vial, 1.4 g of polyimide compound (PI-2) and 8.6 g of methyl ethyl ketone were mixed and stirred for 30 minutes, and then 1-hydroxycyclohexyl phenyl ketone (manufactured by Aldrich, product number: 40,561). 28 mg of -2) was added, and the mixture was further stirred for 30 minutes to obtain a polymer solution. A polyacrylonitrile porous membrane (manufactured by GMT) is allowed to stand on a 10 cm square clean glass plate, and the above polymer solution is cast on the porous support membrane surface using an applicator to obtain a polyimide compound (PI-2). A gas separation layer containing was formed to obtain a composite membrane (Example 1). The thickness of the polyimide compound (PI-2) layer was about 1 μm, and the thickness of the polyacrylonitrile porous film including the nonwoven fabric was about 180 μm.
These polyacrylonitrile porous membranes had a molecular weight cut-off of 100,000 or less.
[実施例2~8、比較例1~2]
<その他の複合膜の作製>
 上記実施例1における、ポリイミド化合物を表4に記載のとおりに変更し、実施例2~8の複合膜を作製した。
 また、上記実施例1における、ポリイミド化合物を表4に記載のとおりに変更し、比較例1~2の複合膜を作製した。
 比較例1~2で用いた比較用のポリイミド化合物を以下に示す。
[Examples 2 to 8, Comparative Examples 1 and 2]
<Production of other composite films>
The polyimide compounds in Example 1 were changed as shown in Table 4, and composite films of Examples 2 to 8 were produced.
In addition, the polyimide compounds in Example 1 were changed as shown in Table 4, and composite films of Comparative Examples 1 and 2 were produced.
The comparative polyimide compounds used in Comparative Examples 1 and 2 are shown below.
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000060
<ガス分離性能の評価>
 得られた各複合膜のガス分離性能を以下のように評価した。高圧耐性のあるSUS316製ステンレスセル(DENISSEN社製)を用いて、二酸化炭素(CO)及びメタン(CH)の体積比が1:1となるようにマスフローコントローラーを用いて調整し、混合ガスを40℃、ガス供給側の全圧力が5MPa(CO、CHの分圧:2.5MPa)となるように調整して各複合膜に供給した。CO及びCHのそれぞれのガスの透過性をTCD検知式ガスクロマトグラフィーにより測定した。各複合膜のガス透過性は、ガス透過率(Permeance)を算出することにより比較した。ガス透過率の単位はGPU(ジーピーユー)単位(1GPU=1×10-6cm(STP)/(s・cm・cmHg))で表した。
 ガス分離選択性について、二酸化炭素/メタンの透過する比が30以上であるものを評価A、20以上30未満を評価B、10以上20未満を評価C、0以上10未満を評価Dとした。
 混合ガス中の二酸化炭素のガス透過性について、ガス透過率80GPU以上を評価A、50GPU以上80GPU未満を評価B、20GPU以上50GPU未満を評価C、20GPU未満を評価Dとした。
<Evaluation of gas separation performance>
The gas separation performance of each obtained composite membrane was evaluated as follows. Use a mass flow controller to adjust the volume ratio of carbon dioxide (CO 2 ) and methane (CH 4 ) to 1: 1 using a SUS316 stainless steel cell (DENISSEN) with high pressure resistance, and mixed gas Was adjusted so that the total pressure on the gas supply side was 5 MPa (partial pressure of CO 2 and CH 4 : 2.5 MPa), and was supplied to each composite membrane. The permeability of each gas of CO 2 and CH 4 was measured by TCD detection type gas chromatography. The gas permeability of each composite membrane was compared by calculating the gas permeability (Permeance). The unit of gas permeability was expressed in GPU (GPU) units (1 GPU = 1 × 10 −6 cm 3 (STP) / (s · cm 2 · cmHg)).
Regarding the gas separation selectivity, a carbon dioxide / methane permeation ratio of 30 or more was evaluated as A, 20 or more and less than 30 as evaluation B, 10 or more and less than 20 as evaluation C, and 0 or more and less than 10 as evaluation D.
Regarding the gas permeability of carbon dioxide in the mixed gas, the gas permeability of 80 GPU or more was evaluated as A, the evaluation of 50 GPU or more and less than 80 GPU was evaluated B, the evaluation of 20 GPU or more and less than 50 GPU was evaluated C, and the evaluation of D was less than 20 GPU.
<トルエン耐性試験>
 各実施例及び比較例のポリイミド化合物の1質量%溶液を終夜かけて乾燥させ、150~180mg程度のバルクサンプルを作成した。次いで90℃で1週間エージングし、25℃20%RH環境で半日以上静置後、初期質量として質量を測定した。その後、これらのバルクサンプルを気液平衡状態のトルエン雰囲気容器に保管し、7日後に質量測定を行った。質量変化(7日後の質量/初期質量)を算出し、トルエン膨潤率とした。
 トルエン耐性について、トルエン膨潤率10%未満を評価A、10%以上25%未満を評価B、25%以上40%未満を評価C、トルエン膨潤率40%以上を評価Dとした。
<Toluene resistance test>
A 1% by mass solution of the polyimide compound of each Example and Comparative Example was dried overnight to prepare a bulk sample of about 150 to 180 mg. Next, the mixture was aged at 90 ° C. for 1 week, and allowed to stand in a 25 ° C., 20% RH environment for more than half a day, and the mass was measured as the initial mass. Thereafter, these bulk samples were stored in a vapor atmosphere equilibrium toluene atmosphere container, and mass measurement was performed after 7 days. The change in mass (mass after 7 days / initial mass) was calculated and used as the toluene swelling rate.
Regarding toluene resistance, evaluation A was a toluene swelling ratio of less than 10%, evaluation B was 10% or more and less than 25%, evaluation C was 25% or more and less than 40%, and evaluation D was a toluene swelling ratio of 40% or more.
Figure JPOXMLDOC01-appb-T000061
Figure JPOXMLDOC01-appb-T000061
 上記表4に示される通り、比較例のポリイミド化合物を用いたガス分離膜は、トルエン耐性(可塑化耐性)に劣る結果となった(比較例1~2)。
 これに対し、実施例のポリイミド化合物を含有した本発明のガス分離膜は、ガス透過性とガス分離選択性を所望の高いレベルで実現することができ、トルエン耐性(可塑化耐性)に優れていた(実施例1~8)。
As shown in Table 4 above, the gas separation membrane using the polyimide compound of the comparative example was inferior in toluene resistance (plasticization resistance) (Comparative Examples 1 and 2).
On the other hand, the gas separation membrane of the present invention containing the polyimide compound of the example can realize gas permeability and gas separation selectivity at a desired high level, and is excellent in toluene resistance (plasticization resistance). (Examples 1 to 8).
 以上の結果から、本発明のガス分離膜により、優れた気体分離方法、ガス分離モジュール、及びこのガス分離モジュールを備えたガス分離装置を提供できることが分かった。 From the above results, it was found that the gas separation membrane of the present invention can provide an excellent gas separation method, a gas separation module, and a gas separation apparatus equipped with this gas separation module.
1 ガス分離層
2 多孔質層
3 不織布層
10、20 ガス分離複合膜
 
 
DESCRIPTION OF SYMBOLS 1 Gas separation layer 2 Porous layer 3 Nonwoven fabric layer 10, 20 Gas separation composite membrane

Claims (12)

  1.  ポリイミド化合物を含有するガス分離層を有するガス分離膜であって、上記ポリイミド化合物が、式(1)で表される構成単位、並びに式(2)で表される構成単位及び式(3)で表される構成単位から選ばれる少なくとも1つを含むガス分離膜。
    Figure JPOXMLDOC01-appb-C000001

     式(1)中、Rは下記式(I-1)~(I-28)のいずれかで示される4価の基を示す。
    Figure JPOXMLDOC01-appb-C000002

    ここでX~Xはそれぞれ独立に単結合又は2価の連結基を、Lは-CH=CH-又は-CH-を、R及びRはそれぞれ独立に水素原子又は置換基を示し、*は式(1)中のカルボニル基との結合部位を示す。
    Figure JPOXMLDOC01-appb-C000003

     式(2)及び式(3)中、Z~Zはそれぞれ独立に2価の連結基を示し、Q及びQはそれぞれ独立にスルホンアミド基を含む2価の基を示し、Yは水素原子、アルキル基、アリール基又は式(4)~式(6)のいずれかの基を示し、X1+は有機または無機のカチオンを示し、nは0以上の整数である。
    Figure JPOXMLDOC01-appb-C000004

     式(4)~式(6)中、R~Rはそれぞれ独立にアルキル基又はアリール基を示す。*1は、窒素原子との結合部位である。
    A gas separation membrane having a gas separation layer containing a polyimide compound, wherein the polyimide compound is a structural unit represented by formula (1), a structural unit represented by formula (2), and formula (3). A gas separation membrane comprising at least one selected from the structural units represented.
    Figure JPOXMLDOC01-appb-C000001

    In the formula (1), R represents a tetravalent group represented by any of the following formulas (I-1) to (I-28).
    Figure JPOXMLDOC01-appb-C000002

    Here, X 1 to X 3 each independently represents a single bond or a divalent linking group, L represents —CH═CH— or —CH 2 —, and R 1 and R 2 each independently represents a hydrogen atom or a substituent. * Indicates a binding site with the carbonyl group in formula (1).
    Figure JPOXMLDOC01-appb-C000003

    In formula (2) and formula (3), Z 1 to Z 4 each independently represents a divalent linking group, Q 1 and Q 2 each independently represents a divalent group containing a sulfonamide group, Y 1 represents a hydrogen atom, an alkyl group, an aryl group, or any group of formulas (4) to (6), X 1+ represents an organic or inorganic cation, and n is an integer of 0 or more.
    Figure JPOXMLDOC01-appb-C000004

    In the formulas (4) to (6), R 3 to R 6 each independently represents an alkyl group or an aryl group. * 1 is a binding site with a nitrogen atom.
  2.  Z~Zがそれぞれ独立にアリーレン基及び/又はアルキレン基を含む2価の基である、請求項1に記載のガス分離膜。 The gas separation membrane according to claim 1, wherein Z 1 to Z 4 are each independently a divalent group containing an arylene group and / or an alkylene group.
  3.  Z~Zがそれぞれ独立に下記式A-1~A-11のいずれかである、請求項1に記載のガス分離膜。
    Figure JPOXMLDOC01-appb-C000005

     式中、W~W50はそれぞれ独立に水素原子、ハロゲン原子、アルキル基、アルコキシ基、水酸基、スルホンアミド基又はカルボキシ基を示し、Z11は-CR -、-O-、-NR-、-S-又は単結合を示し、L及びLはそれぞれ独立に-CR-、-O-、-NR-、-S-又は単結合を示す。R及びRはそれぞれ独立にアルキル基又はアリール基を示す。
    The gas separation membrane according to claim 1, wherein Z 1 to Z 4 are each independently any one of the following formulas A-1 to A-11.
    Figure JPOXMLDOC01-appb-C000005

    In the formula, W 1 to W 50 each independently represent a hydrogen atom, a halogen atom, an alkyl group, an alkoxy group, a hydroxyl group, a sulfonamide group, or a carboxy group, and Z 11 represents —CR 8 2 —, —O—, —NR 8 -, - S- or a single bond, L 1 and L 2 -CR each independently 9 -, - O -, - NR 9 -, - S- or a single bond. R 8 and R 9 each independently represents an alkyl group or an aryl group.
  4.  ポリイミド化合物を含有するガス分離層を有するガス分離膜であって、上記ポリイミド化合物が、式(1)で表される構成単位、並びに式(8)で表される構成単位及び式(9)で表される構成単位から選ばれる少なくとも1つを含むガス分離膜。
    Figure JPOXMLDOC01-appb-C000006

     式(1)中、Rは下記式(I-1)~(I-28)のいずれかで示される4価の基を示す。
    Figure JPOXMLDOC01-appb-C000007

     ここでX~Xはそれぞれ独立に単結合又は2価の連結基を、Lは-CH=CH-又は-CH-を、R及びRはそれぞれ独立に水素原子又は置換基を示し、*は式(1)中のカルボニル基との結合部位を示す。
    Figure JPOXMLDOC01-appb-C000008

     式(8)及び式(9)中、Z~Z10はそれぞれ独立に2価の連結基を示し、Y及びYはそれぞれ独立に水素原子、アルキル基、アリール基又は式(4)~式(6)のいずれかの基を示し、X2+及びX3+はそれぞれ独立に有機又は無機のカチオンを示す。
    Figure JPOXMLDOC01-appb-C000009

     式(4)~式(6)中、R~Rはそれぞれ独立にアルキル基又はアリール基を示す。*1は、窒素原子との結合部位である。
    A gas separation membrane having a gas separation layer containing a polyimide compound, wherein the polyimide compound is represented by the structural unit represented by the formula (1), the structural unit represented by the formula (8), and the formula (9). A gas separation membrane comprising at least one selected from the structural units represented.
    Figure JPOXMLDOC01-appb-C000006

    In the formula (1), R represents a tetravalent group represented by any of the following formulas (I-1) to (I-28).
    Figure JPOXMLDOC01-appb-C000007

    Here, X 1 to X 3 each independently represents a single bond or a divalent linking group, L represents —CH═CH— or —CH 2 —, and R 1 and R 2 each independently represents a hydrogen atom or a substituent. * Indicates a binding site with the carbonyl group in formula (1).
    Figure JPOXMLDOC01-appb-C000008

    In formula (8) and formula (9), Z 5 to Z 10 each independently represent a divalent linking group, and Y 2 and Y 3 each independently represent a hydrogen atom, an alkyl group, an aryl group, or formula (4) Represents any group of formula (6), and X 2+ and X 3+ each independently represent an organic or inorganic cation.
    Figure JPOXMLDOC01-appb-C000009

    In the formulas (4) to (6), R 3 to R 6 each independently represents an alkyl group or an aryl group. * 1 is a binding site with a nitrogen atom.
  5.  Z~Z10がそれぞれ独立にアリーレン基及び/又はアルキレン基を含む2価の基である、請求項4に記載のガス分離膜。 The gas separation membrane according to claim 4, wherein Z 5 to Z 10 are each independently a divalent group containing an arylene group and / or an alkylene group.
  6.  Z~Z10がそれぞれ独立に下記式A-1~A-11のいずれかである、請求項4に記載のガス分離膜。
    Figure JPOXMLDOC01-appb-C000010

     式中、W~W50はそれぞれ独立に水素原子、ハロゲン原子、アルキル基、アルコキシ基、水酸基、スルホンアミド基又はカルボキシ基を示し、Z11は-CR -、-O-、-NR-、-S-又は単結合を示し、L及びLはそれぞれ独立に-CR-、-O-、-NR-、-S-又は単結合を示す。R及びRはそれぞれ独立にアルキル基又はアリール基を示す。
    The gas separation membrane according to claim 4, wherein Z 5 to Z 10 are each independently any one of the following formulas A-1 to A-11.
    Figure JPOXMLDOC01-appb-C000010

    In the formula, W 1 to W 50 each independently represent a hydrogen atom, a halogen atom, an alkyl group, an alkoxy group, a hydroxyl group, a sulfonamide group, or a carboxy group, and Z 11 represents —CR 8 2 —, —O—, —NR 8 -, - S- or a single bond, L 1 and L 2 -CR each independently 9 -, - O -, - NR 9 -, - S- or a single bond. R 8 and R 9 each independently represents an alkyl group or an aryl group.
  7.  さらにガス透過性の支持層を有し、上記ガス分離層が上記ガス透過性の支持層の上側に備えられたガス分離複合膜である、請求項1~6のいずれか1項に記載のガス分離膜。 The gas according to any one of claims 1 to 6, further comprising a gas permeable support layer, wherein the gas separation layer is a gas separation composite membrane provided on the upper side of the gas permeable support layer. Separation membrane.
  8.  上記ガス透過性の支持層が、多孔質層と、不織布層とを含み、
    上記ガス分離層と、上記多孔質層と、上記不織布層とが、この順に設けられている、請求項1~7のいずれか1項に記載のガス分離膜。
    The gas-permeable support layer includes a porous layer and a nonwoven fabric layer,
    The gas separation membrane according to any one of claims 1 to 7, wherein the gas separation layer, the porous layer, and the nonwoven fabric layer are provided in this order.
  9.  二酸化炭素及びメタンを含むガスから二酸化炭素を選択的に透過させるために用いられる、請求項1~8のいずれか1項に記載のガス分離膜。 The gas separation membrane according to any one of claims 1 to 8, which is used for selectively permeating carbon dioxide from a gas containing carbon dioxide and methane.
  10.  請求項1~8のいずれか1項に記載のガス分離膜を具備するガス分離モジュール。 A gas separation module comprising the gas separation membrane according to any one of claims 1 to 8.
  11.  請求項10に記載のガス分離モジュールを備えたガス分離装置。 A gas separation apparatus comprising the gas separation module according to claim 10.
  12.  請求項1~9のいずれか1項に記載のガス分離膜を用いて、二酸化炭素及びメタンを含むガスから二酸化炭素を選択的に透過させるガス分離方法。
     
     
    A gas separation method for selectively permeating carbon dioxide from a gas containing carbon dioxide and methane, using the gas separation membrane according to any one of claims 1 to 9.

PCT/JP2017/011915 2016-04-05 2017-03-24 Gas separation membrane, gas separation module, gas separation device, and gas separation method WO2017175598A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018510297A JPWO2017175598A1 (en) 2016-04-05 2017-03-24 Gas separation membrane, gas separation module, gas separation device, and gas separation method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016075959 2016-04-05
JP2016-075959 2016-04-05

Publications (1)

Publication Number Publication Date
WO2017175598A1 true WO2017175598A1 (en) 2017-10-12

Family

ID=60001182

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/011915 WO2017175598A1 (en) 2016-04-05 2017-03-24 Gas separation membrane, gas separation module, gas separation device, and gas separation method

Country Status (2)

Country Link
JP (1) JPWO2017175598A1 (en)
WO (1) WO2017175598A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020255825A1 (en) * 2019-06-17 2020-12-24
WO2023120292A1 (en) * 2021-12-21 2023-06-29 国立大学法人東京工業大学 Light sulfonamide synthesis reaction

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5241700A (en) * 1975-09-30 1977-03-31 Teijin Ltd Process for preparing aromatic polymers having nitrogen-containing cyc lic groups
JPS54110182A (en) * 1978-02-17 1979-08-29 Asahi Glass Co Ltd Selectively permeable membrane
JP2003112022A (en) * 2001-10-04 2003-04-15 Nitto Denko Corp Complex semipermeable membrane
JP2005268011A (en) * 2004-03-18 2005-09-29 Toyota Central Res & Dev Lab Inc Polymer electrolyte and polymer electrolyte membrane
JP2013027819A (en) * 2011-07-28 2013-02-07 Fujifilm Corp Gas separation composite membrane, method of manufacturing the same, gas separation module using the same, and gas separation apparatus as well as gas separation method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5241700A (en) * 1975-09-30 1977-03-31 Teijin Ltd Process for preparing aromatic polymers having nitrogen-containing cyc lic groups
JPS54110182A (en) * 1978-02-17 1979-08-29 Asahi Glass Co Ltd Selectively permeable membrane
JP2003112022A (en) * 2001-10-04 2003-04-15 Nitto Denko Corp Complex semipermeable membrane
JP2005268011A (en) * 2004-03-18 2005-09-29 Toyota Central Res & Dev Lab Inc Polymer electrolyte and polymer electrolyte membrane
JP2013027819A (en) * 2011-07-28 2013-02-07 Fujifilm Corp Gas separation composite membrane, method of manufacturing the same, gas separation module using the same, and gas separation apparatus as well as gas separation method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020255825A1 (en) * 2019-06-17 2020-12-24
WO2020255825A1 (en) * 2019-06-17 2020-12-24 富士フイルム株式会社 Curable resin composition, cured film, laminate, cured film production method, semiconductor device, and polyimide, poly benzooxazole, polyimide precursor, or poly benzooxazole precursor
JP7265627B2 (en) 2019-06-17 2023-04-26 富士フイルム株式会社 Curable resin composition, cured film, laminate, method for producing cured film, semiconductor device, and polyimide, polybenzoxazole, polyimide precursor, or polybenzoxazole precursor
WO2023120292A1 (en) * 2021-12-21 2023-06-29 国立大学法人東京工業大学 Light sulfonamide synthesis reaction

Also Published As

Publication number Publication date
JPWO2017175598A1 (en) 2019-02-14

Similar Documents

Publication Publication Date Title
JP6037804B2 (en) Gas separation membrane
WO2015041250A1 (en) Gas separation membrane, gas separation module, gas separation device, and gas separation method
JP6038058B2 (en) Gas separation membrane, gas separation module, gas separation device, and gas separation method
WO2016136294A1 (en) Gas separation membrane, gas separation module, gas separation device, gas separation method, and method for producing gas separation asymmetric membrane
WO2014091937A1 (en) Gas separation composite membrane, and method of manufacturing gas separation composite membrane
WO2016136395A1 (en) Gas separation asymmetric membrane, gas separation module, gas separation device, and gas separation method
JP2014024939A (en) Method for manufacturing a polyimide resin, gas separation membrane, gas separation module, gas separation apparatus, and gas separation method
US9889412B2 (en) Composite gas separation membrane, gas separation module, gas separation apparatus and gas separation method
WO2017145747A1 (en) Gas separation membrane, gas separation module, gas separation device, and gas separation method
WO2015129553A1 (en) Gas separation membrane, gas separation module, gas separation device, and gas separation method
WO2017175598A1 (en) Gas separation membrane, gas separation module, gas separation device, and gas separation method
WO2017145432A1 (en) Gas separation membrane, gas separation module, gas separation device, gas separation method, composition for forming gas separation layer, method for producing gas separation membrane, polyimide compound and diamine monomer
JP6511523B2 (en) Gas separation membrane, gas separation module, gas separation device, gas separation method and polyimide compound
WO2017130604A1 (en) Gas separation membrane, gas separation module, gas separation device, and gas separation method
JP6355058B2 (en) Gas separation membrane, gas separation module, gas separation device, and gas separation method
JP5833986B2 (en) Gas separation composite membrane, method for producing the same, gas separation module using the same, gas separation device, and gas separation method
WO2017145905A1 (en) Polyimide compound, gas separation membrane, gas separation module, gas separation device, and gas separation method
WO2017145728A1 (en) Gas separation membrane, gas separation module, gas separation device, gas separation method, and polyimide compound
WO2018043149A1 (en) Gas separation membrane, gas separation module, gas separation device, gas separation method, and polyimide compound
JP2017185462A (en) Gas separation membrane, gas separation module, gas separation device and gas separation method
JP2019010631A (en) Gas separation membrane, gas separation module, gas separation device, and gas separation method
WO2019044215A1 (en) Gas separation membrane, gas separation module, gas separation device, gas separation method, and polyimide compound
WO2017179393A1 (en) Gas separation membrane, gas separation module, gas separation device, gas separation method, gas separation membrane composition, and gas separation membrane production method
WO2021256237A1 (en) Gas separation membrane, gas separation module, gas separation apparatus, and polyimide compound
JP2017131856A (en) Gas separation membrane, gas separation module, gas separation device and gas separation method

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018510297

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17778977

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17778977

Country of ref document: EP

Kind code of ref document: A1