WO2017179393A1 - Gas separation membrane, gas separation module, gas separation device, gas separation method, gas separation membrane composition, and gas separation membrane production method - Google Patents

Gas separation membrane, gas separation module, gas separation device, gas separation method, gas separation membrane composition, and gas separation membrane production method Download PDF

Info

Publication number
WO2017179393A1
WO2017179393A1 PCT/JP2017/011917 JP2017011917W WO2017179393A1 WO 2017179393 A1 WO2017179393 A1 WO 2017179393A1 JP 2017011917 W JP2017011917 W JP 2017011917W WO 2017179393 A1 WO2017179393 A1 WO 2017179393A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas separation
group
formula
separation membrane
gas
Prior art date
Application number
PCT/JP2017/011917
Other languages
French (fr)
Japanese (ja)
Inventor
裕介 飯塚
和田 健二
澤田 真
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2018511950A priority Critical patent/JPWO2017179393A1/en
Publication of WO2017179393A1 publication Critical patent/WO2017179393A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/107Organic support material
    • B01D69/1071Woven, non-woven or net mesh
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1216Three or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/58Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
    • B01D71/62Polycondensates having nitrogen-containing heterocyclic rings in the main chain
    • B01D71/64Polyimides; Polyamide-imides; Polyester-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Definitions

  • the present invention relates to a gas separation membrane, a gas separation module, a gas separation device, a gas separation method, a composition for gas separation membrane, and a method for producing a gas separation membrane.
  • a material composed of a polymer compound has gas permeability specific to each material. Based on the property, a desired gas component can be selectively permeated and separated by a membrane composed of a specific polymer compound.
  • this gas separation membrane As an industrial utilization mode of this gas separation membrane, it is related to the problem of global warming, and it is separated and recovered from a large-scale carbon dioxide generation source in a thermal power plant and / or a cement plant, a steelworks blast furnace, etc. Is being considered. And this membrane separation technique attracts attention as a means for solving environmental problems that can be achieved with relatively small energy.
  • natural gas or biogas biological waste, organic fertilizer, biodegradable substances, sewage, garbage, gas generated by fermentation and anaerobic digestion of energy crops
  • biogas biological waste, organic fertilizer, biodegradable substances, sewage, garbage, gas generated by fermentation and anaerobic digestion of energy crops
  • the membrane In the purification of natural gas using a membrane separation method, excellent gas permeability and gas separation selectivity are required in order to separate gas more efficiently. Further, in an actual plant, the membrane is plasticized due to the influence of impurity components (for example, benzene, toluene, xylene) present in natural gas, and this causes a problem of reduction in gas separation selectivity. Therefore, the gas separation membrane is also required to have plasticization resistance capable of continuously expressing desired gas separation selectivity even in the presence of the impurity component. In order to realize these, various membrane materials have been studied, and as part of this, gas separation membranes using polyimide compounds have been studied.
  • impurity components for example, benzene, toluene, xylene
  • Patent Document 1 describes a crosslinked product obtained by crosslinking a polyimide compound (6FDA-Durene) with a diamine (1,3-cyclohexanebis (methylamine) or ethylenediamine), and this crosslinked product is used for a gas separation membrane. And gas separation ability with excellent carbon dioxide / methane separation selectivity.
  • Non-Patent Document 1 describes a cross-linked product obtained by cross-linking a polyimide compound (Matrimid) with a diamine (EDA (ethylene diamine) or HMDA (hexamethylene diamine)). / It is described that it exhibits gas separation ability with excellent methane separation selectivity.
  • the gas separation layer In order to obtain a practical gas separation membrane, the gas separation layer must be made thin to ensure sufficient gas permeability, and a higher degree of gas separation selectivity must be realized.
  • a method for thinning the gas separation layer there is a method in which a polymer compound such as a polyimide compound is made into an asymmetric membrane by a phase separation method, and a portion contributing to separation is made into a thin layer called a dense layer or a skin layer.
  • a portion other than the dense layer is allowed to function as a support layer that bears the mechanical strength of the membrane.
  • the gas separation layer responsible for the gas separation function and the support layer responsible for the mechanical strength are made of different materials, and the gas separation layer having gas separation ability is thinly formed on the gas permeable support layer.
  • the form of the composite film formed in the above is also known.
  • gas permeability and gas separation selectivity are in a so-called trade-off relationship. Therefore, by adjusting the copolymerization component of the polyimide compound used in the gas separation layer, either gas permeability or gas separation selectivity of the gas separation layer can be improved, but both characteristics are at a desired high level. It is difficult to achieve both.
  • Polyimide compounds are generally inferior in plasticization resistance, and the gas separation performance tends to deteriorate in the presence of impurity components such as toluene.
  • the gas separation layer is more easily affected and the swelling of the gas separation layer is promoted. Therefore, it has been difficult to achieve both gas permeability and plasticization resistance at a desired high level in a gas separation layer using a polyimide compound.
  • the present invention can achieve gas permeability and gas separation selectivity at a desired high level, and also provides the above excellent separation membrane performance (gas permeability and separation selectivity) even in the presence of plasticizing impurities. It is an object to provide a gas separation membrane that can be continuously expressed. Another object of the present invention is to provide a gas separation module, a gas separation device, and a gas separation method using the gas separation membrane. Furthermore, this invention makes it a subject to provide the composition for gas separation membranes used for the said gas separation membrane, and the manufacturing method of the said gas separation membrane.
  • the inventors of the present invention crosslinked a polyimide compound using a hydrophilic trifunctional or higher functional polyfunctional amine, and further set the degree of crosslinking to a specific range. It has been found that when such a crosslinked polyimide compound is used in a gas separation layer of a gas separation membrane, the gas separation membrane exhibits excellent gas permeability and excellent plasticization resistance.
  • the present invention has been further studied and completed based on these findings.
  • R a1 represents a tetravalent group represented by any of the following formulas (I-1) to (I-28).
  • X 1 to X 3 represent a single bond or a divalent linking group
  • L represents —CH ⁇ CH— or —CH 2 —
  • R 1 and R 2 represent a hydrogen atom or a substituent
  • * represents a formula ( 1) shows the binding site with the carbonyl group in L an, shows a n + 1 valent connecting group, n represents an integer of 2 or more.
  • x represents the number of imide ring structures represented by the following formula x
  • y represents the number of structures represented by the following y in which the imide ring is opened by an amine.
  • R a1 has the same meaning as in the above formula (1)
  • * represents a bonding site with the residue of the polyimide compound.
  • a gas separation module comprising the gas separation membrane according to any one of [7].
  • a gas separation apparatus comprising the gas separation module according to [9].
  • R a1 represents a tetravalent group represented by any of the following formulas (I-1) to (I-28).
  • X 1 to X 3 represent a single bond or a divalent linking group
  • L represents —CH ⁇ CH— or —CH 2 —
  • R 1 and R 2 represent a hydrogen atom or a substituent
  • * represents a formula ( 3) shows the binding site with the carbonyl group in it.
  • Lan represents an n + 1 valent linking group
  • n is an integer of 2 or more.
  • a method for producing a gas separation membrane comprising a step of applying the composition for gas separation membrane according to [13] and a step of drying the applied composition for gas separation membrane.
  • the manufacturing method of a gas separation membrane which immerses the film
  • R a1 represents a tetravalent group represented by any of the following formulas (I-1) to (I-28).
  • X 1 ⁇ X 3 represents a single bond or a divalent linking group
  • * the formula ( 3) shows the binding site with the carbonyl group in it.
  • Lan represents an n + 1 valent linking group
  • n is an integer of 2 or more.
  • the polyfunctional amine refers to a compound having three or more amino groups.
  • the numerical value range represented by “to” means that the numerical values described before and after the numerical value range are included as a lower limit value and an upper limit value.
  • substituents when there are a plurality of substituents and linking groups (hereinafter also referred to as substituents) indicated by specific symbols, or when a plurality of substituents are specified simultaneously or alternatively, each substituent It means that the groups may be the same or different from each other. The same applies to the definition of the number of substituents. Further, when there are repetitions of a plurality of partial structures represented by the same indication in the formula, each partial structure or repeating unit may be the same or different.
  • the gas separation membrane, gas separation module, and gas separation apparatus of the present invention can realize both gas permeability and gas separation selectivity at a high level even when used under high pressure conditions. Gas separation with excellent plasticization resistance.
  • gas separation method of the present invention gas can be separated with excellent gas permeability and excellent gas separation selectivity even under high pressure conditions, high speed, high selectivity, and resistance to plasticization. In addition, excellent gas separation is possible.
  • the composition for gas separation membrane and the method for producing a gas separation membrane of the present invention gas can be separated with excellent gas permeability and excellent gas separation selectivity even under high pressure conditions. A gas separation membrane capable of high-speed and high-selectivity gas separation and having excellent plasticization resistance can be obtained.
  • the gas separation membrane of the present invention contains a specific crosslinked polyimide compound in the gas separation layer.
  • Crosslinked polyimide compound contains at least a structural unit represented by the following formula (1).
  • R a1 represents a tetravalent group represented by any of the following formulas (I-1) to (I-28).
  • X 1 to X 3 each independently represents a single bond or a divalent linking group
  • L represents —CH ⁇ CH— or —CH 2 —
  • R 1 and R 2 each independently represents a hydrogen atom or a substituent.
  • * Indicates a binding site with the carbonyl group in formula (1).
  • R is preferably a group represented by the formula (I-1), (I-2) or (I-4), more preferably a group represented by (I-1) or (I-4).
  • a group represented by (I-1) is particularly preferable.
  • X 1 to X 3 represent a single bond or a divalent linking group.
  • the divalent linking group —C (R x ) 2 — (R x represents a hydrogen atom or a substituent. When R x is a substituent, they may be linked to each other to form a ring), —O—, —SO 2 —, —C ( ⁇ O) —, —S—, —NR Y — (R Y represents a hydrogen atom, an alkyl group (preferably a methyl group or an ethyl group) or an aryl group (preferably a phenyl group).
  • R x represents a substituent
  • specific examples thereof include a group selected from the substituent group Z described below, and among them, an alkyl group (preferable range is synonymous with the alkyl group shown in the substituent group Z described later).
  • an alkyl group having a halogen atom as a substituent is more preferable, and trifluoromethyl is particularly preferable.
  • X 3 is connected to one of the two carbon atoms described on the left side and one of the two carbon atoms described on the right side thereof.
  • L represents —CH ⁇ CH— or —CH 2. -Is shown.
  • the plurality of L in (I-23) may be the same or different.
  • R 1 and R 2 each independently represent a hydrogen atom or a substituent.
  • substituent include a group selected from the substituent group Z described later.
  • R 1 and R 2 may be bonded to each other to form a ring.
  • R 1 and R 2 are preferably a hydrogen atom or an alkyl group, more preferably a hydrogen atom, a methyl group or an ethyl group, and even more preferably a hydrogen atom.
  • the carbon atoms shown in the formulas (I-1) to (I-28) may further have a substituent.
  • substituents include groups selected from the substituent group Z described later, and among them, an alkyl group or an aryl group is preferable.
  • Lan represents an (n + 1) -valent linking group, specifically, an aliphatic group (preferably having 5 to 35 carbon atoms, more preferably 10 to 30 carbon atoms), an aromatic group (preferably having 8 to 35 carbon atoms). More preferably, it has 10 to 30 carbon atoms.
  • Lan preferably contains a hetero atom, and more preferably a nitrogen atom as the hetero atom.
  • N is an integer of 2 or more, preferably 3-10.
  • the structural unit represented by the above formula (1) is a structural unit represented by the following formula (2).
  • R a1 and n have the same meaning as in formula (1).
  • L a represents a n + 1 valent connecting group, specifically, an aliphatic group, an aromatic group.
  • L a preferably contains a hetero atom, and more preferably a nitrogen atom as the hetero atom.
  • L b and L bn each independently represent a divalent aliphatic group, and preferred examples include an ethylene group and a propylene group.
  • L b and L bn are particularly preferably each independently an ethylene group.
  • L b and L bn each independently have 2 or more carbon atoms, and preferably each independently 2 to 5.
  • the ring opening rate of the imide ring represented by the following formula ⁇ y / (x + y) ⁇ with an amine is preferably less than 50%, more preferably less than 40%, and even more preferably less than 35%.
  • x represents the number of imide ring structures represented by the following formula x
  • y represents the number of structures represented by the following y in which the imide ring is opened by an amine. This lower limit is not particularly limited, and is usually 10% or more, preferably 15% or more, and more preferably 20% or more.
  • the imide ring opening rate can be determined as follows. An infrared absorption spectrum is measured for a film prepared by adding a polyfunctional amine (transmission method).
  • the peak area around 1760 ⁇ 1800 cm -1 Request divided by the peak area in the vicinity of 680 ⁇ 770 cm -1.
  • the imide ring residual ratio is obtained.
  • a value obtained by subtracting the imide ring residual rate (%) from 100% is the imide ring opening rate.
  • R a1 has the same meaning as in the above formula (1), and * represents a bonding site with the residue of the polyimide compound.
  • composition for gas separation membranes of this invention contains at least the polyimide compound containing the structural unit represented by following formula (3), and the polyfunctional amine represented by following formula (4).
  • R a1 has the same meaning as R a1 in formula (1).
  • L an,, n has the same meaning as L an,, n in the formula (1).
  • the content of the polyfunctional amine represented by the above formula (4) is changed to that of the polyimide compound containing the structural unit represented by the above formula (3).
  • the content is preferably 5 to 60 mol, more preferably 10 to 55 mol, and still more preferably 15 to 45 mol with respect to the content of 100 mol.
  • the CLogP value of the structure represented by Formula (4) is 0.5 or less.
  • the CLogP value may be a minus ( ⁇ ) value.
  • the CLogP value is preferably ⁇ 1.0 or more.
  • the CLogP value can be calculated by, for example, ChemBioDrawDUltra (trade name).
  • the repeating unit constituting the cross-linked polyimide compound used in the present invention has a suitable rigid structure by cross-linking the polyimide compound using a polyfunctional amine having three or more hydrophilic functions and further adjusting the degree of cross-linking.
  • a crosslinked polyimide compound is used for a gas separation layer, it is possible to realize both gas separation selectivity and gas permeability at a high level, and excellent plasticization resistance.
  • the polyimide compound used in the present invention is a structural unit other than the structural unit represented by the above formula (1), for example, the following formula (II-a) or (II It may have a structural unit represented by -b).
  • R has the same meaning as R a1 in formula (1), and the preferred form is also the same.
  • R 4 to R 6 represent a substituent. Examples of the substituent include a group selected from the substituent group Z described later.
  • R 4 is preferably an alkyl group, a carboxy group, or a halogen atom.
  • L1 indicating the number of R 4 is an integer of 0 to 4.
  • R 4 is an alkyl group, preferably l1 is 1-4, more preferably 2-4, even more preferably 3 or 4.
  • R 4 is a carboxy group
  • l1 is preferably 1 to 2, more preferably 1.
  • R 4 is an alkyl group
  • the alkyl group preferably has 1 to 10 carbon atoms, more preferably 1 to 5 carbon atoms, still more preferably 1 to 3 carbon atoms, and particularly preferably methyl, Ethyl or trifluoromethyl.
  • the two linking sites are preferably located at the meta position or the para position.
  • the structural unit represented by the formula (II-a) does not include the structural unit included in the structural unit represented by the formula (1).
  • R 5 and R 6 preferably represent an alkyl group or a halogen atom, or represent a group which is linked to each other to form a ring together with X 4 .
  • a form in which two R 5 are connected to form a ring, and a form in which two R 6 are connected to form a ring are also preferable.
  • the structure in which R 5 and R 6 are linked is not particularly limited, but a ring is preferably formed by a single bond, —O— or —S— as a linking group.
  • M1 and n1 representing the number of R 5 and R 6 are integers of 0 to 4, preferably 1 to 4, more preferably 2 to 4, and still more preferably 3 or 4.
  • the alkyl group preferably has 1 to 10 carbon atoms, more preferably 1 to 5 carbon atoms, still more preferably 1 to 3 carbon atoms, and particularly preferably Is methyl, ethyl or trifluoromethyl.
  • the two linking sites are mutually metastable with respect to the X 4 linking site. It is preferably located at the position or para position.
  • X 4 represents a single bond or a divalent linking group.
  • the divalent linking group that X 4 can take is the same as X 1 to X 3 in the above formulas (I-1), (I-9), and (I-18), and the preferred embodiments thereof are also the same. is there.
  • the structural unit represented by the above formula (1) and the above formula (II-a) which is a structural unit other than the structural unit represented by the above formula (1).
  • the proportion of the molar amount of the structural unit represented by the formula (1) in the total molar amount of the structural unit represented by the structural unit represented by the formula (II-b) is 10 to 100 mol%. It is preferably 50 to 100 mol%, more preferably 70 to 100 mol%, still more preferably 80 to 100 mol%, and particularly preferably 90 to 100 mol%.
  • the structural unit represented by the above formula (1), the structural unit represented by the above formula (II-a) which is a structural unit other than the structural unit represented by the above formula (1), and the above formula (II) The proportion of the molar amount of the structural unit represented by the formula (1) in the total molar amount with the structural unit represented by -b) is 100 mol%. This means that neither the structural unit represented by the above formula (II-a) nor the structural unit represented by the above formula (II-b) is a structural unit other than the structural unit represented by
  • the polyimide compound used in the present invention is composed of the structural unit represented by the above formula (1) or, when having a structural unit other than the structural unit represented by the above formula (1), the above formula (1)
  • the remainder other than the structural unit represented by formula (II) is preferably composed of the structural unit represented by the formula (II-a) or the formula (II-b).
  • “consisting of a structural unit represented by the above formula (II-a) or (II-b)” means an embodiment comprising the structural unit represented by the above formula (II-a), the above formula 3 of an embodiment comprising a structural unit represented by (II-b) and an embodiment comprising a structural unit represented by formula (II-a) and a structural unit represented by formula (II-b). It is meant to include one embodiment.
  • substituent group Z examples include the following substituent group Z.
  • An aryloxy group preferably an aryloxy group having 6 to 30 carbon atoms, more preferably 6 to 20 carbon atoms, particularly preferably 6 to 12 carbon atoms, such as phenyloxy, 1-naphthyloxy, 2-naphthyloxy, etc.
  • a heterocyclic oxy group preferably a heterocyclic oxy group having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as pyridyloxy, pyrazyloxy, Pyrimidyloxy, quinolyloxy, etc.
  • An acyl group (preferably an acyl group having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as acetyl, benzoyl, formyl, pivaloyl, etc.), alkoxy A carbonyl group (preferably an alkoxycarbonyl group having 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, particularly preferably 2 to 12 carbon atoms, such as methoxycarbonyl, ethoxycarbonyl, etc.), aryloxy A carbonyl group (preferably an aryloxycarbonyl group having 7 to 30 carbon atoms, more preferably 7 to 20 carbon atoms, particularly preferably 7 to 12 carbon atoms, such as phenyloxycarbonyl), an acyloxy group ( Preferably 2-30 carbon atoms, more preferably 2-20 carbon atoms, especially Preferably, it is an acyloxy group having 2 to 10 carbon atoms, such as acet
  • alkoxycarbonylamino group preferably an alkoxycarbonylamino group having 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, particularly preferably 2 to 12 carbon atoms, such as methoxycarbonylamino
  • aryl Oxycarbonylamino group preferably an aryloxycarbonylamino group having 7 to 30 carbon atoms, more preferably 7 to 20 carbon atoms, particularly preferably 7 to 12 carbon atoms, and examples thereof include phenyloxycarbonylamino group
  • a sulfonylamino group preferably having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as methanesulfonylamino, benzenesulfonylamino, etc.
  • a sulfamoyl group Preferably 0-30 carbon atoms, more preferred 0 to 20 carbon atoms, particularly preferably a sulfam
  • An alkylthio group preferably an alkylthio group having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as methylthio and ethylthio
  • an arylthio group preferably An arylthio group having 6 to 30 carbon atoms, more preferably 6 to 20 carbon atoms, particularly preferably 6 to 12 carbon atoms, such as phenylthio, and a heterocyclic thio group (preferably having 1 to 30 carbon atoms).
  • heterocyclic thio group having 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as pyridylthio, 2-benzimidazolylthio, 2-benzoxazolylthio, 2-benzthiazolylthio and the like.
  • a sulfonyl group (preferably a sulfonyl group having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as mesyl, tosyl, etc.), a sulfinyl group (preferably A sulfinyl group having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as methanesulfinyl, benzenesulfinyl, etc.), ureido group (preferably having 1 carbon atom) -30, more preferably a ureido group having 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as ureido, methylureido, phenylureido, etc.), a phosphoramide group (preferably having a carbon number) A phosphoric acid amide group having 1 to 30, more preferably 1 to 20 carbon
  • the heteroatom may be a heterocycle, and examples of the heteroatom constituting the heterocycle include a nitrogen atom, an oxygen atom and a sulfur atom, preferably 0 to 30 carbon atoms, more preferably a heterocycle having 1 to 12 carbon atoms.
  • Examples thereof include trimethylsilyl and triphenylsilyl), silyloxy groups (preferably silyloxy groups having 3 to 40 carbon atoms, more preferably 3 to 30 carbon atoms, and particularly preferably 3 to 24 carbon atoms.
  • substituents may be further substituted with any one or more substituents selected from the above substituent group Z.
  • substituents when one structural site has a plurality of substituents, these substituents are connected to each other to form a ring, or condensed with a part or all of the above structural sites to form an aromatic group. A ring or an unsaturated heterocyclic ring may be formed.
  • the compound or substituent includes an alkyl group, an alkenyl group, etc.
  • these may be linear or branched, and may be substituted or unsubstituted.
  • an aryl group, a heterocyclic group, or the like may be monocyclic or condensed, and may be substituted or unsubstituted.
  • substituent group Z when the name of each group is only described ( For example, when only “alkyl group” is described), preferred ranges and specific examples of the corresponding group in the substituent group Z are applied.
  • the molecular weight of the polyimide compound before crosslinking used in the present invention is preferably 5,000 to 1,000,000 as a weight average molecular weight, more preferably 8,000 to 500,000, still more preferably 10, 000-200,000. Since the polyimide compound after crosslinking is insoluble in the solvent, the molecular weight cannot be measured.
  • the molecular weight and the dispersity are values measured using a GPC (gel filtration chromatography) method, and the molecular weight is a weight average molecular weight in terms of polystyrene.
  • the gel packed in the column used in the GPC method is preferably a gel having an aromatic compound as a repeating unit, and examples thereof include a gel made of a styrene-divinylbenzene copolymer. Two to six columns are preferably connected and used.
  • the solvent used include ether solvents such as tetrahydrofuran and amide solvents such as N-methylpyrrolidinone.
  • the measurement is preferably performed at a solvent flow rate in the range of 0.1 to 2 mL / min, and most preferably in the range of 0.5 to 1.5 mL / min. By performing the measurement within this range, the apparatus is not loaded and the measurement can be performed more efficiently.
  • the measurement temperature is preferably 10 to 50 ° C, most preferably 20 to 40 ° C. Note that the column and carrier to be used can be appropriately selected according to the physical properties of the polymer compound that is symmetrical to the measurement.
  • the polyimide compound used in the present invention can be synthesized by condensation polymerization of a bifunctional acid anhydride having a specific structure (tetracarboxylic dianhydride) and a diamine having a specific structure.
  • a general book for example, edited by Ikuo Imai and Rikio Yokota, “Latest Polyimide: Fundamentals and Applications”, NTS Corporation, August 25, 2010, p. 3 to 49) , Etc.
  • At least one tetracarboxylic dianhydride as one raw material is represented by the following formula (IV). All of the tetracarboxylic dianhydrides used as raw materials are preferably represented by the following formula (IV).
  • R has the same meaning as R a1 in the above formula (1).
  • tetracarboxylic dianhydrides that can be used in the present invention include the following.
  • a diamine compound represented by the following formula (VII-a) or the following formula (VII-b) may be used as at least one of the other diamine compounds.
  • R 4 and l1 are each the same meaning as R 4 and l1 in the formula (II-a), a preferred form also the same.
  • R 5 , R 6, X 4, m1 and n1 are respectively synonymous with R 5, R 6, X 4 , m1 and n1 in the formula (II-b), the preferred form Is the same.
  • diamine compound represented by the formula (VII-a) or (VII-b) for example, those shown below can be used.
  • the monomer represented by the above formula (IV) and the monomer represented by the above formula (VII-a) or (VII-b) may be used in advance as an oligomer or a prepolymer.
  • the polyimide compound used in the present invention may be any of a block copolymer, a random copolymer, and a graft copolymer.
  • the polyimide compound used in the present invention can be obtained by mixing each of the above raw materials in a solvent and performing condensation polymerization by a conventional method as described above.
  • the solvent is not particularly limited, but ester organic solvents such as methyl acetate, ethyl acetate, and butyl acetate; aliphatics such as acetone, methyl ethyl ketone, methyl isobutyl ketone, diacetone alcohol, cyclopentanone, and cyclohexanone.
  • Ketone-based organic solvents such as ethylene glycol dimethyl ether, dibutyl ether, tetrahydrofuran, methylcyclopentyl ether, dioxane, and amide-based organic solvents such as N-methylpyrrolidone, 2-pyrrolidone, dimethylformamide, dimethylimidazolidinone, and dimethylacetamide
  • amide-based organic solvents such as N-methylpyrrolidone, 2-pyrrolidone, dimethylformamide, dimethylimidazolidinone, and dimethylacetamide
  • the solvent include sulfur-containing organic solvents such as dimethyl sulfoxide and sulfolane. These organic solvents are appropriately selected as long as it is possible to dissolve tetracarboxylic dianhydride as a reaction substrate, diamine compound, polyamic acid as a reaction intermediate, and polyimide compound as a final product.
  • ester type preferably butyl acetate
  • aliphatic ketone type preferably methyl ethyl ketone, methyl isobutyl ketone, diacetone alcohol, cyclopentanone, cyclohexanone
  • ether type diethylene glycol monomethyl ether, methyl cyclopentyl ether
  • amide Solvents based on systems preferably N-methylpyrrolidone
  • sulfur-based systems dimethyl sulfoxide, sulfolane
  • the polymerization reaction temperature is not particularly limited, and a temperature that can be usually employed in the synthesis of a polyimide compound can be employed. Specifically, it is preferably ⁇ 50 to 250 ° C., more preferably ⁇ 25 to 225 ° C., still more preferably 0 ° C. to 200 ° C., and particularly preferably 20 ° C. to 190 ° C.
  • a polyimide compound is obtained by imidizing the polyamic acid produced by the above polymerization reaction by a dehydration ring-closing reaction in the molecule.
  • a method for dehydrating and ring-closing a general book (for example, Ikuo Imai, edited by Rikio Yokota, “Latest Polyimide: Fundamentals and Applications”), NTS Corporation, August 25, 2010, p. 3 to 49, etc.) can be referred to.
  • acetic anhydride or dicyclohexyl is heated in the presence of a basic catalyst such as pyridine, triethylamine or DBU by heating to 120 ° C to 200 ° C for reaction while removing by-product water out of the system.
  • a technique such as so-called chemical imidization using a dehydration condensing agent such as carbodiimide and triphenyl phosphite is preferably used.
  • the total concentration of tetracarboxylic dianhydride and diamine compound in the polymerization reaction solution of the polyimide compound is not particularly limited, but is preferably 5 to 70% by mass, more preferably 5 to 50% by mass. And more preferably 5 to 30% by mass.
  • Preferred examples of the crosslinked polyimide compound represented by the formula (1) used in the present invention are as follows. Hereinafter, the polyimide compound before cross-linking will be described. However, the present invention is not limited to these.
  • Preferred examples of the polyfunctional amine represented by the formula (4) used in the present invention are as follows. However, the present invention is not limited to these.
  • FIG. 1 is a longitudinal sectional view schematically showing a gas separation composite membrane 10 which is a preferred embodiment of the present invention.
  • FIG. 1 is a gas separation layer
  • 2 is a support layer which consists of a porous layer.
  • FIG. 2 is a cross-sectional view schematically showing a gas separation composite membrane 20 which is another preferred embodiment of the present invention.
  • a nonwoven fabric layer 3 is added as a support layer in addition to the gas separation layer 1 and the porous layer 2.
  • 1 and 2 show an embodiment in which carbon dioxide is selectively permeated from a mixed gas of carbon dioxide and methane to make the permeated gas rich in carbon dioxide.
  • upper support layer means that another layer may be interposed between the support layer and the gas separation layer.
  • the side to which the gas to be separated is supplied is “upper”, and the side from which the separated gas is released is “lower”.
  • a gas separation layer may be formed or disposed on the surface or inner surface of a porous support (support layer). be able to.
  • a gas separation layer By forming a gas separation layer on at least the surface of the porous support, a composite membrane having the advantages of having both high separation selectivity, high gas permeability, and mechanical strength can be obtained.
  • the thickness of the separation layer is preferably a thin film as much as possible under the condition of imparting high gas permeability while maintaining mechanical strength and separation selectivity.
  • the thickness of the gas separation layer is not particularly limited.
  • the thickness of the gas separation layer is preferably from 0.01 to 5.0 ⁇ m, and more preferably from 0.05 to 2.0 ⁇ m.
  • the porous support (porous layer) preferably applied to the support layer is not particularly limited as long as it has the purpose of meeting mechanical strength and imparting high gas permeability. It may be a material.
  • An organic polymer porous film is preferable, and the thickness thereof is 1 to 3000 ⁇ m, preferably 5 to 500 ⁇ m, and more preferably 5 to 150 ⁇ m.
  • the pore structure of this porous membrane usually has an average pore diameter of 10 ⁇ m or less, preferably 0.5 ⁇ m or less, more preferably 0.2 ⁇ m or less.
  • the porosity is preferably 20 to 90%, more preferably 30 to 80%.
  • the support layer has “gas permeability” means that carbon dioxide is supplied to the support layer (a film composed of only the support layer) at a temperature of 40 ° C. with a total pressure of 5 MPa on the gas supply side. This means that the permeation rate of carbon dioxide is 1 ⁇ 10 ⁇ 5 cm 3 (STP) / cm 2 ⁇ sec ⁇ cmHg (10 GPU) or more. Further, the gas permeability of the support layer is such that when carbon dioxide is supplied at a temperature of 40 ° C.
  • the carbon dioxide permeation rate is 3 ⁇ 10 ⁇ 5 cm 3 (STP) / It is preferably cm 2 ⁇ sec ⁇ cmHg (30 GPU) or more, more preferably 100 GPU or more, and further preferably 200 GPU or more.
  • porous membrane materials include conventionally known polymers such as polyolefin resins such as polyethylene and polypropylene, fluorine-containing resins such as polytetrafluoroethylene, polyvinyl fluoride, and polyvinylidene fluoride, polystyrene, cellulose acetate, and polyurethane.
  • the shape of the porous membrane may be any shape such as a flat plate shape, a spiral shape, a tubular shape, and a hollow fiber shape.
  • a support is formed to further impart mechanical strength to the lower part of the support layer forming the gas separation layer.
  • a support include woven fabrics, nonwoven fabrics, nets, and the like, but nonwoven fabrics are preferably used in terms of film forming properties and cost.
  • the nonwoven fabric fibers made of polyester, polypropylene, polyacrylonitrile, polyethylene, polyamide or the like may be used alone or in combination.
  • the nonwoven fabric can be produced, for example, by making a main fiber and a binder fiber uniformly dispersed in water using a circular net or a long net, and drying with a dryer.
  • it is also preferable to apply a heat treatment by sandwiching a non-woven fabric between two rolls for the purpose of removing fluff and improving mechanical properties.
  • a gas separation layer is formed by having a step of applying a coating liquid containing the polyimide compound on a support and a step of drying the coating liquid.
  • the manufacturing method including is preferable.
  • the content of the polyimide compound in the coating solution is not particularly limited, but is preferably 0.1 to 30% by mass, and more preferably 0.5 to 10% by mass. Increasing the content of the polyimide compound is preferable from the viewpoint of suppressing the occurrence of defects in the surface layer that easily penetrates into the lower layer and contributes to separation when the film is formed on the porous support.
  • the gas separation membrane of the present invention can be appropriately produced by adjusting the molecular weight, structure, composition, and solution viscosity of the polymer in the separation layer.
  • the organic solvent used as a medium for the coating solution is not particularly limited, but is a hydrocarbon organic solvent such as n-hexane or n-heptane, an ester organic solvent such as methyl acetate, ethyl acetate or butyl acetate, Lower alcohols such as methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol and tert-butanol, aliphatic ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, diacetone alcohol, cyclopentanone and cyclohexanone, ethylene glycol , Diethylene glycol, triethylene glycol, glycerin, propylene glycol, ethylene glycol monomethyl or monoethyl ether, propylene glycol methyl ether, dipropylene glycol methyl ether, tri Ether-based organics such as propylene glyco
  • organic solvents are appropriately selected as long as they do not adversely affect the substrate, such as ester-based (preferably butyl acetate), alcohol-based (preferably methanol, ethanol, isopropanol). , Isobutanol), aliphatic ketones (preferably methyl ethyl ketone, methyl isobutyl ketone, diacetone alcohol, cyclopentanone, cyclohexanone) and ethers (ethylene glycol, diethylene glycol monomethyl ether, methyl cyclopentyl ether) are more preferable. Aliphatic ketone, alcohol and ether solvents. Moreover, these can be used combining 1 type (s) or 2 or more types of solvent.
  • Drying is not particularly limited, but the drying temperature is preferably 20 to 100 ° C, more preferably 25 to 60 ° C.
  • this invention relates to the composition for gas separation membranes containing the polyimide compound containing the structural unit represented by the said Formula (3), and the monofunctional amine represented by the said Formula (4).
  • Other components that may be added to the composition include the above solvent (solvent).
  • the present invention also provides a gas separation membrane in which a membrane containing a polyimide compound containing a structural unit represented by the above formula (3) is immersed in a solution containing a monofunctional amine represented by the above formula (4). It relates to the manufacturing method.
  • an organic solvent is preferable, and examples thereof include ketones, alcohols, and ethers. More preferred are ketones and alcohols.
  • the ketone include acetone, methyl ethyl ketone, and methyl isobutyl ketone.
  • Specific examples of the alcohol include methanol, ethanol, and isopropanol.
  • the concentration of the monofunctional amine is preferably 1 to 50% by mass and more preferably 1 to 40% by mass in 100% by mass of the solution containing the monofunctional amine.
  • the temperature of the immersion liquid is preferably not higher than the boiling point of the solvent, and more preferably 10 to 100 ° C.
  • the immersion time is preferably 10 seconds to 24 hours, more preferably 1 minute to 10 hours. After immersion, it is preferable to wash with the above solvent.
  • the drying is not particularly limited, but the drying temperature is preferably 20 to 100 ° C, more preferably 40 to 80 ° C.
  • another layer may exist between the support layer and the gas separation layer.
  • a preferred example of the other layer is a siloxane compound layer.
  • the siloxane compound layer By providing the siloxane compound layer, the unevenness on the outermost surface of the support can be smoothed, and the separation layer can be easily thinned.
  • the other layer between a support layer and a gas separation layer is also called a smooth layer.
  • the siloxane compound forming the siloxane compound layer include those having a main chain made of polysiloxane and compounds having a siloxane structure and a non-siloxane structure in the main chain.
  • the term “siloxane compound” means an organopolysiloxane compound unless otherwise specified.
  • siloxane compound having a main chain made of polysiloxane examples include one or more polyorganosiloxanes represented by the following formula (1) or (2). Moreover, these polyorganosiloxanes may form a crosslinking reaction product.
  • a cross-linking reaction for example, a compound represented by the following formula (1) is crosslinked by a polysiloxane compound having a group capable of linking by reacting with the reactive group X S of the formula (1) at both ends The compound of the form is mentioned.
  • R S is a non-reactive group and is an alkyl group (preferably an alkyl group having 1 to 18 carbon atoms, more preferably an alkyl group having 1 to 12 carbon atoms) or an aryl group (preferably having 6 to 6 carbon atoms). 15, more preferably an aryl group having 6 to 12 carbon atoms, and still more preferably phenyl).
  • X S is a reactive group, and is selected from a hydrogen atom, a halogen atom, a vinyl group, a hydroxy group, and a substituted alkyl group (preferably an alkyl group having 1 to 18 carbon atoms, more preferably an alkyl group having 1 to 12 carbon atoms). It is preferably a group.
  • Y S and Z S are the above R S or X S.
  • m is a number of 1 or more, preferably 1 to 100,000.
  • n is a number of 0 or more, preferably 0 to 100,000.
  • X S, Y S, Z S, R S, m and n are X S of each formula (1), Y S, Z S, R S, and m and n synonymous.
  • non-reactive group R S when the non-reactive group R S is an alkyl group, examples of the alkyl group include methyl, ethyl, hexyl, octyl, decyl, and octadecyl. .
  • examples of the fluoroalkyl group include —CH 2 CH 2 CF 3 and —CH 2 CH 2 C 6 F 13 .
  • examples of the alkyl group include a hydroxyalkyl group having 1 to 18 carbon atoms and an aminoalkyl group having 1 to 18 carbon atoms.
  • the number of carbon atoms of the alkyl group constituting the hydroxyalkyl group is preferably an integer of 1 to 10, for example, —CH 2 CH 2 CH 2 OH.
  • the number of carbon atoms in the alkyl group constituting the aminoalkyl group is preferably an integer of 1 to 10, for example, —CH 2 CH 2 CH 2 NH 2 .
  • the number of carbon atoms of the alkyl group constituting the carboxyalkyl group is preferably an integer of 1 to 10, and examples thereof include —CH 2 CH 2 CH 2 COOH.
  • the alkyl group constituting the chloroalkyl group preferably has an integer of 1 to 10, and a preferred example is —CH 2 Cl.
  • a preferable carbon number of the alkyl group constituting the glycidoxyalkyl group is an integer of 1 to 10, and a preferred example is 3-glycidyloxypropyl.
  • the preferable number of carbon atoms of the epoxy cyclohexyl alkyl group having 7 to 16 carbon atoms is an integer of 8 to 12.
  • a preferable carbon number of the (1-oxacyclobutan-3-yl) alkyl group having 4 to 18 carbon atoms is an integer of 4 to 10.
  • a preferable carbon number of the alkyl group constituting the methacryloxyalkyl group is an integer of 1 to 10, and examples thereof include —CH 2 CH 2 CH 2 —OOC—C (CH 3 ) ⁇ CH 2 .
  • a preferable carbon number of the alkyl group constituting the mercaptoalkyl group is an integer of 1 to 10, and examples thereof include —CH 2 CH 2 CH 2 SH.
  • m and n are preferably numbers that give a molecular weight of 5,000 to 1,000,000 of the compound.
  • a reactive group-containing siloxane unit (wherein the number is a structural unit represented by n) and a siloxane unit having no reactive group (wherein the number is m)
  • the distribution of the structural unit represented by That is, in the formulas (1) and (2), the (Si (R S ) (R S ) —O) units and the (Si (R S ) (X S ) —O) units may be randomly distributed. .
  • R S, m and n are respectively the same as R S, m and n in formula (1).
  • R L is —O— or —CH 2 —
  • R S1 is a hydrogen atom or methyl. Both ends of the formula (3) are preferably an amino group, a hydroxyl group, a carboxy group, a trimethylsilyl group, an epoxy group, a vinyl group, a hydrogen atom, or a substituted alkyl group.
  • n and n are synonymous with m and n in Formula (1), respectively.
  • m and n have the same meanings as m and n in formula (1), respectively.
  • m and n are synonymous with m and n in Formula (1), respectively. It is preferable that the both ends of Formula (6) have an amino group, a hydroxyl group, a carboxy group, a trimethylsilyl group, an epoxy group, a vinyl group, a hydrogen atom, or a substituted alkyl group bonded thereto.
  • m and n are synonymous with m and n in formula (1), respectively. It is preferable that an amino group, a hydroxyl group, a carboxy group, a trimethylsilyl group, an epoxy, a vinyl group, a hydrogen atom, or a substituted alkyl group is bonded to both ends of the formula (7).
  • the siloxane structural unit and the non-siloxane structural unit may be randomly distributed.
  • the compound having a siloxane structure and a non-siloxane structure in the main chain preferably contains 50 mol% or more of siloxane structural units, more preferably 70 mol% or more, based on the total number of moles of all repeating structural units. .
  • the weight average molecular weight of the siloxane compound used in the siloxane compound layer is preferably 5,000 to 1,000,000 from the viewpoint of achieving both a thin film and durability.
  • the method for measuring the weight average molecular weight is as described above.
  • siloxane compound constituting the siloxane compound layer include polydimethylsiloxane, polymethylphenylsiloxane, polydiphenylsiloxane, polysulfone / polyhydroxystyrene / polydimethylsiloxane copolymer, dimethylsiloxane / methylvinylsiloxane copolymer.
  • Polymer dimethylsiloxane / diphenylsiloxane / methylvinylsiloxane copolymer, methyl-3,3,3-trifluoropropylsiloxane / methylvinylsiloxane copolymer, dimethylsiloxane / methylphenylsiloxane / methylvinylsiloxane copolymer, diphenyl Siloxane / dimethylsiloxane copolymer terminal vinyl, polydimethylsiloxane terminal vinyl, polydimethylsiloxane terminal H, and dimethylsiloxane / methyl
  • hydro siloxane copolymer include the form which forms the cross-linking reaction product.
  • the thickness of the siloxane compound layer is preferably from 0.01 to 5 ⁇ m, more preferably from 0.05 to 1 ⁇ m, from the viewpoint of smoothness and gas permeability.
  • the gas permeability at 40 ° C. and 4 MPa of the siloxane compound layer is preferably 100 GPU or more, more preferably 300 GPU or more, and further preferably 1000 GPU or more in terms of carbon dioxide transmission rate.
  • the gas separation membrane of the present invention may be an asymmetric membrane.
  • the asymmetric membrane can be formed by a phase change method using a solution containing a polyimide compound.
  • the phase inversion method is a known method for forming a film while bringing a polymer solution into contact with a coagulation liquid to cause phase conversion.
  • a so-called dry / wet method is suitably used.
  • the dry and wet method evaporates the solution on the surface of the polymer solution in the form of a film to form a thin dense layer, and then immerses it in a coagulation liquid (solvent that is compatible with the solvent of the polymer solution and the polymer is insoluble),
  • a coagulation liquid solvent that is compatible with the solvent of the polymer solution and the polymer is insoluble
  • the thickness of the surface layer contributing to gas separation called a dense layer or skin layer is not particularly limited.
  • the thickness of the surface layer is preferably 0.01 to 5.0 ⁇ m and more preferably 0.05 to 1.0 ⁇ m from the viewpoint of imparting practical gas permeability.
  • the porous layer below the dense layer lowers the gas permeability resistance and at the same time plays a role of imparting mechanical strength, and its thickness is particularly limited as long as it is self-supporting as an asymmetric membrane. It is not limited.
  • This thickness is preferably 5 to 500 ⁇ m, more preferably 5 to 200 ⁇ m, and even more preferably 5 to 100 ⁇ m.
  • the gas separation asymmetric membrane of the present invention may be a flat membrane or a hollow fiber membrane.
  • the asymmetric hollow fiber membrane can be produced by a dry and wet spinning method.
  • the dry-wet spinning method is a method for producing an asymmetric hollow fiber membrane by applying a dry-wet method to a polymer solution that is discharged from a spinning nozzle to have a hollow fiber-shaped target shape. More specifically, the polymer solution is discharged from a nozzle into a hollow fiber-shaped target shape, and after passing through an air or nitrogen gas atmosphere immediately after discharge, the polymer is not substantially dissolved and is compatible with the solvent of the polymer solution.
  • an asymmetric structure is formed by immersing in a coagulating liquid containing, then dried, and further heat-treated as necessary to produce a separation membrane.
  • the solution viscosity of the solution containing the polyimide compound discharged from the nozzle is 2 to 17000 Pa ⁇ s, preferably 10 to 1500 Pa ⁇ s, particularly preferably 20 to 1000 Pa ⁇ s at the discharge temperature (for example, 10 ° C.). It is preferable because a shape after discharge such as a thread shape can be stably obtained.
  • the film is immersed in the primary coagulation liquid and solidified to such an extent that the shape of the hollow fiber or the like can be maintained, wound on a guide roll, and then immersed in the secondary coagulation liquid to fully saturate the entire film. It is preferable to solidify. It is efficient to dry the coagulated film after replacing the coagulating liquid with a solvent such as hydrocarbon.
  • the heat treatment for drying is preferably performed at a temperature lower than the softening point or secondary transition point of the used polyimide compound.
  • a siloxane compound layer may be provided on the gas separation layer as a protective layer in contact with the gas separation layer.
  • the Si ratio before and after immersion in chloroform represented by the following formula (I) is preferably in the range of 0.6 to 1.0.
  • Si ratio (Si-K ⁇ X-ray intensity after chloroform immersion) / (Si-K ⁇ X-ray intensity before chloroform immersion)
  • a method for measuring the Si-K ⁇ X-ray intensity is described in, for example, Japanese Patent Application Laid-Open No. 6-88792.
  • the Si-K ⁇ X-ray intensity is reduced by immersion in chloroform as compared with that before immersion, it means that a low molecular weight component is present and eluted. Therefore, the smaller the degree of decrease in the Si-K ⁇ X-ray intensity after immersion in chloroform, the higher the polymer constituting the siloxane compound layer, and the more difficult it is to elute in chloroform.
  • the Si ratio of the siloxane compound layer is in the range of 0.6 to 1.0, the siloxane compound can be present in the layer with high density and uniformity, effectively preventing film defects and gas separation. The performance can be further increased. In addition, use under high pressure, high temperature and high humidity conditions, and plasticization of the gas separation layer due to impurity components such as toluene can be further suppressed.
  • the Si ratio of the siloxane compound layer in the present invention is preferably 0.7 to 1.0, more preferably 0.75 to 1.0, still more preferably 0.8 to 1.0, and 0.85 to 1.0. Is particularly preferred.
  • M represents a divalent to tetravalent metal atom.
  • R a , R b , R c , R d , R e , and R f represent a hydrogen atom or an alkyl group. * Indicates a linking site.
  • Examples of the metal atom M include aluminum (Al), iron (Fe), beryllium (Be), gallium (Ga), vanadium (V), indium (In), titanium (Ti), zirconium (Zr), and copper. (Cu), cobalt (Co), nickel (Ni), zinc (Zn), calcium (Ca), magnesium (Mg), yttrium (Y), scandium (Sc), chromium (Cr), manganese (Mn), molybdenum
  • Examples include metal atoms selected from (Mo) and boron (B), and among these, metal atoms selected from Ti, In, Zr, Fe, Zn, Al, Ga, and B are preferable, and selected from Ti, In, and Al. The metal atom is more preferable, and Al is more preferable.
  • the alkyl group that can be taken as R a , R b , R c , R d , R e , and R f is preferably 1 to 20 carbon atoms, more preferably 1 to 10 carbon atoms, still more preferably 1 to carbon atoms. 7, particularly preferably an alkyl group having 1 to 4 carbon atoms.
  • This alkyl group may be linear or branched, but is more preferably linear.
  • Specific examples of preferred alkyl groups include methyl, ethyl, isopropyl, n-butyl, t-butyl, pentyl, hexyl, heptyl, octyl and 1-ethylpentyl.
  • the Si ratio of the siloxane compound layer is easily increased to the preferred range.
  • the linking group * —O—M—O— * is represented by, for example, a siloxane compound having a group having —OH (an active hydrogen-containing group) such as a hydroxy group, a carboxy group, or a sulfo group, and the following formula (B): It can be formed by a ligand exchange reaction with a metal complex (crosslinking agent).
  • L L represents an alkoxy group, an aryloxy group, an acetylacetonato group, an acyloxy group, a hydroxy group or a halogen atom.
  • y represents an integer of 2 to 4.
  • the alkoxy group that can be taken as L L preferably has 1 to 10 carbon atoms, more preferably 1 to 4 carbon atoms, and still more preferably 1 to 3 carbon atoms.
  • Specific examples of the alkoxy group that can be taken as L L include, for example, methoxy, ethoxy, tert-butoxy, and isopropoxy.
  • the aryloxy group that can be taken as L L preferably has 6 to 10 carbon atoms, more preferably 6 to 8 carbon atoms, and still more preferably 6 to 7 carbon atoms.
  • Specific examples of the aryloxy group that can be taken as L L include, for example, phenoxy, 4-methoxyphenoxy, and naphthoxy.
  • the acyloxy group that can be taken as L L preferably has 2 to 10 carbon atoms, more preferably 2 to 6 carbon atoms, and still more preferably 2 to 4 carbon atoms.
  • Specific examples of the acyloxy group that can be taken as L L include, for example, acetoxy, propanoyloxy, pivaloyloxy, and acetyloxy.
  • There is no particular restriction on the halogen atom that can take as L L a fluorine atom, a chlorine atom, a bromine atom and an iodine atom. Of these, a chlorine atom is preferable.
  • the metal complex represented by the above formula (B) is soluble in an organic solvent used for a coating solution when forming a siloxane compound layer. More specifically, the solubility of the metal complex represented by the above formula (B) with respect to 100 g of tetrahydrofuran at 25 ° C. is preferably 0.01 to 10 g, and preferably 0.1 to 1.0 g. Is more preferable. When the metal complex represented by the formula (B) is soluble in the organic solvent, a more uniform crosslinked siloxane compound layer can be formed.
  • Preferred examples of the metal complex represented by the formula (B) include aluminum acetylacetonate, gallium acetylacetonate, indium acetylacetonate, zirconium acetylacetonate, cobalt acetylacetonate, calcium acetylacetonate, nickel acetyl.
  • ligand exchange reaction is as follows. The following examples show the case where the siloxane compound has a hydroxy group, but when the siloxane compound has an active hydrogen-containing group such as a carboxy group or a sulfo group, the same ligand exchange reaction proceeds, * ⁇ A linking group represented by O—M—O— * is formed.
  • R P represents a siloxane compound residue (that is, R P —OH represents a siloxane compound having a hydroxy group).
  • R P —OH can usually coordinate up to 4 to one M (form (a) above).
  • M is a tetravalent metal atom
  • two forms of R P —OH are coordinated (form (c) above), and three are coordinated (form (b) above) )
  • 4-coordinated form (form (a) above) are all encompassed by the form having a linking group represented by * —O—M—O— * .
  • R P —OH can usually be coordinated to one M up to three (form (d) above).
  • M is a trivalent metal atom
  • two forms of R P —OH are coordinated (form (e) above), and three are coordinated (form (d) above) any form of) are also intended to be encompassed in the form having a linking group represented by * -O-M-O- *.
  • the linking structure * -SMS— * can be formed by, for example, a ligand exchange reaction between a siloxane compound having a thiol group and the metal complex represented by the above formula (B). .
  • This reaction is a reaction form in which R P —OH is replaced with R P —SH in the above-described reaction for forming * —O—M—O— * . Since —SH is also an active hydrogen-containing group, a ligand exchange reaction can be performed in the same manner as described above.
  • the linking group * —NR a C ( ⁇ O) — * is obtained, for example, by reacting a siloxane compound having a carboxy group with a siloxane compound having an amino group in the presence of a dehydration condensing agent (for example, a carbodiimide compound). Can be formed.
  • a dehydration condensing agent for example, a carbodiimide compound.
  • This reaction can be represented by the following formula.
  • RP represents a siloxane compound residue.
  • the linking group can also be formed by reacting a siloxane compound having a carboxy group with a compound having two or more amino groups as a crosslinking agent.
  • the said coupling group can also be formed by making the siloxane compound which has an amino group, and the compound which has two or more carboxy groups as a crosslinking agent react.
  • the linking group * —NR b C ( ⁇ O) NR b — * can be formed, for example, by reacting a siloxane compound having an amino group with a chloroformate as a crosslinking agent.
  • This reaction can be represented by the following formula. 2R P —N (R B ) 2 + Cl—C ( ⁇ O) —O—R Cl ⁇ R P —R B N—C ( ⁇ O) —NR B —R P + HCl + HO—R Cl
  • RP represents a siloxane compound residue
  • R Cl represents an alcohol residue of chloroformate.
  • One of the two R B is coupled to one of N in the left side is a hydrogen atom, the remainder is a hydrogen atom or an alkyl group (i.e., the right side of the R B is a hydrogen atom or an alkyl group).
  • the linking group * —O—CH 2 —O— * can be formed, for example, by reacting a siloxane compound having a hydroxy group with formaldehyde as a crosslinking agent. This reaction can be represented by the following formula. 2R P —OH + HC ( ⁇ O) —H ⁇ R P —O—CH (O—R P ) —H + H 2 O
  • RP represents a siloxane compound residue.
  • the linking group * —S—CH 2 CH 2 — * can be formed, for example, by reacting a siloxane compound having a thiol group with a siloxane compound having a vinyl group.
  • This reaction can be represented by the following formula.
  • RP represents a siloxane compound residue.
  • the linking group can also be formed when a siloxane compound having a thiol group is reacted with a compound having two or more vinyl groups as a crosslinking agent.
  • the linking group can be formed by reacting a siloxane compound having a vinyl group with a compound having two or more thiol groups as a crosslinking agent.
  • the linking group * —OC ( ⁇ O) O— * can be formed, for example, by reacting a siloxane compound having a hydroxy group with a chloroformate as a crosslinking agent. This reaction can be represented by the following formula. 2R P —OH + Cl—C ( ⁇ O) —O—R Cl ⁇ R P —O—C ( ⁇ O) —O—R P + HCl + HO—R Cl
  • RP represents a siloxane compound residue
  • R Cl represents an alcohol residue of chloroformate.
  • the linking group * —C ( ⁇ O) O — N + (R d ) 3 ⁇ * can be formed, for example, by reacting a siloxane compound having a carboxy group with a siloxane compound having an amino group. .
  • This reaction can be represented by the following formula.
  • RP represents a siloxane compound residue.
  • R D represents a hydrogen atom or an alkyl group.
  • connection structure can also be formed by making the siloxane compound which has a carboxy group, and the compound which has two or more amino groups as a crosslinking agent react.
  • said coupling group can also be formed by making the siloxane compound which has an amino group, and the compound which has two or more carboxy groups as a crosslinking agent react.
  • the linking group * -SO 3 - N + (R e) 3 - * can be formed by reacting a siloxane compound having a sulfo group, a siloxane compound having an amino group.
  • This reaction can be represented by the following formula.
  • RP represents a siloxane compound residue.
  • R E represents a hydrogen atom or an alkyl group.
  • the linking group can also be formed by reacting a siloxane compound having a sulfo group with a compound having two or more amino groups as a crosslinking agent.
  • the linking group can also be formed by reacting a siloxane compound having an amino group with a compound having two or more sulfo groups as a crosslinking agent.
  • the connecting structure * —PO 3 H — N + (R f) 3 - * can be formed, for example, by reacting a siloxane compound having a phosphonic acid group with a siloxane compound having an amino group.
  • This reaction can be represented by the following formula.
  • R P —PO 3 H 2 + R P —N (R F ) 2 ⁇ R P -P ( O) (OH) -O -- N + H (R F ) 2 -R P
  • RP represents a siloxane residue.
  • R F represents a hydrogen atom or an alkyl group.
  • the linking group can also be formed by reacting a siloxane compound having a phosphonic acid group with a compound having two or more amino groups as a crosslinking agent.
  • the linking group can also be formed by reacting a siloxane compound having an amino group with a compound having two or more sulfonic acid groups as a crosslinking agent.
  • the linking group * —CH (OH) CH 2 OCO— * can be formed, for example, by reacting a siloxane compound having an epoxy group with a siloxane compound having a carboxy group.
  • the linking group is obtained by reacting a siloxane compound having an epoxy group with a compound having two or more carboxy groups as a crosslinking agent, or a siloxane compound having a carboxy group and an epoxy group as a crosslinking agent. It can also be formed by reacting with two or more compounds.
  • the linking group * —CH (OH) CH 2 O— * can be formed, for example, by reacting a siloxane compound having an epoxy group with a siloxane compound having a hydroxy group.
  • the linking group is obtained by reacting a siloxane compound having an epoxy group with a compound having two or more hydroxy groups as a crosslinking agent, or a siloxane compound having a hydroxy group and an epoxy group as a crosslinking agent. It can also be formed by reacting with two or more compounds.
  • the linking group * —CH (OH) CH 2 S— * can be formed, for example, by reacting a siloxane compound having an epoxy group with a siloxane compound having a thiol group.
  • the linking group is obtained by reacting a siloxane compound having an epoxy group with a compound having two or more thiol groups as a crosslinking agent, or a siloxane compound having a thiol group and an epoxy group as a crosslinking agent. It can also be formed by reacting with two or more compounds.
  • the linking group * —CH (OH) CH 2 NR c — * can be formed, for example, by reacting a siloxane compound having an epoxy group with a siloxane compound having an amino group.
  • the linking group includes a reaction between a siloxane compound having an epoxy group and a compound having two or more amino groups as a crosslinking agent, or a siloxane compound having an amino group and an epoxy group as a crosslinking agent. It can also be formed by reacting with two or more compounds.
  • the linking group * —CH (CH 2 OH) CH 2 OCO— * can be formed by replacing the epoxy group with an oxetanyl group in the above-described formation of * —CH (OH) CH 2 OCO— * .
  • the linking group * —CH (CH 2 OH) CH 2 O— * can be formed by replacing the epoxy group with an oxetanyl group in the above-described formation of * —CH (OH) CH 2 O— * .
  • the linking group * —CH (CH 2 OH) CH 2 S— * can be formed by replacing the epoxy group with an oxetanyl group in the above-described formation of * —CH (OH) CH 2 S— * .
  • the linking group * —CH (CH 2 OH) CH 2 NR c — * can be formed by replacing the epoxy group with an oxetanyl group in the above-described formation of * —CH (OH) CH 2 NR c — *. it can.
  • the linking group * —CH 2 CH 2 — * can be formed, for example, by polymerizing siloxane compounds having a vinyl group (such as a (meth) acryloyl group). It can also be formed by reacting a vinyl group of a siloxane compound having a vinyl group with a hydrosilyl group of a siloxane compound having a hydrosilyl group.
  • the structure linked via * —CH 2 CH 2 — * does not include the structure linked via * —S—CH 2 CH 2 — * .
  • the siloxane compound layer may have one type of the above-mentioned connection structure or two or more types.
  • the siloxane compound-linked structure has the above-described * -O-MO- * , from the viewpoint of the reactivity for forming the linked structure and the chemical stability of the linked structure.
  • * —SMS— * , * —O—CH 2 —O— * , * —S—CH 2 CH 2 — * , * —OC ( ⁇ O) O— * , * —CH 2 CH 2 — * , And * -C ( ⁇ O) O — N + (R d ) 3 ⁇ * are preferably one or more of a linking structure via a linking group selected from the group * -O—M—O— * , * -S-M-S- * , * -O-CH 2 -O- * and * -S-CH 2 CH 2 - *, * -CH 2 CH 2 - * linked via a linking group selected from More preferably, one or more of the structures are selected from * —O—M—
  • the siloxane compound used as a raw material for the siloxane compound layer that is a protective layer is particularly limited as long as it is a siloxane compound having a functional group that gives the linking structure. There is no.
  • Preferred examples of the polysiloxane compound include methacrylate-modified polydialkylsiloxane, methacrylate-modified polydiarylsiloxane, methacrylate-modified polyalkylarylsiloxane, thiol-modified polydialkylsiloxane, thiol-modified polydiarylsiloxane, and thiol-modified polyalkylarylsiloxane.
  • the modification site by each functional group may be a terminal or a side chain. Moreover, it is preferable that there are two or more modified sites in one molecule. Each functional group introduced by the modification may further have a substituent.
  • the amount ratio of the alkyl group to the aryl group in the “polyalkylaryl siloxane” is not particularly limited. That is, the “polyalkylarylsiloxane” may have a dialkylsiloxane structure or a diarylsiloxane structure in its structure.
  • the alkyl group preferably has 1 to 10 carbon atoms, more preferably 1 to 5, more preferably 1 to 3, and particularly preferably methyl.
  • the aryl group preferably has 6 to 20 carbon atoms, more preferably 6 to 15 carbon atoms, still more preferably 6 to 12 carbon atoms, and particularly preferably phenyl.
  • the siloxane compound layer as a protective layer preferably has at least one structure selected from the following (a) and (b).
  • R SL represents an alkyl group or an aryl group.
  • L A is a single bond or a divalent linking group.
  • X A is * -OM 1 -O- * , * -SM 1 -S- * , * -O-CH 2 -O- * , * -S-CH 2 CH 2- * , * -OC A linking group selected from ( ⁇ O) O— * , * —CH 2 CH 2 — * , and * —C ( ⁇ O) O — N + (R d ) 3 — * .
  • M 1 represents Zr, Fe, Zn, B, Al, or Ga
  • R d represents a hydrogen atom or an alkyl group.
  • a1 and b1 are integers of 2 or more (preferably integers of 5 or more).
  • “ * ” Indicates a linking site.
  • “**” represents a linking site in a siloxane bond (that is, in the general formulas (1a) to (3a), when ** is an O atom, ** represents a linking site with a Si atom, * When * is next to a Si atom, ** represents a connecting site with an O atom).
  • the terminal structure of the general formula (4a) is preferably a group selected from a hydrogen atom, a mercapto group, an amino group, a vinyl group, a carboxy group, an oxetane group, a sulfonic acid group, and a phosphonic acid group.
  • R SL and R d are alkyl groups, they are preferably alkyl groups having 1 to 10 carbon atoms, more preferably 1 to 5 carbon atoms, still more preferably 1 to 3 carbon atoms, and particularly preferably methyl.
  • R SL is an aryl group, the carbon number thereof is preferably 6 to 20, more preferably 6 to 15, still more preferably 6 to 12, and particularly preferably a phenyl group.
  • L A is a divalent linking group
  • an alkylene group preferably an alkylene group of 1 to 5 having 1 to 10 carbon atoms, more preferably carbon
  • an arylene group (6 to 20 carbon atoms, more preferably a carbon number arylene group having 6 to 15, more preferably synonymous with R SL phenylene group), or -Si (R SL) 2 -O-
  • R SL is the general formula (2a), a preferred form also the same. “O” in —Si (R SL ) 2 —O— is linked to Si shown in the above general formula).
  • the structure (a) preferably has a repeating unit represented by the following formula (5a) in addition to the structure represented by any one of the above general formulas (1a) to (3a).
  • repeating unit represented by the above formula (5a) is present in the siloxane compound layer with a structure in which the repeating units represented by the above formula (5a) are connected to each other by a siloxane bond.
  • the content of the repeating unit represented by the above formula (5a) is preferably 0.01 to 0.55, more preferably 0.03 to 0.40. More preferably, it is 0.05 to 0.25.
  • the content of the repeating unit represented by the formula (5a) was determined by using a siloxane compound layer cut into a 2.5 cm square as a measurement sample, and the measurement sample was subjected to X-ray photoelectron spectroscopy (apparatus: Quantra SXM manufactured by Ulvac-PHI).
  • the fluorescent X-ray intensity [SA] of the Si—O bond energy peak of the repeating unit (Q component) represented by the formula (5a) and the structure (T component) other than the repeating unit represented by the formula (5a) [SA] / ([SA] + [ST]) is calculated on the basis of the total intensity [ST] of Si—O bond energy peaks, and is defined as the content of the repeating unit represented by the formula (5a).
  • the thickness of the siloxane compound layer is preferably 10 to 3000 nm, more preferably 100 to 1500 nm.
  • the gas separation membrane (composite membrane and asymmetric membrane) of the present invention can be suitably used as a gas separation recovery method and gas separation purification method.
  • gas separation membrane capable of efficiently separating a specific gas from a gas mixture containing a gas such as a perfluoro compound.
  • a gas separation membrane that selectively separates carbon dioxide from a gas mixture containing carbon dioxide / hydrocarbon (methane) is preferable.
  • the permeation rate of carbon dioxide at 40 ° C. and 5 MPa is preferably more than 20 GPU, more preferably more than 30 GPU, More preferably, it is 35 to 500 GPU.
  • the permeation rate ratio between carbon dioxide and methane (R CO2 / R CH4 ) is preferably 15 or more, and more preferably 20 or more.
  • R CO2 represents the permeation rate of carbon dioxide
  • R CH4 represents the permeation rate of methane.
  • 1 GPU is 1 ⁇ 10 ⁇ 6 cm 3 (STP) / cm 2 ⁇ sec ⁇ cmHg.
  • Various polymer compounds can be added to the gas separation layer of the gas separation membrane of the present invention in order to adjust the membrane properties.
  • High molecular compounds include acrylic polymers, polyurethane resins, polyamide resins, polyester resins, epoxy resins, phenol resins, polycarbonate resins, polyvinyl butyral resins, polyvinyl formal resins, shellac, vinyl resins, acrylic resins, rubber resins. Waxes and other natural resins can be used. Two or more of these may be used in combination.
  • a nonionic surfactant, a cationic surfactant, and / or an organic fluoro compound can be added to adjust liquid properties.
  • the surfactant include alkylbenzene sulfonate, alkylnaphthalene sulfonate, higher fatty acid salt, sulfonate of higher fatty acid ester, sulfate ester of higher alcohol ether, sulfonate of higher alcohol ether, higher alkyl
  • Anionic surfactants such as alkyl carboxylates of sulfonamides, alkyl phosphates, polyoxyethylene alkyl ethers, polyoxyethylene alkyl phenyl ethers, polyoxyethylene fatty acid esters, sorbitan fatty acid esters, ethylene oxide adducts of acetylene glycol,
  • Nonionic surfactants such as ethylene oxide adducts of glycerin and polyoxyethylene sorbitan fatty acid esters, and other amphoterics such as alkyl betaines and amide betaines
  • a polymer dispersant may be included, and specific examples of the polymer dispersant include polyvinyl pyrrolidone, polyvinyl alcohol, polyvinyl methyl ether, polyethylene oxide, polyethylene glycol, polypropylene glycol, and polyacrylamide. Of these, polyvinylpyrrolidone is preferably used.
  • the conditions for forming the gas separation membrane of the present invention are not particularly limited, but the temperature is preferably ⁇ 30 to 100 ° C., more preferably ⁇ 10 to 80 ° C., and particularly preferably 5 to 50 ° C.
  • a gas such as air or oxygen may coexist at the time of forming the film, but it is preferably in an inert gas atmosphere.
  • the content of the polyimide compound in the gas separation layer is not particularly limited as long as desired gas separation performance can be obtained. From the viewpoint of further improving the gas separation performance, the content of the polyimide compound in the gas separation layer is preferably 20% by mass or more, more preferably 40% by mass or more, and 60% by mass or more. Is more preferable, and 70% by mass or more is particularly preferable. Further, the content of the polyimide compound in the gas separation layer may be 100% by mass, but is preferably 99% by mass or less.
  • the gas separation method of the present invention is a method for separating a specific gas from a mixed gas of two or more components using the gas separation membrane of the present invention.
  • the gas separation method of the present invention is a method including selectively permeating carbon dioxide from a mixed gas containing carbon dioxide and methane.
  • the pressure during gas separation is preferably 0.5 to 10 MPa, more preferably 1 to 10 MPa, and further preferably 2 to 7 MPa.
  • the gas separation temperature is preferably ⁇ 30 to 90 ° C., more preferably 15 to 70 ° C.
  • a gas separation membrane module can be prepared using the gas separation membrane of the present invention.
  • modules include spiral type, hollow fiber type, pleated type, tubular type, plate & frame type and the like.
  • a gas separation apparatus having means for separating and recovering or purifying gas can be obtained using the gas separation composite membrane or gas separation membrane module of the present invention.
  • the gas separation composite membrane of the present invention may be applied to, for example, a membrane used in combination with an absorbing solution as described in JP-A-2007-297605 and / or a gas separation and recovery device as an absorption hybrid method.
  • the diluted solution was transferred to a 3 L three-necked flask, and 2.0 L of methanol was added dropwise to the stirring solution.
  • the obtained polymer crystals were suction filtered and air dried at 40 ° C. to obtain 69.5 g of a polyimide compound (P-101).
  • Example 1 ⁇ Production of PAN porous membrane with smooth layer> (Preparation of radiation curable polymer solution having dialkylsiloxane group) In a 150 mL three-necked flask, 39 g of UV9300 (manufactured by Momentive), 10 g of X-22-162C (manufactured by Shin-Etsu Chemical Co., Ltd.), 0.007 g of DBU (1,8-diazabicyclo [5.4.0] undec-7-ene) And dissolved in 50 g of n-heptane. This was maintained at 95 ° C.
  • a gas separation membrane was formed on the PAN porous layer with the smooth layer to produce a gas separation composite membrane as shown in FIG. 2 (the smooth layer is not shown in FIG. 2).
  • P-101 polyimide compound
  • A-1 polyfunctional amine
  • 79.20 g of methyl ethyl ketone were mixed and stirred for 30 minutes. did.
  • 8.0 g of the obtained cross-linked polyimide compound was spin-coated on the PAN porous film provided with the smooth layer to form a gas separation layer containing the cross-linked polyimide compound (P-101).
  • a composite membrane was obtained.
  • the thickness of the crosslinked polyimide compound (P-101) layer was about 100 nm, and the thickness of the polyacrylonitrile porous film including the nonwoven fabric was about 180 ⁇ m.
  • These polyacrylonitrile porous membranes had a molecular weight cut-off of 100,000 or less. Further, the permeability of carbon dioxide at 40 ° C. and 5 MPa of this porous membrane was 25000 GPU.
  • Examples 2 to 6, Example 8 and Comparative Examples 1 to 3 In ⁇ Production of Composite Film> in Example 1 above, the composite films of Examples 2 to 8 and Comparative Examples 1 to 3 were produced by changing the polyimide compound and the polyfunctional amine as shown in Table 2 below. .
  • the gas permeability of the membrane was compared by calculating the gas permeation rate as gas permeability (Permeance).
  • the gas separation selectivity was calculated as the ratio of the CO 2 permeation rate R CO2 to the CH 4 permeation rate R CH4 of this membrane (R CO2 / R CH4 ).
  • Toluene exposure test A 100 ml beaker was placed in a glass container with a lid covered with a toluene solvent, and the gas separation membranes (composite membranes) prepared in each Example and Comparative Example were placed in the beaker. And a glass lid was applied to form a sealed system. Then, after storing for 24 hours at 40 ° C., gas separation performance was evaluated in the same manner as described above.
  • Toluene swelling ratio ⁇ (mass after exposure to toluene) ⁇ (mass before exposure to toluene) ⁇ / (mass before exposure to toluene)> ⁇ 100
  • Test Example 4 Imide Ring Opening Rate An infrared absorption spectrum was measured for a film prepared by adding a polyfunctional amine in the same manner as described in Test Example 3 (transmission method). The peak area around 1760 ⁇ 1800 cm -1 was determined divided by the peak area in the vicinity of 680 ⁇ 770 cm -1. By dividing this value by the value for the film to which no polyfunctional amine is added, the imide ring residual ratio is obtained. A value obtained by subtracting the imide ring residual rate (%) from 100% is the imide ring opening rate.
  • Example 7 Immersion In Example 1, a composite film made of a crosslinked polyimide compound prepared without adding a polyfunctional amine was immersed in a 10 mass percent methanol solution of the polyfunctional amine (A-1) for 10 minutes. It was. After taking out, it wash
  • the gas separation membrane of the comparative example using the comparative polymer failed to form a membrane (Comparative Example 2) or resulted in inferior CO 2 permeation rate, and gas separation selectivity. The results were also inferior (Comparative Examples 1 and 3).
  • the gas separation membrane containing the cross-linked polyimide compound containing the structural unit represented by the formula (1) of the present invention has a greatly improved gas permeation rate as compared with the above comparative examples, and further gas separation selectivity. Also exhibited excellent performance and excellent plasticization resistance (Examples 1 to 7).
  • a gas separation membrane having the cross-linked polyimide compound defined in the present invention as a gas separation layer, a high level of both excellent gas permeability and excellent gas separation selectivity even in use under high pressure conditions. It can be realized that the gas separation at high speed and high selectivity is possible, and the plasticization resistance is also excellent.
  • the gas separation membrane of the present invention was used, an excellent gas separation method, a gas separation module, and a gas separation apparatus equipped with this gas separation module could be provided. Moreover, according to the composition for gas separation membranes and the method for producing gas separation membranes of the present invention, the gas separation membrane can be provided, which is preferable.

Abstract

A gas separation membrane is provided which can achieve gas permeability and gas separation selectivity at a desired high level, and can further exhibit the excellent separation membrane performance mentioned above (gas permeability, gas separation selectivity) persistently, even in the presence of plasticizing impurities, a gas separation module using said gas separation membrane, a gas separation device, a gas separation method, a gas separation membrane composition, and a gas separation membrane production method are provided. This gas separation membrane has a gas separation layer containing a polyimide compound having a structural unit represented by expression (1). In expression (1), Ra1 represents a parent nucleus of a specific structure. Lan represents an n+1 valent linking group, and n is an integer greater than or equal to 2.

Description

ガス分離膜、ガス分離モジュール、ガス分離装置、ガス分離方法、ガス分離膜用組成物及びガス分離膜の製造方法Gas separation membrane, gas separation module, gas separation apparatus, gas separation method, composition for gas separation membrane, and method for producing gas separation membrane
 本発明は、ガス分離膜、ガス分離モジュール、ガス分離装置、ガス分離方法、ガス分離膜用組成物及びガス分離膜の製造方法に関する。 The present invention relates to a gas separation membrane, a gas separation module, a gas separation device, a gas separation method, a composition for gas separation membrane, and a method for producing a gas separation membrane.
 高分子化合物からなる素材には、その素材ごとに特有の気体透過性がある。その性質に基づき、特定の高分子化合物から構成された膜によって、所望の気体成分を選択的に透過させて分離することができる。この気体分離膜の産業上の利用態様として、地球温暖化の問題と関連し、火力発電所及び/又はセメントプラント、製鉄所高炉等において、大規模な二酸化炭素発生源からこれを分離回収することが検討されている。そして、この膜分離技術は、比較的小さなエネルギーで達成できる環境問題の解決手段として着目されている。一方、天然ガス又はバイオガス(生物の排泄物、有機質肥料、生分解性物質、汚水、ゴミ、エネルギー作物などの発酵、嫌気性消化により発生するガス)は主としてメタンと二酸化炭素を含む混合ガスであり、その二酸化炭素等の不純物を除去する手段として膜分離方法が検討されている。 A material composed of a polymer compound has gas permeability specific to each material. Based on the property, a desired gas component can be selectively permeated and separated by a membrane composed of a specific polymer compound. As an industrial utilization mode of this gas separation membrane, it is related to the problem of global warming, and it is separated and recovered from a large-scale carbon dioxide generation source in a thermal power plant and / or a cement plant, a steelworks blast furnace, etc. Is being considered. And this membrane separation technique attracts attention as a means for solving environmental problems that can be achieved with relatively small energy. On the other hand, natural gas or biogas (biological waste, organic fertilizer, biodegradable substances, sewage, garbage, gas generated by fermentation and anaerobic digestion of energy crops) is a mixed gas mainly containing methane and carbon dioxide. As a means for removing impurities such as carbon dioxide, a membrane separation method has been studied.
 膜分離方法を用いた天然ガスの精製では、より効率的にガスを分離するために、優れたガス透過性とガス分離選択性が求められる。また、実際のプラントにおいては、天然ガス中に存在する不純物成分(例えば、ベンゼン、トルエン、キシレン)の影響等によって膜が可塑化し、これによるガス分離選択性の低下が問題となる。したがってガス分離膜には、上記不純物成分の存在下においても所望のガス分離選択性を、持続して発現することができる可塑化耐性も求められる。これらを実現するために種々の膜素材が検討されており、その一環としてポリイミド化合物を用いたガス分離膜の検討が行われてきた。例えば、特許文献1には、ポリイミド化合物(6FDA-Durene)がジアミン(1,3-シクロヘキサンビス(メチルアミン)又はエチレンジアミン)で架橋された架橋体が記載され、この架橋体をガス分離膜に用いると、二酸化炭素/メタンの分離選択性に優れたガス分離能を示すことが記載されている。非特許文献1には、ポリイミド化合物(Matrimid)がジアミン(EDA(エチレンジアミン)又はHMDA(ヘキサメチレンジアミン))で架橋された架橋体が記載され、この架橋体をガス分離膜に用いると、二酸化炭素/メタンの分離選択性に優れたガス分離能を示すことが記載されている。 In the purification of natural gas using a membrane separation method, excellent gas permeability and gas separation selectivity are required in order to separate gas more efficiently. Further, in an actual plant, the membrane is plasticized due to the influence of impurity components (for example, benzene, toluene, xylene) present in natural gas, and this causes a problem of reduction in gas separation selectivity. Therefore, the gas separation membrane is also required to have plasticization resistance capable of continuously expressing desired gas separation selectivity even in the presence of the impurity component. In order to realize these, various membrane materials have been studied, and as part of this, gas separation membranes using polyimide compounds have been studied. For example, Patent Document 1 describes a crosslinked product obtained by crosslinking a polyimide compound (6FDA-Durene) with a diamine (1,3-cyclohexanebis (methylamine) or ethylenediamine), and this crosslinked product is used for a gas separation membrane. And gas separation ability with excellent carbon dioxide / methane separation selectivity. Non-Patent Document 1 describes a cross-linked product obtained by cross-linking a polyimide compound (Matrimid) with a diamine (EDA (ethylene diamine) or HMDA (hexamethylene diamine)). / It is described that it exhibits gas separation ability with excellent methane separation selectivity.
 実用的なガス分離膜とするためには、ガス分離層を薄層にして十分なガス透過性を確保した上で、さらに高度なガス分離選択性も実現しなければならない。ガス分離層を薄層化する手法としては、ポリイミド化合物等の高分子化合物を相分離法により非対称膜とし、分離に寄与する部分を緻密層あるいはスキン層と呼ばれる薄層にする方法がある。この非対称膜では、緻密層以外の部分を膜の機械的強度を担う支持層として機能させる。
 また、上記非対称膜の他に、ガス分離機能を担うガス分離層と機械強度を担う支持層とを別素材とし、ガス透過性の支持層上に、ガス分離能を有するガス分離層を薄層に形成する複合膜の形態も知られている。
In order to obtain a practical gas separation membrane, the gas separation layer must be made thin to ensure sufficient gas permeability, and a higher degree of gas separation selectivity must be realized. As a method for thinning the gas separation layer, there is a method in which a polymer compound such as a polyimide compound is made into an asymmetric membrane by a phase separation method, and a portion contributing to separation is made into a thin layer called a dense layer or a skin layer. In this asymmetric membrane, a portion other than the dense layer is allowed to function as a support layer that bears the mechanical strength of the membrane.
In addition to the asymmetric membrane, the gas separation layer responsible for the gas separation function and the support layer responsible for the mechanical strength are made of different materials, and the gas separation layer having gas separation ability is thinly formed on the gas permeable support layer. The form of the composite film formed in the above is also known.
WO 2006/009520 A1WO 2006/009520 A1
 一般に、ガス透過性とガス分離選択性は互いにいわゆるトレードオフの関係にある。したがって、ガス分離層に用いるポリイミド化合物の共重合成分を調整することにより、ガス分離層のガス透過性あるいはガス分離選択性のいずれかを改善することはできても、両特性を所望の高いレベルで両立するのは困難とされる。
 また、ポリイミド化合物は一般に可塑化耐性に劣り、トルエンなどの不純物成分の共存下ではガス分離性能が低下しやすい。特にガス透過性の高いポリイミド化合物をガス分離層に用いた場合には、上記不純物成分の影響をより受けやすくなり、ガス分離層の膨潤が促進される。それ故、ポリイミド化合物を用いたガス分離層において、ガス透過性と可塑化耐性の両立を所望の高いレベルで実現することは困難であった。
In general, gas permeability and gas separation selectivity are in a so-called trade-off relationship. Therefore, by adjusting the copolymerization component of the polyimide compound used in the gas separation layer, either gas permeability or gas separation selectivity of the gas separation layer can be improved, but both characteristics are at a desired high level. It is difficult to achieve both.
Polyimide compounds are generally inferior in plasticization resistance, and the gas separation performance tends to deteriorate in the presence of impurity components such as toluene. In particular, when a polyimide compound having a high gas permeability is used for the gas separation layer, the gas separation layer is more easily affected and the swelling of the gas separation layer is promoted. Therefore, it has been difficult to achieve both gas permeability and plasticization resistance at a desired high level in a gas separation layer using a polyimide compound.
 本発明は、ガス透過性とガス分離選択性を所望の高いレベルで実現することができ、さらに可塑化不純物の存在下においても上記の優れた分離膜性能(ガス透過性、分離選択性)を持続的に発現することができるガス分離膜を提供することを課題とする。また、本発明は、上記ガス分離膜を用いたガス分離モジュール、ガス分離装置、及びガス分離方法を提供することを課題とする。さらに、本発明は、上記ガス分離膜に用いられるガス分離膜用組成物、及び上記ガス分離膜の製造方法を提供することを課題とする。 The present invention can achieve gas permeability and gas separation selectivity at a desired high level, and also provides the above excellent separation membrane performance (gas permeability and separation selectivity) even in the presence of plasticizing impurities. It is an object to provide a gas separation membrane that can be continuously expressed. Another object of the present invention is to provide a gas separation module, a gas separation device, and a gas separation method using the gas separation membrane. Furthermore, this invention makes it a subject to provide the composition for gas separation membranes used for the said gas separation membrane, and the manufacturing method of the said gas separation membrane.
 本発明者らは上記課題に鑑み鋭意検討を重ねた結果、親水的な3官能以上の多官能アミンを用いて、ポリイミド化合物を架橋させ、さらにその架橋度を特定の範囲に設定することによって、かかる架橋ポリイミド化合物をガス分離膜のガス分離層に用いた場合に、このガス分離膜が優れたガス透過性を示し、且つ、可塑化耐性にも優れることを見出した。本発明は、これらの知見に基づきさらに検討を重ね完成させるに至ったものである。 As a result of intensive studies in view of the above problems, the inventors of the present invention crosslinked a polyimide compound using a hydrophilic trifunctional or higher functional polyfunctional amine, and further set the degree of crosslinking to a specific range. It has been found that when such a crosslinked polyimide compound is used in a gas separation layer of a gas separation membrane, the gas separation membrane exhibits excellent gas permeability and excellent plasticization resistance. The present invention has been further studied and completed based on these findings.
 上記の課題は以下の手段により解決された。
〔1〕
 下記式(1)で表される構造単位を含むポリイミド化合物を含有するガス分離層を有する、ガス分離膜。
Figure JPOXMLDOC01-appb-C000009

 式(1)中、Ra1は下記式(I-1)~(I-28)のいずれかで表される4価の基を示す。ここでX~Xは単結合又は2価の連結基を、Lは-CH=CH-又は-CH-を、R及びRは水素原子又は置換基を示し、*は式(1)中のカルボニル基との結合部位を示す。
 Lanは、n+1価の連結基を示し、nは2以上の整数である。
Figure JPOXMLDOC01-appb-C000010

〔2〕
 上記式(1)で表される構造単位が下記式(2)で表される構造単位である、〔1〕に記載のガス分離膜。
Figure JPOXMLDOC01-appb-C000011

 式(2)中、Lは、n+1価の連結基を示し、L及びLbnは、それぞれ独立に2価の脂肪族基を示す。Ra1及びnは式(1)中と同義である。
〔3〕
 上記式(2)におけるL及びLbnが、それぞれ独立に炭素数が2以上である、〔2〕に記載のガス分離膜。
〔4〕
 式{y/(x+y)}で表されるイミド環のアミンによる開環率が50%未満である、〔1〕~〔3〕のいずれか1つに記載のガス分離膜。
式中、xは下記式xで表されるイミド環構造の数を表し、yはイミド環がアミンにより開環した下記yで表される構造の数を表す。
Figure JPOXMLDOC01-appb-C000012

 上記式x及び式y中、Ra1は上記式(1)と同義であり、*は、ポリイミド化合物の残基との結合部位を示す。
[5]
 上記ガス分離膜が、上記ガス分離層をガス透過性の支持層の上側に有するガス分離複合膜である、[1]~[4]のいずれか1つに記載のガス分離膜。
[6]
 分離処理されるガスが二酸化炭素とメタンの混合ガスである場合において、40℃、5MPaにおける二酸化炭素の透過速度が20GPU超であり、二酸化炭素とメタンとの透過速度比(RCO2/RCH4)が15以上である、[1]~[5]のいずれか1つに記載のガス分離膜。
[7]
 上記支持層が多孔質層と不織布層とからなり、不織布層、多孔質層、ガス分離層がこの順に設けられている、[1]~[6]のいずれか1つに記載のガス分離膜。
[8]
 二酸化炭素及びメタンを含むガスから二酸化炭素を選択的に透過させるために用いられる、[1]~[7]のいずれか1つに記載のガス分離膜。
[9]
 [1]~[7]のいずれか1つに記載のガス分離膜を具備するガス分離モジュール。
[10]
 [9]に記載のガス分離モジュールを備えたガス分離装置。
[11]
 [1]~[8]のいずれか1つに記載のガス分離膜を用いて、二酸化炭素及びメタンを含むガスから二酸化炭素を選択的に透過させるガス分離方法。
〔12〕
 下記式(3)で表される構造単位を含むポリイミド化合物、及び下記式(4)で表される多官能アミンを含む、ガス分離膜用組成物。
Figure JPOXMLDOC01-appb-C000013

 上記式(3)中、Ra1は下記式(I-1)~(I-28)のいずれかで表される4価の基を示す。ここでX~Xは単結合又は2価の連結基を、Lは-CH=CH-又は-CH-を、R及びRは水素原子又は置換基を示し、*は式(3)中のカルボニル基との結合部位を示す。
Figure JPOXMLDOC01-appb-C000014

 上記式(4)中、Lanは、n+1価の連結基を示し、nは2以上の整数である。
〔13〕
 上記式(4)で表されるポリイミド化合物のCLogP値が0.5以下である、〔12〕に記載のガス分離膜用組成物。
〔14〕
 〔13〕に記載のガス分離膜用組成物を塗布する工程と塗布した前記ガス分離膜用組成物を乾燥する工程とを有する、ガス分離膜の製造方法。
〔15〕
 上記ガス分離膜用組成物を多孔質膜上に塗布する、〔13〕又は〔14〕に記載のガス分離膜の製造方法。
〔16〕
 下記式(3)で表される構造単位を含むポリイミド化合物を含んでなる膜を、下記式(4)で表される多官能アミンを含む溶液に浸漬させる、ガス分離膜の製造方法。
Figure JPOXMLDOC01-appb-C000015

 上記式(3)中、Ra1は下記式(I-1)~(I-28)のいずれかで表される4価の基を示す。ここでX~Xは単結合又は2価の連結基を、Lは-CH=CH-又は-CH-を、R及びRは水素原子又は置換基を示し、*は式(3)中のカルボニル基との結合部位を示す。
Figure JPOXMLDOC01-appb-C000016

 上記式(4)中、Lanは、n+1価の連結基を示し、nは2以上の整数である。
〔17〕
 上記式(4)で表されるポリイミド化合物のCLogP値が0.5以下である、〔16〕に記載のガス分離膜用組成物。
The above problem has been solved by the following means.
[1]
The gas separation membrane which has a gas separation layer containing the polyimide compound containing the structural unit represented by following formula (1).
Figure JPOXMLDOC01-appb-C000009

In the formula (1), R a1 represents a tetravalent group represented by any of the following formulas (I-1) to (I-28). Here, X 1 to X 3 represent a single bond or a divalent linking group, L represents —CH═CH— or —CH 2 —, R 1 and R 2 represent a hydrogen atom or a substituent, and * represents a formula ( 1) shows the binding site with the carbonyl group in
L an, shows a n + 1 valent connecting group, n represents an integer of 2 or more.
Figure JPOXMLDOC01-appb-C000010

[2]
The gas separation membrane according to [1], wherein the structural unit represented by the formula (1) is a structural unit represented by the following formula (2).
Figure JPOXMLDOC01-appb-C000011

In Formula (2), L a represents an n + 1 valent linking group, and L b and L bn each independently represent a divalent aliphatic group. R a1 and n have the same meaning as in formula (1).
[3]
The gas separation membrane according to [2], wherein L b and L bn in the formula (2) each independently have 2 or more carbon atoms.
[4]
The gas separation membrane according to any one of [1] to [3], wherein the ring opening rate of the imide ring represented by the formula {y / (x + y)} with an amine is less than 50%.
In the formula, x represents the number of imide ring structures represented by the following formula x, and y represents the number of structures represented by the following y in which the imide ring is opened by an amine.
Figure JPOXMLDOC01-appb-C000012

In the above formula x and formula y, R a1 has the same meaning as in the above formula (1), and * represents a bonding site with the residue of the polyimide compound.
[5]
The gas separation membrane according to any one of [1] to [4], wherein the gas separation membrane is a gas separation composite membrane having the gas separation layer above the gas-permeable support layer.
[6]
In the case where the gas to be separated is a mixed gas of carbon dioxide and methane, the permeation rate of carbon dioxide at 40 ° C. and 5 MPa exceeds 20 GPU, and the permeation rate ratio of carbon dioxide and methane (R CO2 / R CH4 ) The gas separation membrane according to any one of [1] to [5], wherein is 15 or more.
[7]
The gas separation membrane according to any one of [1] to [6], wherein the support layer includes a porous layer and a nonwoven fabric layer, and the nonwoven fabric layer, the porous layer, and the gas separation layer are provided in this order. .
[8]
The gas separation membrane according to any one of [1] to [7], which is used for selectively permeating carbon dioxide from a gas containing carbon dioxide and methane.
[9]
[1] A gas separation module comprising the gas separation membrane according to any one of [7].
[10]
A gas separation apparatus comprising the gas separation module according to [9].
[11]
A gas separation method for selectively permeating carbon dioxide from a gas containing carbon dioxide and methane, using the gas separation membrane according to any one of [1] to [8].
[12]
The composition for gas separation membranes containing the polyimide compound containing the structural unit represented by following formula (3), and the polyfunctional amine represented by following formula (4).
Figure JPOXMLDOC01-appb-C000013

In the above formula (3), R a1 represents a tetravalent group represented by any of the following formulas (I-1) to (I-28). Here, X 1 to X 3 represent a single bond or a divalent linking group, L represents —CH═CH— or —CH 2 —, R 1 and R 2 represent a hydrogen atom or a substituent, and * represents a formula ( 3) shows the binding site with the carbonyl group in it.
Figure JPOXMLDOC01-appb-C000014

In the above formula (4), Lan represents an n + 1 valent linking group, and n is an integer of 2 or more.
[13]
The composition for gas separation membrane according to [12], wherein the polyimide compound represented by the above formula (4) has a CLogP value of 0.5 or less.
[14]
[13] A method for producing a gas separation membrane, comprising a step of applying the composition for gas separation membrane according to [13] and a step of drying the applied composition for gas separation membrane.
[15]
The method for producing a gas separation membrane according to [13] or [14], wherein the composition for gas separation membrane is applied onto a porous membrane.
[16]
The manufacturing method of a gas separation membrane which immerses the film | membrane containing the polyimide compound containing the structural unit represented by following formula (3) in the solution containing the polyfunctional amine represented by following formula (4).
Figure JPOXMLDOC01-appb-C000015

In the above formula (3), R a1 represents a tetravalent group represented by any of the following formulas (I-1) to (I-28). Wherein the X 1 ~ X 3 represents a single bond or a divalent linking group, L is -CH = CH- or -CH 2 - and, R 1 and R 2 represents a hydrogen atom or a substituent, and * the formula ( 3) shows the binding site with the carbonyl group in it.
Figure JPOXMLDOC01-appb-C000016

In the above formula (4), Lan represents an n + 1 valent linking group, and n is an integer of 2 or more.
[17]
The composition for gas separation membrane according to [16], wherein the polyimide compound represented by the formula (4) has a CLogP value of 0.5 or less.
 本明細書において、多官能アミンとは、アミノ基を3つ以上有する化合物をいう。
 本明細書において「~」で表される数値範囲は、その前後に記載される数値を下限値及び上限値として含む意味である。
 本明細書において、特定の符号で表示された置換基及び連結基等(以下、置換基ともいう)が複数あるとき、あるいは複数の置換基を同時もしくは択一的に規定するときには、それぞれの置換基は互いに同一でも異なっていてもよいことを意味する。このことは、置換基の数の規定についても同様である。また、式中に同一の表示で表された複数の部分構造の繰り返しがある場合は、各部分構造ないし繰り返し単位は同一でも異なっていてもよい。
In the present specification, the polyfunctional amine refers to a compound having three or more amino groups.
In the present specification, the numerical value range represented by “to” means that the numerical values described before and after the numerical value range are included as a lower limit value and an upper limit value.
In the present specification, when there are a plurality of substituents and linking groups (hereinafter also referred to as substituents) indicated by specific symbols, or when a plurality of substituents are specified simultaneously or alternatively, each substituent It means that the groups may be the same or different from each other. The same applies to the definition of the number of substituents. Further, when there are repetitions of a plurality of partial structures represented by the same indication in the formula, each partial structure or repeating unit may be the same or different.
 本明細書において化合物ないし基の表示については、化合物ないし基そのものの他、それらの塩、それらのイオンを含む意味に用いる。また、目的の効果を奏する範囲で、構造の一部を変化させたものを含む意味である。
 本明細書において置換又は無置換を明記していない置換基(連結基についても同様)については、所望の効果を奏する範囲で、その基に任意の置換基を有していてもよい意味である。これは置換又は無置換を明記していない化合物についても同義である。
 本明細書において置換基というときには、特に断らない限り、後記置換基群Zをその好ましい範囲とする。
In this specification, about the display of a compound thru | or group, it uses for the meaning containing those salts and those ions other than a compound thru | or group itself. In addition, it means that a part of the structure is changed as long as the desired effect is achieved.
In the present specification, a substituent that does not clearly indicate substitution or non-substitution (the same applies to a linking group) means that the group may have an arbitrary substituent as long as a desired effect is achieved. . This is also the same for compounds that do not specify substitution or non-substitution.
In the present specification, the substituent group Z is a preferred range unless otherwise specified.
 本発明のガス分離膜、ガス分離モジュール、及びガス分離装置は、高圧条件下の使用においても、ガス透過性とガス分離選択性の両立を高度なレベルで実現することができ、高速、高選択性で、可塑化耐性にも優れたガス分離を可能とする。
 本発明のガス分離方法によれば、高圧条件下においても、優れたガス透過性で、且つ、優れたガス分離選択性でガスを分離することができ、高速、高選択性で、可塑化耐性にも優れたガス分離が可能となる。
 本発明のガス分離膜用組成物及びガス分離膜の製造方法によれば、高圧条件下においても、優れたガス透過性で、且つ、優れたガス分離選択性でガスを分離することができ、高速、高選択性のガス分離が可能となるとともに、可塑化耐性にも優れるガス分離膜が得られる。
The gas separation membrane, gas separation module, and gas separation apparatus of the present invention can realize both gas permeability and gas separation selectivity at a high level even when used under high pressure conditions. Gas separation with excellent plasticization resistance.
According to the gas separation method of the present invention, gas can be separated with excellent gas permeability and excellent gas separation selectivity even under high pressure conditions, high speed, high selectivity, and resistance to plasticization. In addition, excellent gas separation is possible.
According to the composition for gas separation membrane and the method for producing a gas separation membrane of the present invention, gas can be separated with excellent gas permeability and excellent gas separation selectivity even under high pressure conditions. A gas separation membrane capable of high-speed and high-selectivity gas separation and having excellent plasticization resistance can be obtained.
本発明のガス分離複合膜の一実施形態を模式的に示す断面図である。It is sectional drawing which shows typically one Embodiment of the gas separation composite membrane of this invention. 本発明のガス分離複合膜の別の実施形態を模式的に示す断面図である。It is sectional drawing which shows typically another embodiment of the gas separation composite membrane of this invention.
 以下、本発明の好ましい実施形態について説明する。
 本発明のガス分離膜は、ガス分離層に特定の架橋ポリイミド化合物を含む。
Hereinafter, preferred embodiments of the present invention will be described.
The gas separation membrane of the present invention contains a specific crosslinked polyimide compound in the gas separation layer.
[架橋ポリイミド化合物]
 本発明に用いる架橋ポリイミド化合物は、下記式(1)で表される構造単位を少なくとも含む。
[Crosslinked polyimide compound]
The crosslinked polyimide compound used in the present invention contains at least a structural unit represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 式(1)中、Ra1は下記式(I-1)~(I-28)のいずれかで示される4価の基を示す。ここでX~Xはそれぞれ独立に単結合又は2価の連結基を、Lは-CH=CH-又は-CH-を、R及びRはそれぞれ独立に水素原子又は置換基を示し、*は式(1)中のカルボニル基との結合部位を示す。
 Rは式(I-1)、(I-2)又は(I-4)で示される基であることが好ましく、(I-1)又は(I-4)で示される基であることがより好ましく、(I-1)で示される基であることが特に好ましい。
In the formula (1), R a1 represents a tetravalent group represented by any of the following formulas (I-1) to (I-28). Here, X 1 to X 3 each independently represents a single bond or a divalent linking group, L represents —CH═CH— or —CH 2 —, and R 1 and R 2 each independently represents a hydrogen atom or a substituent. * Indicates a binding site with the carbonyl group in formula (1).
R is preferably a group represented by the formula (I-1), (I-2) or (I-4), more preferably a group represented by (I-1) or (I-4). A group represented by (I-1) is particularly preferable.
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 上記式(I-1)、(I-9)及び(I-18)中、X~Xは、単結合又は2価の連結基を示す。この2価の連結基としては、-C(R-(Rは水素原子又は置換基を示す。Rが置換基の場合、互いに連結して環を形成してもよい)、-O-、-SO-、-C(=O)-、-S-、-NR-(Rは水素原子、アルキル基(好ましくはメチル基又はエチル基)又はアリール基(好ましくはフェニル基))、-C-(フェニレン基)、又はこれらの組み合わせが好ましく、単結合又は-C(R-がより好ましい。Rが置換基を示すとき、その具体例としては、後記置換基群Zから選ばれる基が挙げられ、なかでもアルキル基(好ましい範囲は後記置換基群Zに示されたアルキル基と同義である)が好ましく、ハロゲン原子を置換基として有するアルキル基がより好ましく、トリフルオロメチルが特に好ましい。なお、式(I-18)は、Xが、その左側に記載された2つの炭素原子のいずれか一方、及び、その右側に記載された2つの炭素原子のうちいずれか一方と連結していることを意味する。 In the above formulas (I-1), (I-9) and (I-18), X 1 to X 3 represent a single bond or a divalent linking group. As the divalent linking group, —C (R x ) 2 — (R x represents a hydrogen atom or a substituent. When R x is a substituent, they may be linked to each other to form a ring), —O—, —SO 2 —, —C (═O) —, —S—, —NR Y — (R Y represents a hydrogen atom, an alkyl group (preferably a methyl group or an ethyl group) or an aryl group (preferably a phenyl group). group)), - C 6 H 4 - ( phenylene group), or a combination thereof, more preferably a single bond or -C (R x) 2 - are more preferable. When R x represents a substituent, specific examples thereof include a group selected from the substituent group Z described below, and among them, an alkyl group (preferable range is synonymous with the alkyl group shown in the substituent group Z described later). And an alkyl group having a halogen atom as a substituent is more preferable, and trifluoromethyl is particularly preferable. Note that in the formula (I-18), X 3 is connected to one of the two carbon atoms described on the left side and one of the two carbon atoms described on the right side thereof. Means that
 上記式(I-4)、(I-15)、(I-17)、(I-20)、(I-21)及び(I-23)中、Lは-CH=CH-又は-CH-を示す。(I-23)中の複数のLは、同じであっても異なっていても良い。 In the above formulas (I-4), (I-15), (I-17), (I-20), (I-21) and (I-23), L represents —CH═CH— or —CH 2. -Is shown. The plurality of L in (I-23) may be the same or different.
 上記式(I-7)中、R及びRはそれぞれ独立に、水素原子又は置換基を示す。かかる置換基としては、後述する置換基群Zから選ばれる基が挙げられる。R及びRは互いに結合して環を形成していてもよい。
 R、Rは水素原子又はアルキル基であることが好ましく、水素原子、メチル基又はエチル基であることがより好ましく、水素原子であることが更に好ましい。
In the formula (I-7), R 1 and R 2 each independently represent a hydrogen atom or a substituent. Examples of the substituent include a group selected from the substituent group Z described later. R 1 and R 2 may be bonded to each other to form a ring.
R 1 and R 2 are preferably a hydrogen atom or an alkyl group, more preferably a hydrogen atom, a methyl group or an ethyl group, and even more preferably a hydrogen atom.
 式(I-1)~(I-28)中に示された炭素原子はさらに置換基を有していてもよい。この置換基の具体例としては、後記置換基群Zから選ばれる基が挙げられ、なかでもアルキル基又はアリール基が好ましい。 The carbon atoms shown in the formulas (I-1) to (I-28) may further have a substituent. Specific examples of the substituent include groups selected from the substituent group Z described later, and among them, an alkyl group or an aryl group is preferable.
 Lanは、n+1価の連結基を示し、具体的には、脂肪族基(好ましくは炭素数5~35、より好ましくは炭素数10~30)、芳香族基(好ましくは炭素数8~35、より好ましくは炭素数10~30)である。Lanは、ヘテロ原子を含むことが好ましく、ヘテロ原子としては窒素原子であることがより好ましい。 Lan represents an (n + 1) -valent linking group, specifically, an aliphatic group (preferably having 5 to 35 carbon atoms, more preferably 10 to 30 carbon atoms), an aromatic group (preferably having 8 to 35 carbon atoms). More preferably, it has 10 to 30 carbon atoms. Lan preferably contains a hetero atom, and more preferably a nitrogen atom as the hetero atom.
 nは2以上の整数であり、好ましくは3~10である。 N is an integer of 2 or more, preferably 3-10.
 上記式(1)で表される構造単位が下記式(2)で表される構造単位であることが好ましい。 It is preferable that the structural unit represented by the above formula (1) is a structural unit represented by the following formula (2).
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
 式(2)中、Ra1及びnは式(1)中と同義である。Lは、n+1価の連結基を示し、具体的には、脂肪族基、芳香族基などが挙げられる。Lは、ヘテロ原子を含むことが好ましく、ヘテロ原子としては窒素原子であることがより好ましい。 In formula (2), R a1 and n have the same meaning as in formula (1). L a represents a n + 1 valent connecting group, specifically, an aliphatic group, an aromatic group. L a preferably contains a hetero atom, and more preferably a nitrogen atom as the hetero atom.
 L及びLbnは、それぞれ独立に2価の脂肪族基を示し、好ましくは、エチレン基、プロピレン基などが挙げられる。L及びLbnは、特に好ましくは、それぞれ独立にエチレン基である。 L b and L bn each independently represent a divalent aliphatic group, and preferred examples include an ethylene group and a propylene group. L b and L bn are particularly preferably each independently an ethylene group.
 上記式(2)におけるL及びLbnが、それぞれ独立に炭素数が2以上であり、好ましくは、それぞれ独立に2~5である。 In the above formula (2), L b and L bn each independently have 2 or more carbon atoms, and preferably each independently 2 to 5.
 下記式{y/(x+y)}で表されるイミド環のアミンによる開環率が50%未満であることが好ましく、40%未満であることがより好ましく、35%未満であることがさらに好ましい。式中、xは下記式xで表されるイミド環構造の数を表し、yはイミド環がアミンにより開環した下記yで表される構造の数を表す。この下限値には特に制限はなく、通常10%以上であり、15%以上であることが好ましく、20%以上であることがより好ましい。
 イミド環開環率は、次のようにして求めることができる。多官能アミンを加えて作製した膜について、赤外吸収スペクトルを測定する(透過法)。1760~1800cm-1付近のピーク面積を680~770cm-1付近のピーク面積で割った値を求める。この値を、多官能アミンを加えない膜についての該値で割ることで、イミド環残存率が求まる。100%から、イミド環残存率(%)を引いた値がイミド環開環率である。
The ring opening rate of the imide ring represented by the following formula {y / (x + y)} with an amine is preferably less than 50%, more preferably less than 40%, and even more preferably less than 35%. . In the formula, x represents the number of imide ring structures represented by the following formula x, and y represents the number of structures represented by the following y in which the imide ring is opened by an amine. This lower limit is not particularly limited, and is usually 10% or more, preferably 15% or more, and more preferably 20% or more.
The imide ring opening rate can be determined as follows. An infrared absorption spectrum is measured for a film prepared by adding a polyfunctional amine (transmission method). The peak area around 1760 ~ 1800 cm -1 Request divided by the peak area in the vicinity of 680 ~ 770 cm -1. By dividing this value by the value for the film to which no polyfunctional amine is added, the imide ring residual ratio is obtained. A value obtained by subtracting the imide ring residual rate (%) from 100% is the imide ring opening rate.
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
 上記式x及び式y中、Ra1は上記式(1)と同義であり、*は、ポリイミド化合物の残基との結合部位を示す。 In the above formula x and formula y, R a1 has the same meaning as in the above formula (1), and * represents a bonding site with the residue of the polyimide compound.
[ガス分離膜用組成物]
 本発明のガス分離膜用組成物は、下記式(3)で表される構造単位を含むポリイミド化合物と、下記式(4)で表される多官能アミンとを、少なくとも含む。
[Composition for gas separation membrane]
The composition for gas separation membranes of this invention contains at least the polyimide compound containing the structural unit represented by following formula (3), and the polyfunctional amine represented by following formula (4).
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
 上記式(3)中、Ra1は上記式(1)中のRa1と同義である。 In the formula (3), R a1 has the same meaning as R a1 in formula (1).
 上記式(4)中、Lan、nは、上記式(1)中のLan、nと同義である。 In the formula (4), L an,, n has the same meaning as L an,, n in the formula (1).
 本発明において、架橋度を特定の範囲に設定するためには、上記式(4)で表される多官能アミンの含有量を、上記式(3)で表される構造単位を含むポリイミド化合物の含有量100モルに対して、5~60モルとすることが好ましく、10~55モルとすることがより好ましく、15~45モルとすることがさらに好ましい。尚、式(4)で表される構造のCLogP値が0.5以下であることが好ましい。CLogP値は、マイナス(-)の値となってもよい。CLogP値は、-1.0以上であることが好ましい。ここで、CLogP値とは、例えば、ChemBioDraw Ultra(商品名)によって計算により求めることができる。 In the present invention, in order to set the cross-linking degree within a specific range, the content of the polyfunctional amine represented by the above formula (4) is changed to that of the polyimide compound containing the structural unit represented by the above formula (3). The content is preferably 5 to 60 mol, more preferably 10 to 55 mol, and still more preferably 15 to 45 mol with respect to the content of 100 mol. In addition, it is preferable that the CLogP value of the structure represented by Formula (4) is 0.5 or less. The CLogP value may be a minus (−) value. The CLogP value is preferably −1.0 or more. Here, the CLogP value can be calculated by, for example, ChemBioDrawDUltra (trade name).
 本発明に用いる架橋ポリイミド化合物を構成する繰り返し単位が、親水的な3官能以上の多官能アミンを用いて、ポリイミド化合物を架橋させ、さらにその架橋度を調製することによって、その構造が適宜な剛直性を有し、かかる架橋ポリイミド化合物をガス分離層に用いた際に、ガス分離選択性とガス透過性の両立を高度なレベルで実現することが可能となり、且つ、可塑化耐性にも優れる。 The repeating unit constituting the cross-linked polyimide compound used in the present invention has a suitable rigid structure by cross-linking the polyimide compound using a polyfunctional amine having three or more hydrophilic functions and further adjusting the degree of cross-linking. When such a crosslinked polyimide compound is used for a gas separation layer, it is possible to realize both gas separation selectivity and gas permeability at a high level, and excellent plasticization resistance.
 本発明に用いるポリイミド化合物は、上記式(1)で表される構造単位に加えて、上記式(1)で表される構造単位以外の構造単位、例えば下記式(II-a)又は(II-b)で表される構造単位を有してもよい。 In addition to the structural unit represented by the above formula (1), the polyimide compound used in the present invention is a structural unit other than the structural unit represented by the above formula (1), for example, the following formula (II-a) or (II It may have a structural unit represented by -b).
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
 上記式(II-a)及び(II-b)中、Rは式(1)中のRa1と同義であり、好ましい形態も同じである。R~Rは置換基を示す。置換基としては、後述する置換基群Zから選ばれる基が挙げられる。
 Rはアルキル基、カルボキシ基、又はハロゲン原子であることが好ましい。Rの数を示すl1は0~4の整数であり、Rがアルキル基の場合、l1は1~4であることが好ましく、2~4であることがより好ましく、さらに好ましくは3又は4である。Rがカルボキシ基の場合、l1は1~2であることが好ましく、より好ましくは1である。Rがアルキル基である場合、このアルキル基の炭素数は1~10であることが好ましく、1~5であることがより好ましく、1~3であることがさらに好ましく、特に好ましくはメチル、エチル又はトリフルオロメチルである。
 式(II-a)において、ジアミン成分中のRを有しうるフェニレン基が、ポリイミド化合物に組み込まれるために、2つの連結部位は互いにメタ位又はパラ位に位置することが好ましい。
 但し、式(II-a)で表される構造単位には、上記式(1)で表される構造単位に包含される構造単位は含まれない。
In the above formulas (II-a) and (II-b), R has the same meaning as R a1 in formula (1), and the preferred form is also the same. R 4 to R 6 represent a substituent. Examples of the substituent include a group selected from the substituent group Z described later.
R 4 is preferably an alkyl group, a carboxy group, or a halogen atom. L1 indicating the number of R 4 is an integer of 0 to 4. When R 4 is an alkyl group, preferably l1 is 1-4, more preferably 2-4, even more preferably 3 or 4. When R 4 is a carboxy group, l1 is preferably 1 to 2, more preferably 1. When R 4 is an alkyl group, the alkyl group preferably has 1 to 10 carbon atoms, more preferably 1 to 5 carbon atoms, still more preferably 1 to 3 carbon atoms, and particularly preferably methyl, Ethyl or trifluoromethyl.
In the formula (II-a), since the phenylene group that may have R 4 in the diamine component is incorporated into the polyimide compound, the two linking sites are preferably located at the meta position or the para position.
However, the structural unit represented by the formula (II-a) does not include the structural unit included in the structural unit represented by the formula (1).
 R及びRはアルキル基もしくはハロゲン原子を示すか、又は互いに連結してXと共に環を形成する基を示すことが好ましい。また、2つのRが連結して環を形成している形態や、2つのRが連結して環を形成している形態も好ましい。RとRが連結した構造に特に制限はないが、連結基として単結合、-O-又は-S-によって環を形成するのが好ましい。R及びRの数を示すm1及びn1は0~4の整数であり、1~4であることが好ましく、2~4であることがより好ましく、さらに好ましくは3又は4である。R及びRがアルキル基である場合、このアルキル基の炭素数は1~10であることが好ましく、1~5であることがより好ましく、1~3であることがさらに好ましく、特に好ましくはメチル、エチル又はトリフルオロメチルである。
 式(II-b)において、ジアミン成分中のRとRを有しうる2つのフェニレン基が、ポリイミド化合物に組み込まれるために、2つの連結部位は、Xの連結部位に対し互いにメタ位又はパラ位に位置することが好ましい。
R 5 and R 6 preferably represent an alkyl group or a halogen atom, or represent a group which is linked to each other to form a ring together with X 4 . In addition, a form in which two R 5 are connected to form a ring, and a form in which two R 6 are connected to form a ring are also preferable. The structure in which R 5 and R 6 are linked is not particularly limited, but a ring is preferably formed by a single bond, —O— or —S— as a linking group. M1 and n1 representing the number of R 5 and R 6 are integers of 0 to 4, preferably 1 to 4, more preferably 2 to 4, and still more preferably 3 or 4. When R 5 and R 6 are alkyl groups, the alkyl group preferably has 1 to 10 carbon atoms, more preferably 1 to 5 carbon atoms, still more preferably 1 to 3 carbon atoms, and particularly preferably Is methyl, ethyl or trifluoromethyl.
In the formula (II-b), since two phenylene groups that may have R 5 and R 6 in the diamine component are incorporated into the polyimide compound, the two linking sites are mutually metastable with respect to the X 4 linking site. It is preferably located at the position or para position.
 Xは単結合又は二価の連結基を示す。Xが採り得る二価の連結基としては、上記式(I-1)、(I-9)及び(I-18)中のX~Xと同義であり、その好ましい態様も同じである。 X 4 represents a single bond or a divalent linking group. The divalent linking group that X 4 can take is the same as X 1 to X 3 in the above formulas (I-1), (I-9), and (I-18), and the preferred embodiments thereof are also the same. is there.
 本発明に用いるポリイミド化合物は、その構造中、上記式(1)で表される構造単位と、上記式(1)で表される構造単位以外の構造単位である上記式(II-a)で表される構造単位及び上記式(II-b)で表される構造単位との総モル量中に占める、式(1)で表される構造単位のモル量の割合が、10~100モル%であることが好ましく、50~100モル%であることがより好ましく、70~100モル%がさらに好ましく、80~100モル%がよりさらに好ましく、90~100モル%が特に好ましい。なお、上記式(1)で表される構造単位と、上記式(1)で表される構造単位以外の構造単位である上記式(II-a)で表される構造単位及び上記式(II-b)で表される構造単位との総モル量中に占める、式(1)で表される構造単位のモル量の割合が100モル%であるとは、ポリイミド化合物が、上記式(1)で表される構造単位以外の構造単位である上記式(II-a)で表される構造単位及び上記式(II-b)で表される構造単位のいずれも有しないことを意味する。 In the structure of the polyimide compound used in the present invention, the structural unit represented by the above formula (1) and the above formula (II-a) which is a structural unit other than the structural unit represented by the above formula (1). The proportion of the molar amount of the structural unit represented by the formula (1) in the total molar amount of the structural unit represented by the structural unit represented by the formula (II-b) is 10 to 100 mol%. It is preferably 50 to 100 mol%, more preferably 70 to 100 mol%, still more preferably 80 to 100 mol%, and particularly preferably 90 to 100 mol%. The structural unit represented by the above formula (1), the structural unit represented by the above formula (II-a) which is a structural unit other than the structural unit represented by the above formula (1), and the above formula (II) The proportion of the molar amount of the structural unit represented by the formula (1) in the total molar amount with the structural unit represented by -b) is 100 mol%. This means that neither the structural unit represented by the above formula (II-a) nor the structural unit represented by the above formula (II-b) is a structural unit other than the structural unit represented by
 本発明に用いるポリイミド化合物は、上記式(1)で表される構造単位からなるか、又は、上記式(1)で表される構造単位以外の構造単位を有する場合には、上記式(1)で表される構造単位以外の残部が、上記式(II-a)又は上記式(II-b)で表される構造単位からなることが好ましい。ここで、「上記式(II-a)又は上記式(II-b)で表される構造単位からなる」とは、上記式(II-a)で表される構造単位からなる態様、上記式(II-b)で表される構造単位からなる態様、並びに、上記式(II-a)で表される構造単位及び上記式(II-b)で表される構造単位とからなる態様の3つの態様を含む意味である。 The polyimide compound used in the present invention is composed of the structural unit represented by the above formula (1) or, when having a structural unit other than the structural unit represented by the above formula (1), the above formula (1) The remainder other than the structural unit represented by formula (II) is preferably composed of the structural unit represented by the formula (II-a) or the formula (II-b). Here, “consisting of a structural unit represented by the above formula (II-a) or (II-b)” means an embodiment comprising the structural unit represented by the above formula (II-a), the above formula 3 of an embodiment comprising a structural unit represented by (II-b) and an embodiment comprising a structural unit represented by formula (II-a) and a structural unit represented by formula (II-b). It is meant to include one embodiment.
 本発明の化合物が有していてもよい置換基とは、以下の置換基群Zが挙げられる。
 置換基群Z:
 アルキル基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~10のアルキル基であり、例えばメチル、エチル、イソプロピル、tert-ブチル、n-オクチル、n-デシル、n-ヘキサデシルなどが挙げられる。)、シクロアルキル基(好ましくは炭素数3~30、より好ましくは炭素数3~20、特に好ましくは炭素数3~10のシクロアルキル基であり、例えばシクロプロピル、シクロペンチル、シクロヘキシルなどが挙げられる。)、アルケニル基(好ましくは炭素数2~30、より好ましくは炭素数2~20、特に好ましくは炭素数2~10のアルケニル基であり、例えばビニル、アリル、2-ブテニル、3-ペンテニルなどが挙げられる。)、アルキニル基(好ましくは炭素数2~30、より好ましくは炭素数2~20、特に好ましくは炭素数2~10のアルキニル基であり、例えばプロパルギル、3-ペンチニルなどが挙げられる。)、アリール基(好ましくは炭素数6~30、より好ましくは炭素数6~20、特に好ましくは炭素数6~12のアリール基であり、例えばフェニル、p-メチルフェニル、ナフチル、アントラニルなどが挙げられる。)、アミノ基(アミノ基、アルキルアミノ基、アリールアミノ基及びヘテロ環アミノ基を含み、好ましくは炭素数0~30、より好ましくは炭素数0~20、特に好ましくは炭素数0~10のアミノ基であり、例えばアミノ、メチルアミノ、ジメチルアミノ、ジエチルアミノ、ジベンジルアミノ、ジフェニルアミノ、ジトリルアミノなどが挙げられる。)、アルコキシ基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~10のアルコキシ基であり、例えばメトキシ、エトキシ、ブトキシ、2-エチルヘキシロキシなどが挙げられる。)、アリールオキシ基(好ましくは炭素数6~30、より好ましくは炭素数6~20、特に好ましくは炭素数6~12のアリールオキシ基であり、例えばフェニルオキシ、1-ナフチルオキシ、2-ナフチルオキシなどが挙げられる。)、ヘテロ環オキシ基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~12のヘテロ環オキシ基であり、例えばピリジルオキシ、ピラジルオキシ、ピリミジルオキシ、キノリルオキシなどが挙げられる。)、
Examples of the substituent that the compound of the present invention may have include the following substituent group Z.
Substituent group Z:
An alkyl group (preferably an alkyl group having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 10 carbon atoms, such as methyl, ethyl, isopropyl, tert-butyl, n-octyl, n -Decyl, n-hexadecyl, etc.), a cycloalkyl group (preferably a cycloalkyl group having 3 to 30 carbon atoms, more preferably 3 to 20 carbon atoms, particularly preferably 3 to 10 carbon atoms, Cyclopropyl, cyclopentyl, cyclohexyl, etc.), an alkenyl group (preferably an alkenyl group having 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, particularly preferably 2 to 10 carbon atoms such as vinyl, And allyl, 2-butenyl, 3-pentenyl, etc.), alkynyl groups (preferably having 2 to 30 carbon atoms) More preferably, it is an alkynyl group having 2 to 20 carbon atoms, particularly preferably 2 to 10 carbon atoms, such as propargyl, 3-pentynyl, etc.), an aryl group (preferably having 6 to 30 carbon atoms, more preferably An aryl group having 6 to 20 carbon atoms, particularly preferably 6 to 12 carbon atoms, such as phenyl, p-methylphenyl, naphthyl, anthranyl, etc.), amino group (amino group, alkylamino group, arylamino group) Group and a heterocyclic amino group, preferably an amino group having 0 to 30 carbon atoms, more preferably 0 to 20 carbon atoms, particularly preferably 0 to 10 carbon atoms, such as amino, methylamino, dimethylamino, diethylamino , Dibenzylamino, diphenylamino, ditolylamino, etc.), an alkoxy group (preferably Or an alkoxy group having 1 to 20 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 10 carbon atoms, and examples thereof include methoxy, ethoxy, butoxy, 2-ethylhexyloxy and the like. An aryloxy group (preferably an aryloxy group having 6 to 30 carbon atoms, more preferably 6 to 20 carbon atoms, particularly preferably 6 to 12 carbon atoms, such as phenyloxy, 1-naphthyloxy, 2-naphthyloxy, etc. A heterocyclic oxy group (preferably a heterocyclic oxy group having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as pyridyloxy, pyrazyloxy, Pyrimidyloxy, quinolyloxy, etc.),
 アシル基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~12のアシル基であり、例えばアセチル、ベンゾイル、ホルミル、ピバロイルなどが挙げられる。)、アルコキシカルボニル基(好ましくは炭素数2~30、より好ましくは炭素数2~20、特に好ましくは炭素数2~12のアルコキシカルボニル基であり、例えばメトキシカルボニル、エトキシカルボニルなどが挙げられる。)、アリールオキシカルボニル基(好ましくは炭素数7~30、より好ましくは炭素数7~20、特に好ましくは炭素数7~12のアリールオキシカルボニル基であり、例えばフェニルオキシカルボニルなどが挙げられる。)、アシルオキシ基(好ましくは炭素数2~30、より好ましくは炭素数2~20、特に好ましくは炭素数2~10のアシルオキシ基であり、例えばアセトキシ、ベンゾイルオキシなどが挙げられる。)、アシルアミノ基(好ましくは炭素数2~30、より好ましくは炭素数2~20、特に好ましくは炭素数2~10のアシルアミノ基であり、例えばアセチルアミノ、ベンゾイルアミノなどが挙げられる。)、 An acyl group (preferably an acyl group having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as acetyl, benzoyl, formyl, pivaloyl, etc.), alkoxy A carbonyl group (preferably an alkoxycarbonyl group having 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, particularly preferably 2 to 12 carbon atoms, such as methoxycarbonyl, ethoxycarbonyl, etc.), aryloxy A carbonyl group (preferably an aryloxycarbonyl group having 7 to 30 carbon atoms, more preferably 7 to 20 carbon atoms, particularly preferably 7 to 12 carbon atoms, such as phenyloxycarbonyl), an acyloxy group ( Preferably 2-30 carbon atoms, more preferably 2-20 carbon atoms, especially Preferably, it is an acyloxy group having 2 to 10 carbon atoms, such as acetoxy, benzoyloxy, etc.), an acylamino group (preferably having 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, particularly preferably carbon atoms). An acylamino group of 2 to 10, for example, acetylamino, benzoylamino and the like),
 アルコキシカルボニルアミノ基(好ましくは炭素数2~30、より好ましくは炭素数2~20、特に好ましくは炭素数2~12のアルコキシカルボニルアミノ基であり、例えばメトキシカルボニルアミノなどが挙げられる。)、アリールオキシカルボニルアミノ基(好ましくは炭素数7~30、より好ましくは炭素数7~20、特に好ましくは炭素数7~12のアリールオキシカルボニルアミノ基であり、例えばフェニルオキシカルボニルアミノなどが挙げられる。)、スルホニルアミノ基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~12であり、例えばメタンスルホニルアミノ、ベンゼンスルホニルアミノなどが挙げられる。)、スルファモイル基(好ましくは炭素数0~30、より好ましくは炭素数0~20、特に好ましくは炭素数0~12のスルファモイル基であり、例えばスルファモイル、メチルスルファモイル、ジメチルスルファモイル、フェニルスルファモイルなどが挙げられる。)、 An alkoxycarbonylamino group (preferably an alkoxycarbonylamino group having 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, particularly preferably 2 to 12 carbon atoms, such as methoxycarbonylamino), aryl Oxycarbonylamino group (preferably an aryloxycarbonylamino group having 7 to 30 carbon atoms, more preferably 7 to 20 carbon atoms, particularly preferably 7 to 12 carbon atoms, and examples thereof include phenyloxycarbonylamino group) A sulfonylamino group (preferably having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as methanesulfonylamino, benzenesulfonylamino, etc.), a sulfamoyl group (Preferably 0-30 carbon atoms, more preferred 0 to 20 carbon atoms, particularly preferably a sulfamoyl group having 0 to 12 carbon atoms, such as sulfamoyl, methylsulfamoyl, dimethylsulfamoyl, and the like phenylsulfamoyl.),
 アルキルチオ基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~12のアルキルチオ基であり、例えばメチルチオ、エチルチオなどが挙げられる。)、アリールチオ基(好ましくは炭素数6~30、より好ましくは炭素数6~20、特に好ましくは炭素数6~12のアリールチオ基であり、例えばフェニルチオなどが挙げられる。)、ヘテロ環チオ基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~12のヘテロ環チオ基であり、例えばピリジルチオ、2-ベンズイミゾリルチオ、2-ベンズオキサゾリルチオ、2-ベンズチアゾリルチオなどが挙げられる。)、 An alkylthio group (preferably an alkylthio group having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as methylthio and ethylthio), an arylthio group (preferably An arylthio group having 6 to 30 carbon atoms, more preferably 6 to 20 carbon atoms, particularly preferably 6 to 12 carbon atoms, such as phenylthio, and a heterocyclic thio group (preferably having 1 to 30 carbon atoms). More preferably a heterocyclic thio group having 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as pyridylthio, 2-benzimidazolylthio, 2-benzoxazolylthio, 2-benzthiazolylthio and the like. ),
 スルホニル基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~12のスルホニル基であり、例えばメシル、トシルなどが挙げられる。)、スルフィニル基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~12のスルフィニル基であり、例えばメタンスルフィニル、ベンゼンスルフィニルなどが挙げられる。)、ウレイド基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~12のウレイド基であり、例えばウレイド、メチルウレイド、フェニルウレイドなどが挙げられる。)、リン酸アミド基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~12のリン酸アミド基であり、例えばジエチルリン酸アミド、フェニルリン酸アミドなどが挙げられる。)、ヒドロキシ基、メルカプト基、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子であり、より好ましくはフッ素原子が挙げられる。)、 A sulfonyl group (preferably a sulfonyl group having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as mesyl, tosyl, etc.), a sulfinyl group (preferably A sulfinyl group having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as methanesulfinyl, benzenesulfinyl, etc.), ureido group (preferably having 1 carbon atom) -30, more preferably a ureido group having 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as ureido, methylureido, phenylureido, etc.), a phosphoramide group (preferably having a carbon number) A phosphoric acid amide group having 1 to 30, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, For example, diethyl phosphoric acid amide, phenylphosphoric acid amide, etc.), hydroxy group, mercapto group, halogen atom (for example, fluorine atom, chlorine atom, bromine atom, iodine atom, more preferably fluorine atom). ),
 シアノ基、カルボキシ基、オキソ基、ニトロ基、ヒドロキサム酸基、スルフィノ基、ヒドラジノ基、イミノ基、ヘテロ環基(好ましくは3~7員環のヘテロ環基で、芳香族ヘテロ環でも芳香族でないヘテロ環であってもよく、ヘテロ環を構成するヘテロ原子としては、窒素原子、酸素原子及び硫黄原子が挙げられる。炭素数は0~30が好ましく、より好ましくは炭素数1~12のヘテロ環基であり、具体的には例えばイミダゾリル、ピリジル、キノリル、フリル、チエニル、ピペリジル、モルホリノ、ベンズオキサゾリル、ベンズイミダゾリル、ベンズチアゾリル、カルバゾリル、アゼピニルなどが挙げられる。)、シリル基(好ましくは炭素数3~40、より好ましくは炭素数3~30、特に好ましくは炭素数3~24のシリル基であり、例えばトリメチルシリル、トリフェニルシリルなどが挙げられる。)、シリルオキシ基(好ましくは炭素数3~40、より好ましくは炭素数3~30、特に好ましくは炭素数3~24のシリルオキシ基であり、例えばトリメチルシリルオキシ、トリフェニルシリルオキシなどが挙げられる。)などが挙げられる。これらの置換基は、更に上記置換基群Zより選択されるいずれか1つ以上の置換基により置換されてもよい。
 なお、本発明において、1つの構造部位に複数の置換基があるときには、それらの置換基は互いに連結して環を形成していたり、上記構造部位の一部又は全部と縮環して芳香族環もしくは不飽和複素環を形成していたりしてもよい。
A cyano group, a carboxy group, an oxo group, a nitro group, a hydroxamic acid group, a sulfino group, a hydrazino group, an imino group, a heterocyclic group (preferably a 3- to 7-membered heterocyclic group, neither an aromatic heterocyclic ring nor aromatic The heteroatom may be a heterocycle, and examples of the heteroatom constituting the heterocycle include a nitrogen atom, an oxygen atom and a sulfur atom, preferably 0 to 30 carbon atoms, more preferably a heterocycle having 1 to 12 carbon atoms. Specific examples include imidazolyl, pyridyl, quinolyl, furyl, thienyl, piperidyl, morpholino, benzoxazolyl, benzimidazolyl, benzthiazolyl, carbazolyl, azepinyl and the like, and a silyl group (preferably having a carbon number). A silyl group having 3 to 40 carbon atoms, more preferably 3 to 30 carbon atoms, and particularly preferably 3 to 24 carbon atoms. Examples thereof include trimethylsilyl and triphenylsilyl), silyloxy groups (preferably silyloxy groups having 3 to 40 carbon atoms, more preferably 3 to 30 carbon atoms, and particularly preferably 3 to 24 carbon atoms. , Triphenylsilyloxy, etc.). These substituents may be further substituted with any one or more substituents selected from the above substituent group Z.
In the present invention, when one structural site has a plurality of substituents, these substituents are connected to each other to form a ring, or condensed with a part or all of the above structural sites to form an aromatic group. A ring or an unsaturated heterocyclic ring may be formed.
 化合物ないし置換基がアルキル基、アルケニル基等を含むとき、これらは直鎖状でも分岐状でもよく、置換されていても無置換でもよい。またアリール基、ヘテロ環基等を含むとき、それらは単環でも縮環でもよく、置換されていても無置換でもよい。
 本明細書において、単に置換基としてしか記載されていないものは、特に断わりのない限りこの置換基群Zを参照するものであり、また、各々の基の名称が記載されているだけのとき(例えば、「アルキル基」と記載されているだけのとき)は、この置換基群Zの対応する基における好ましい範囲、具体例が適用される。
When the compound or substituent includes an alkyl group, an alkenyl group, etc., these may be linear or branched, and may be substituted or unsubstituted. When an aryl group, a heterocyclic group, or the like is included, they may be monocyclic or condensed, and may be substituted or unsubstituted.
In the present specification, what is merely described as a substituent refers to this substituent group Z unless otherwise specified, and when the name of each group is only described ( For example, when only “alkyl group” is described), preferred ranges and specific examples of the corresponding group in the substituent group Z are applied.
 本発明に用いる架橋前のポリイミド化合物の分子量は、重量平均分子量として5,000~1,000,000であることが好ましく、より好ましくは8,000~500,000であり、さらに好ましくは10,000~200,000である。架橋後のポリイミド化合物は、溶媒不溶のため分子量を測定できない。 The molecular weight of the polyimide compound before crosslinking used in the present invention is preferably 5,000 to 1,000,000 as a weight average molecular weight, more preferably 8,000 to 500,000, still more preferably 10, 000-200,000. Since the polyimide compound after crosslinking is insoluble in the solvent, the molecular weight cannot be measured.
 本明細書において分子量及び分散度は特に断らない限りGPC(ゲルろ過クロマトグラフィー)法を用いて測定した値とし、分子量はポリスチレン換算の重量平均分子量とする。GPC法に用いるカラムに充填されているゲルは芳香族化合物を繰り返し単位に持つゲルが好ましく、例えばスチレン-ジビニルベンゼン共重合体からなるゲルが挙げられる。カラムは2~6本連結させて用いることが好ましい。用いる溶媒は、テトラヒドロフラン等のエーテル系溶媒、N-メチルピロリジノン等のアミド系溶媒が挙げられる。測定は、溶媒の流速が0.1~2mL/minの範囲で行うことが好ましく、0.5~1.5mL/minの範囲で行うことが最も好ましい。この範囲内で測定を行うことで、装置に負荷がかからず、さらに効率的に測定ができる。測定温度は10~50℃で行うことが好ましく、20~40℃で行うことが最も好ましい。なお、使用するカラム及びキャリアは測定対称となる高分子化合物の物性に応じて適宜選定することができる。 In the present specification, unless otherwise specified, the molecular weight and the dispersity are values measured using a GPC (gel filtration chromatography) method, and the molecular weight is a weight average molecular weight in terms of polystyrene. The gel packed in the column used in the GPC method is preferably a gel having an aromatic compound as a repeating unit, and examples thereof include a gel made of a styrene-divinylbenzene copolymer. Two to six columns are preferably connected and used. Examples of the solvent used include ether solvents such as tetrahydrofuran and amide solvents such as N-methylpyrrolidinone. The measurement is preferably performed at a solvent flow rate in the range of 0.1 to 2 mL / min, and most preferably in the range of 0.5 to 1.5 mL / min. By performing the measurement within this range, the apparatus is not loaded and the measurement can be performed more efficiently. The measurement temperature is preferably 10 to 50 ° C, most preferably 20 to 40 ° C. Note that the column and carrier to be used can be appropriately selected according to the physical properties of the polymer compound that is symmetrical to the measurement.
〔ポリイミド化合物の合成〕
 本発明に用いるポリイミド化合物は、特定構造の2官能酸無水物(テトラカルボン酸二無水物)と特定構造のジアミンとを縮合重合させることで合成することができる。その方法としては一般的な成書(例えば、今井淑夫、横田力男編著、「最新ポリイミド~基礎と応用~」、株式会社エヌ・ティー・エス、2010年8月25日、p.3~49、など)に記載の手法を適宜参照して実施することができる。
[Synthesis of polyimide compounds]
The polyimide compound used in the present invention can be synthesized by condensation polymerization of a bifunctional acid anhydride having a specific structure (tetracarboxylic dianhydride) and a diamine having a specific structure. As a method for this, a general book (for example, edited by Ikuo Imai and Rikio Yokota, “Latest Polyimide: Fundamentals and Applications”, NTS Corporation, August 25, 2010, p. 3 to 49) , Etc.) can be carried out with appropriate reference to the methods described in the above.
 本発明に用いるポリイミド化合物の合成において、一方の原料であるテトラカルボン酸二無水物の少なくとも1種は、下記式(IV)で表される。原料とするテトラカルボン酸二無水物のすべてが下記式(IV)で表されることが好ましい。 In the synthesis of the polyimide compound used in the present invention, at least one tetracarboxylic dianhydride as one raw material is represented by the following formula (IV). All of the tetracarboxylic dianhydrides used as raw materials are preferably represented by the following formula (IV).
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
 式(IV)中、Rは上記式(1)におけるRa1と同義である。 In the formula (IV), R has the same meaning as R a1 in the above formula (1).
 本発明に用いうるテトラカルボン酸二無水物の具体例としては、例えば以下に示すものが挙げられる。 Specific examples of tetracarboxylic dianhydrides that can be used in the present invention include the following.
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
 本発明に用いるポリイミド化合物の合成において、他方の原料であるジアミン化合物の少なくとも1種として、下記式(VII-a)又は下記式(VII-b)で表されるジアミン化合物を用いてもよい。 In the synthesis of the polyimide compound used in the present invention, a diamine compound represented by the following formula (VII-a) or the following formula (VII-b) may be used as at least one of the other diamine compounds.
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
 式(VII-a)中、R及びl1は、それぞれ上記式(II-a)におけるR及びl1と同義であり、好ましい形態も同じである。
 式(VII-b)中、R、R、X、m1及びn1は、それぞれ上記式(II-b)におけるR、R、X、m1及びn1と同義であり、好ましい形態も同じである。
Wherein (VII-a), R 4 and l1 are each the same meaning as R 4 and l1 in the formula (II-a), a preferred form also the same.
Wherein (VII-b), R 5 , R 6, X 4, m1 and n1 are respectively synonymous with R 5, R 6, X 4 , m1 and n1 in the formula (II-b), the preferred form Is the same.
 式(VII-a)又は(VII-b)で表されるジアミン化合物として、例えば下記に示すものを用いることができる。 As the diamine compound represented by the formula (VII-a) or (VII-b), for example, those shown below can be used.
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
 上記式(IV)で表されるモノマーと、上記式(VII-a)又は(VII-b)で表されるモノマーは、予めオリゴマー又はプレポリマーとして用いてもよい。本発明に用いるポリイミド化合物は、ブロック共重合体、ランダム共重合体、グラフト共重合体のいずれでもよい。 The monomer represented by the above formula (IV) and the monomer represented by the above formula (VII-a) or (VII-b) may be used in advance as an oligomer or a prepolymer. The polyimide compound used in the present invention may be any of a block copolymer, a random copolymer, and a graft copolymer.
 本発明に用いるポリイミド化合物は、上記各原料を溶媒中に混合して、上記のように通常の方法で縮合重合させて得ることができる。
 上記溶媒としては、特に限定されるものではないが、酢酸メチル、酢酸エチル、酢酸ブチル等のエステル系有機溶剤、アセトン、メチルエチルケトン、メチルイソブチルケトン、ジアセトンアルコール、シクロペンタノン、シクロヘキサノン等の脂肪族ケトン系有機溶剤、エチレングリコールジメチルエーテル、ジブチルエーテル、テトラヒドロフラン、メチルシクロペンチルエーテル、ジオキサン等のエーテル系有機溶剤、N-メチルピロリドン、2-ピロリドン、ジメチルホルムアミド、ジメチルイミダゾリジノン、ジメチルアセトアミド等のアミド系有機溶剤、ジメチルスルホキシド、スルホラン等の含硫黄系有機溶剤などが挙げられる。これらの有機溶剤は反応基質であるテトラカルボン酸二無水物、ジアミン化合物、反応中間体であるポリアミック酸、さらに最終生成物であるポリイミド化合物を溶解させることを可能とする範囲で適切に選択されるものである。好ましくは、エステル系(好ましくは酢酸ブチル)、脂肪族ケトン系(好ましくは、メチルエチルケトン、メチルイソブチルケトン、ジアセトンアルコール、シクロペンタノン、シクロヘキサノン)、エーテル系(ジエチレングリコールモノメチルエーテル、メチルシクロペンチルエーテル)、アミド系(好ましくはN-メチルピロリドン)、含硫黄系(ジメチルスルホキシド、スルホラン)の溶媒が好ましい。また、これらは、1種又は2種以上の溶媒を組み合わせて用いることができる。
The polyimide compound used in the present invention can be obtained by mixing each of the above raw materials in a solvent and performing condensation polymerization by a conventional method as described above.
The solvent is not particularly limited, but ester organic solvents such as methyl acetate, ethyl acetate, and butyl acetate; aliphatics such as acetone, methyl ethyl ketone, methyl isobutyl ketone, diacetone alcohol, cyclopentanone, and cyclohexanone. Ketone-based organic solvents, ether-based organic solvents such as ethylene glycol dimethyl ether, dibutyl ether, tetrahydrofuran, methylcyclopentyl ether, dioxane, and amide-based organic solvents such as N-methylpyrrolidone, 2-pyrrolidone, dimethylformamide, dimethylimidazolidinone, and dimethylacetamide Examples of the solvent include sulfur-containing organic solvents such as dimethyl sulfoxide and sulfolane. These organic solvents are appropriately selected as long as it is possible to dissolve tetracarboxylic dianhydride as a reaction substrate, diamine compound, polyamic acid as a reaction intermediate, and polyimide compound as a final product. Is. Preferably, ester type (preferably butyl acetate), aliphatic ketone type (preferably methyl ethyl ketone, methyl isobutyl ketone, diacetone alcohol, cyclopentanone, cyclohexanone), ether type (diethylene glycol monomethyl ether, methyl cyclopentyl ether), amide Solvents based on systems (preferably N-methylpyrrolidone) and sulfur-based systems (dimethyl sulfoxide, sulfolane) are preferred. Moreover, these can be used combining 1 type (s) or 2 or more types of solvent.
 重合反応温度に特に制限はなくポリイミド化合物の合成において通常採用されうる温度を採用することができる。具体的には-50~250℃であることが好ましく、より好ましくは-25~225℃であり、更に好ましくは0℃~200℃であり、特に好ましくは20℃~190℃である。 The polymerization reaction temperature is not particularly limited, and a temperature that can be usually employed in the synthesis of a polyimide compound can be employed. Specifically, it is preferably −50 to 250 ° C., more preferably −25 to 225 ° C., still more preferably 0 ° C. to 200 ° C., and particularly preferably 20 ° C. to 190 ° C.
 上記の重合反応により生成したポリアミック酸を分子内で脱水閉環反応させることによりイミド化することで、ポリイミド化合物が得られる。脱水閉環させる方法としては、一般的な成書(例えば、今井淑夫、横田力男編著、「最新ポリイミド~基礎と応用~」、株式会社エヌ・ティー・エス、2010年8月25日、p.3~49、など)に記載の方法を参考とすることができる。例えば、120℃~200℃に加熱して、副生する水を系外に除去しながら反応させる熱イミド化法や、ピリジンやトリエチルアミン、DBUのような塩基性触媒共存下で、無水酢酸やジシクロヘキシルカルボジイミド、亜リン酸トリフェニルのような脱水縮合剤を用いるいわゆる化学イミド化等の手法が好適に用いられる。 A polyimide compound is obtained by imidizing the polyamic acid produced by the above polymerization reaction by a dehydration ring-closing reaction in the molecule. As a method for dehydrating and ring-closing, a general book (for example, Ikuo Imai, edited by Rikio Yokota, “Latest Polyimide: Fundamentals and Applications”), NTS Corporation, August 25, 2010, p. 3 to 49, etc.) can be referred to. For example, acetic anhydride or dicyclohexyl is heated in the presence of a basic catalyst such as pyridine, triethylamine or DBU by heating to 120 ° C to 200 ° C for reaction while removing by-product water out of the system. A technique such as so-called chemical imidization using a dehydration condensing agent such as carbodiimide and triphenyl phosphite is preferably used.
 本発明において、ポリイミド化合物の重合反応液中のテトラカルボン酸二無水物及びジアミン化合物の総濃度は特に限定されるものではないが、5~70質量%が好ましく、より好ましくは5~50質量%が好ましく、さらに好ましくは5~30質量%である。 In the present invention, the total concentration of tetracarboxylic dianhydride and diamine compound in the polymerization reaction solution of the polyimide compound is not particularly limited, but is preferably 5 to 70% by mass, more preferably 5 to 50% by mass. And more preferably 5 to 30% by mass.
 本発明で用いられる式(1)で表される架橋ポリイミド化合物の好ましい例を挙げると、以下に示すとおりである。以下、架橋する前のポリイミド化合物を挙げて説明する。但し、本発明はこれらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000030

Figure JPOXMLDOC01-appb-C000031
Preferred examples of the crosslinked polyimide compound represented by the formula (1) used in the present invention are as follows. Hereinafter, the polyimide compound before cross-linking will be described. However, the present invention is not limited to these.
Figure JPOXMLDOC01-appb-C000030

Figure JPOXMLDOC01-appb-C000031
 本発明で用いられる式(4)で表される多官能アミンの好ましい例を挙げると、以下に示すとおりである。但し、本発明はこれらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000032
Preferred examples of the polyfunctional amine represented by the formula (4) used in the present invention are as follows. However, the present invention is not limited to these.
Figure JPOXMLDOC01-appb-C000032
[ガス分離膜]
〔ガス分離複合膜〕
 本発明のガス分離膜の好ましい態様であるガス分離複合膜は、ガス透過性の支持層の上側に、式(1)で表される構造単位を含むポリイミド化合物を含有してなるガス分離層が形成されている。この複合膜は、多孔質の支持体の少なくとも表面に、上記のガス分離層をなす塗布液(ドープ)を塗布(本明細書において塗布とは浸漬により表面に付着される態様を含む意味である。)することにより形成することが好ましい。
 図1は、本発明の好ましい実施形態であるガス分離複合膜10を模式的に示す縦断面図である。1はガス分離層、2は多孔質層からなる支持層である。図2は、本発明の別の好ましい実施形態であるガス分離複合膜20を模式的に示す断面図である。この実施形態では、ガス分離層1及び多孔質層2に加え、支持層として不織布層3が追加されている。
 図1及び2は、二酸化炭素とメタンの混合ガスから二酸化炭素を選択的に透過させることにより、透過ガスを二酸化炭素リッチにした態様を示す。
[Gas separation membrane]
[Gas separation composite membrane]
A gas separation composite membrane which is a preferred embodiment of the gas separation membrane of the present invention has a gas separation layer containing a polyimide compound containing a structural unit represented by the formula (1) on the upper side of a gas permeable support layer. Is formed. This composite membrane is applied to the above-mentioned coating solution (dope) forming the gas separation layer on at least the surface of the porous support (in this specification, coating is meant to include an aspect in which it is attached to the surface by dipping) )) Is preferable.
FIG. 1 is a longitudinal sectional view schematically showing a gas separation composite membrane 10 which is a preferred embodiment of the present invention. 1 is a gas separation layer, 2 is a support layer which consists of a porous layer. FIG. 2 is a cross-sectional view schematically showing a gas separation composite membrane 20 which is another preferred embodiment of the present invention. In this embodiment, a nonwoven fabric layer 3 is added as a support layer in addition to the gas separation layer 1 and the porous layer 2.
1 and 2 show an embodiment in which carbon dioxide is selectively permeated from a mixed gas of carbon dioxide and methane to make the permeated gas rich in carbon dioxide.
 本明細書において「支持層上側」とは、支持層とガス分離層との間に他の層が介在してもよい意味である。また、上下の表現については、特に断らない限り、分離対象となるガスが供給される側を「上」とし、分離されたガスが出される側を「下」とする。 In the present specification, “upper support layer” means that another layer may be interposed between the support layer and the gas separation layer. As for the upper and lower expressions, unless otherwise specified, the side to which the gas to be separated is supplied is “upper”, and the side from which the separated gas is released is “lower”.
 本発明のガス分離複合膜は、多孔質性の支持体(支持層)の表面ないし内面にガス分離層を形成又は配置するようにしてもよく、少なくとも表面に形成して簡便に複合膜とすることができる。多孔質性の支持体の少なくとも表面にガス分離層を形成することで、高分離選択性と高ガス透過性、更には機械的強度を兼ね備えるという利点を有する複合膜とすることができる。分離層の膜厚としては機械的強度、分離選択性を維持しつつ高ガス透過性を付与する条件において可能な限り薄膜であることが好ましい。 In the gas separation composite membrane of the present invention, a gas separation layer may be formed or disposed on the surface or inner surface of a porous support (support layer). be able to. By forming a gas separation layer on at least the surface of the porous support, a composite membrane having the advantages of having both high separation selectivity, high gas permeability, and mechanical strength can be obtained. The thickness of the separation layer is preferably a thin film as much as possible under the condition of imparting high gas permeability while maintaining mechanical strength and separation selectivity.
 本発明のガス分離複合膜において、ガス分離層の厚さは特に限定されない。ガス分離層の厚さは、0.01~5.0μmであることが好ましく、0.05~2.0μmであることがより好ましい。 In the gas separation composite membrane of the present invention, the thickness of the gas separation layer is not particularly limited. The thickness of the gas separation layer is preferably from 0.01 to 5.0 μm, and more preferably from 0.05 to 2.0 μm.
 支持層に好ましく適用される多孔質支持体(多孔質層)は、機械的強度及び高気体透過性の付与に合致する目的のものであれば、特に限定されるものではなく有機、無機どちらの素材であっても構わない。好ましくは有機高分子の多孔質膜であり、その厚さは1~3000μm、好ましくは5~500μmであり、より好ましくは5~150μmである。この多孔質膜の細孔構造は、通常平均細孔直径が10μm以下、好ましくは0.5μm以下、より好ましくは0.2μm以下である。空孔率は好ましくは20~90%であり、より好ましくは30~80%である。
 ここで、支持層が「ガス透過性」を有するとは、支持層(支持層のみからなる膜)に対して、40℃の温度下、ガス供給側の全圧力を5MPaにして二酸化炭素を供給した際に、二酸化炭素の透過速度が1×10-5cm(STP)/cm・sec・cmHg(10GPU)以上であることを意味する。さらに、支持層のガス透過性は、40℃の温度下、ガス供給側の全圧力を5MPaにして二酸化炭素を供給した際に、二酸化炭素透過速度が3×10-5cm(STP)/cm・sec・cmHg(30GPU)以上であることが好ましく、100GPU以上であることがより好ましく、200GPU以上であることがさらに好ましい。多孔質膜の素材としては、従来公知の高分子、例えばポリエチレン、ポリプロピレン等のポリオレフィン系樹脂等、ポリテトラフルオロエチレン、ポリフッ化ビニル、ポリフッ化ビニリデン等の含フッ素樹脂等、ポリスチレン、酢酸セルロース、ポリウレタン、ポリアクリロニトリル、ポリフェニレンオキシド、ポリスルホン、ポリエーテルスルホン、ポリイミド、ポリアラミド等の各種樹脂を挙げることができる。多孔質膜の形状としては、平板状、スパイラル状、管状、中空糸状などいずれの形状をとることもできる。
The porous support (porous layer) preferably applied to the support layer is not particularly limited as long as it has the purpose of meeting mechanical strength and imparting high gas permeability. It may be a material. An organic polymer porous film is preferable, and the thickness thereof is 1 to 3000 μm, preferably 5 to 500 μm, and more preferably 5 to 150 μm. The pore structure of this porous membrane usually has an average pore diameter of 10 μm or less, preferably 0.5 μm or less, more preferably 0.2 μm or less. The porosity is preferably 20 to 90%, more preferably 30 to 80%.
Here, that the support layer has “gas permeability” means that carbon dioxide is supplied to the support layer (a film composed of only the support layer) at a temperature of 40 ° C. with a total pressure of 5 MPa on the gas supply side. This means that the permeation rate of carbon dioxide is 1 × 10 −5 cm 3 (STP) / cm 2 · sec · cmHg (10 GPU) or more. Further, the gas permeability of the support layer is such that when carbon dioxide is supplied at a temperature of 40 ° C. and the total pressure on the gas supply side is 5 MPa, the carbon dioxide permeation rate is 3 × 10 −5 cm 3 (STP) / It is preferably cm 2 · sec · cmHg (30 GPU) or more, more preferably 100 GPU or more, and further preferably 200 GPU or more. Examples of porous membrane materials include conventionally known polymers such as polyolefin resins such as polyethylene and polypropylene, fluorine-containing resins such as polytetrafluoroethylene, polyvinyl fluoride, and polyvinylidene fluoride, polystyrene, cellulose acetate, and polyurethane. And various resins such as polyacrylonitrile, polyphenylene oxide, polysulfone, polyethersulfone, polyimide, and polyaramid. The shape of the porous membrane may be any shape such as a flat plate shape, a spiral shape, a tubular shape, and a hollow fiber shape.
 本発明のガス分離複合膜においては、ガス分離層を形成する支持層の下部にさらに機械的強度を付与するために支持体が形成されていることが好ましい。このような支持体としては、織布、不織布、ネット等が挙げられるが、製膜性及びコスト面から不織布が好適に用いられる。不織布としてはポリエステル、ポリプロピレン、ポリアクリロニトリル、ポリエチレン、ポリアミド等からなる繊維を単独あるいは複数を組み合わせて用いてもよい。不織布は、例えば、水に均一に分散した主体繊維とバインダー繊維を円網や長網等で抄造し、ドライヤーで乾燥することにより製造できる。また、毛羽を除去したり機械的性質を向上させたり等の目的で、不織布を2本のロール挟んで圧熱加工を施すことも好ましい。 In the gas separation composite membrane of the present invention, it is preferable that a support is formed to further impart mechanical strength to the lower part of the support layer forming the gas separation layer. Examples of such a support include woven fabrics, nonwoven fabrics, nets, and the like, but nonwoven fabrics are preferably used in terms of film forming properties and cost. As the nonwoven fabric, fibers made of polyester, polypropylene, polyacrylonitrile, polyethylene, polyamide or the like may be used alone or in combination. The nonwoven fabric can be produced, for example, by making a main fiber and a binder fiber uniformly dispersed in water using a circular net or a long net, and drying with a dryer. Moreover, it is also preferable to apply a heat treatment by sandwiching a non-woven fabric between two rolls for the purpose of removing fluff and improving mechanical properties.
<ガス分離複合膜の製造方法>
 本発明の複合膜の製造方法は、好ましくは、上記ポリイミド化合物を含有する塗布液を支持体上に塗布する工程と、塗布液を乾燥する工程とを有することによってガス分離層を形成することを含む製造方法が好ましい。塗布液中のポリイミド化合物の含有量は特に限定されないが、0.1~30質量%であることが好ましく、0.5~10質量%であることがより好ましい。ポリイミド化合物の含有量を高くすることは、多孔質支持体上に製膜した際に、容易に下層に浸透して分離に寄与する表層に欠陥が生じることを抑制できる観点で好ましい。また、ポリイミド化合物の含有量を低くすることは、多孔質支持体上に製膜した際に孔内に高濃度に充填されてしまい、透過性が低くなることを防ぐ観点で好ましい。本発明のガス分離膜は、分離層のポリマーの分子量、構造、組成さらには溶液粘度を調整することで適切に製造することができる。
<Method for producing gas separation composite membrane>
In the method for producing a composite membrane of the present invention, preferably, a gas separation layer is formed by having a step of applying a coating liquid containing the polyimide compound on a support and a step of drying the coating liquid. The manufacturing method including is preferable. The content of the polyimide compound in the coating solution is not particularly limited, but is preferably 0.1 to 30% by mass, and more preferably 0.5 to 10% by mass. Increasing the content of the polyimide compound is preferable from the viewpoint of suppressing the occurrence of defects in the surface layer that easily penetrates into the lower layer and contributes to separation when the film is formed on the porous support. Moreover, it is preferable to lower the content of the polyimide compound from the viewpoint of preventing the permeability from being lowered due to high concentration in the pores when the film is formed on the porous support. The gas separation membrane of the present invention can be appropriately produced by adjusting the molecular weight, structure, composition, and solution viscosity of the polymer in the separation layer.
 塗布液の媒体とする有機溶剤としては、特に限定されるものではないが、n-ヘキサン、n-ヘプタン等の炭化水素系有機溶剤、酢酸メチル、酢酸エチル、酢酸ブチル等のエステル系有機溶剤、メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、イソブタノール、tert-ブタノール等の低級アルコール、アセトン、メチルエチルケトン、メチルイソブチルケトン、ジアセトンアルコール、シクロペンタノン、シクロヘキサノン等の脂肪族ケトン、エチレングリコール、ジエチレングリコール、トリエチレングリコール、グリセリン、プロピレングリコール、エチレングリコールモノメチル又はモノエチルエーテル、プロピレングリコールメチルエーテル、ジプロピレングリコールメチルエーテル、トリプロピレングリコールメチルエーテル、エチレングリコールフェニルエーテル、プロピレングリコールフェニルエーテル、ジエチレングリコールモノメチル又はモノエチルエーテル、ジエチレングリコールモノブチルエーテル、トリエチレングリコールモノメチル又はモノエチルエーテル、ジブチルエーテル、テトラヒドロフラン、メチルシクロペンチルエーテル、ジオキサン等のエーテル系有機溶剤、N-メチルピロリドン、2-ピロリドン、ジメチルホルムアミド、ジメチルイミダゾリジノン、ジメチルスルホキシド、ジメチルアセトアミドなどが挙げられる。これらの有機溶剤は支持体を浸蝕するなどの悪影響を及ぼさない範囲で適切に選択されるものであるが、好ましくは、エステル系(好ましくは酢酸ブチル)、アルコール系(好ましくはメタノール、エタノール、イソプロパノール、イソブタノール)、脂肪族ケトン系(好ましくは、メチルエチルケトン、メチルイソブチルケトン、ジアセトンアルコール、シクロペンタノン、シクロヘキサノン)、エーテル系(エチレングリコール、ジエチレングリコールモノメチルエーテル、メチルシクロペンチルエーテル)が好ましく、さらに好ましくは脂肪族ケトン系、アルコール系、エーテル系の溶媒である。またこれらは、1種又は2種以上の溶媒を組み合わせて用いることができる。 The organic solvent used as a medium for the coating solution is not particularly limited, but is a hydrocarbon organic solvent such as n-hexane or n-heptane, an ester organic solvent such as methyl acetate, ethyl acetate or butyl acetate, Lower alcohols such as methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol and tert-butanol, aliphatic ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, diacetone alcohol, cyclopentanone and cyclohexanone, ethylene glycol , Diethylene glycol, triethylene glycol, glycerin, propylene glycol, ethylene glycol monomethyl or monoethyl ether, propylene glycol methyl ether, dipropylene glycol methyl ether, tri Ether-based organics such as propylene glycol methyl ether, ethylene glycol phenyl ether, propylene glycol phenyl ether, diethylene glycol monomethyl or monoethyl ether, diethylene glycol monobutyl ether, triethylene glycol monomethyl or monoethyl ether, dibutyl ether, tetrahydrofuran, methylcyclopentyl ether, dioxane Examples thereof include solvents, N-methylpyrrolidone, 2-pyrrolidone, dimethylformamide, dimethylimidazolidinone, dimethyl sulfoxide, dimethylacetamide and the like. These organic solvents are appropriately selected as long as they do not adversely affect the substrate, such as ester-based (preferably butyl acetate), alcohol-based (preferably methanol, ethanol, isopropanol). , Isobutanol), aliphatic ketones (preferably methyl ethyl ketone, methyl isobutyl ketone, diacetone alcohol, cyclopentanone, cyclohexanone) and ethers (ethylene glycol, diethylene glycol monomethyl ether, methyl cyclopentyl ether) are more preferable. Aliphatic ketone, alcohol and ether solvents. Moreover, these can be used combining 1 type (s) or 2 or more types of solvent.
 乾燥に関して、特に制限はないが、乾燥温度は20~100℃が好ましく、25~60℃が更に好ましい。 Drying is not particularly limited, but the drying temperature is preferably 20 to 100 ° C, more preferably 25 to 60 ° C.
 また、本発明は、上記式(3)で表される構造単位を含むポリイミド化合物と、上記式(4)で表される単官能アミンとを含む、ガス分離膜用組成物に関する。
 この組成物に他に添加してもよい成分としては、上記溶剤(溶媒)が挙げられる。
Moreover, this invention relates to the composition for gas separation membranes containing the polyimide compound containing the structural unit represented by the said Formula (3), and the monofunctional amine represented by the said Formula (4).
Other components that may be added to the composition include the above solvent (solvent).
 また、本発明は、上記式(3)で表される構造単位を含むポリイミド化合物を含んでなる膜を、上記式(4)で表される単官能アミンを含む溶液に浸漬させる、ガス分離膜の製造方法に関する。
 上記単官能アミンを含む溶液を形成する溶媒としては、有機溶媒が好ましく、例えば、ケトン、アルコール、エーテルが挙げられる。より好ましくは、ケトン、アルコールである。ケトンとして、具体的には、アセトン、メチルエチルケトン、メチルイソブチルケトンが挙げられる。アルコールとして、具体的には、メタノール、エタノール、イソプロパノールが挙げられる。
 単官能アミンを含む溶液100質量%中に、単官能アミンの濃度は、1~50質量%が好ましく、1~40質量%がさらに好ましい。
 浸漬液の温度は、上記溶媒の沸点以下であることが好ましく、10~100℃であることがさらに好ましい。
 浸漬時間は、10秒~24時間が好ましく、さらに好ましくは1分~10時間である。
 浸漬した後は、上記溶媒で洗浄することが好ましい。
 乾燥に関して、特に制限はないが、乾燥温度は20~100℃が好ましく、40~80℃が更に好ましい。
The present invention also provides a gas separation membrane in which a membrane containing a polyimide compound containing a structural unit represented by the above formula (3) is immersed in a solution containing a monofunctional amine represented by the above formula (4). It relates to the manufacturing method.
As the solvent for forming the solution containing the monofunctional amine, an organic solvent is preferable, and examples thereof include ketones, alcohols, and ethers. More preferred are ketones and alcohols. Specific examples of the ketone include acetone, methyl ethyl ketone, and methyl isobutyl ketone. Specific examples of the alcohol include methanol, ethanol, and isopropanol.
The concentration of the monofunctional amine is preferably 1 to 50% by mass and more preferably 1 to 40% by mass in 100% by mass of the solution containing the monofunctional amine.
The temperature of the immersion liquid is preferably not higher than the boiling point of the solvent, and more preferably 10 to 100 ° C.
The immersion time is preferably 10 seconds to 24 hours, more preferably 1 minute to 10 hours.
After immersion, it is preferable to wash with the above solvent.
The drying is not particularly limited, but the drying temperature is preferably 20 to 100 ° C, more preferably 40 to 80 ° C.
(支持層とガス分離層との間の他の層)
 本発明のガス分離複合膜において、支持層とガス分離層との間には他の層が存在していてもよい。他の層の好ましい例として、シロキサン化合物層が挙げられる。シロキサン化合物層を設けることで、支持体最表面の凹凸を平滑化することができ、分離層の薄層化が容易になる。尚、支持層とガス分離層との間の他の層のことを、平滑層ともいう。シロキサン化合物層を形成するシロキサン化合物としては、主鎖がポリシロキサンからなるものと、主鎖にシロキサン構造と非シロキサン構造を有する化合物とが挙げられる。
 本明細書において「シロキサン化合物」という場合、特に断りのない限り、オルガノポリシロキサン化合物を意味する。
(Other layers between the support layer and the gas separation layer)
In the gas separation composite membrane of the present invention, another layer may exist between the support layer and the gas separation layer. A preferred example of the other layer is a siloxane compound layer. By providing the siloxane compound layer, the unevenness on the outermost surface of the support can be smoothed, and the separation layer can be easily thinned. In addition, the other layer between a support layer and a gas separation layer is also called a smooth layer. Examples of the siloxane compound forming the siloxane compound layer include those having a main chain made of polysiloxane and compounds having a siloxane structure and a non-siloxane structure in the main chain.
In the present specification, the term “siloxane compound” means an organopolysiloxane compound unless otherwise specified.
-主鎖がポリシロキサンからなるシロキサン化合物-
 シロキサン化合物層に用いうる、主鎖がポリシロキサンからなるシロキサン化合物としては、下記式(1)もしくは(2)で表されるポリオルガノシロキサンの1種又は2種以上が挙げられる。また、これらのポリオルガノシロキサンは架橋反応物を形成していてもよい。この架橋反応物としては、例えば、下記式(1)で表される化合物が、下記式(1)の反応性基Xと反応して連結する基を両末端に有するポリシロキサン化合物により架橋された形態の化合物が挙げられる。
-Siloxane compounds whose main chain consists of polysiloxane-
Examples of the siloxane compound having a main chain made of polysiloxane that can be used in the siloxane compound layer include one or more polyorganosiloxanes represented by the following formula (1) or (2). Moreover, these polyorganosiloxanes may form a crosslinking reaction product. As the cross-linking reaction, for example, a compound represented by the following formula (1) is crosslinked by a polysiloxane compound having a group capable of linking by reacting with the reactive group X S of the formula (1) at both ends The compound of the form is mentioned.
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
 式(1)中、Rは非反応性基であって、アルキル基(好ましくは炭素数1~18、より好ましくは炭素数1~12のアルキル基)又はアリール基(好ましくは炭素数6~15、より好ましくは炭素数6~12のアリール基、さらに好ましくはフェニル)であることが好ましい。
 Xは反応性基であって、水素原子、ハロゲン原子、ビニル基、ヒドロキシ基、及び置換アルキル基(好ましくは炭素数1~18、より好ましくは炭素数1~12のアルキル基)から選ばれる基であることが好ましい。
 Y及びZは上記R又はXである。
 mは1以上の数であり、好ましくは1~100,000である。
 nは0以上の数であり、好ましくは0~100,000である。
In the formula (1), R S is a non-reactive group and is an alkyl group (preferably an alkyl group having 1 to 18 carbon atoms, more preferably an alkyl group having 1 to 12 carbon atoms) or an aryl group (preferably having 6 to 6 carbon atoms). 15, more preferably an aryl group having 6 to 12 carbon atoms, and still more preferably phenyl).
X S is a reactive group, and is selected from a hydrogen atom, a halogen atom, a vinyl group, a hydroxy group, and a substituted alkyl group (preferably an alkyl group having 1 to 18 carbon atoms, more preferably an alkyl group having 1 to 12 carbon atoms). It is preferably a group.
Y S and Z S are the above R S or X S.
m is a number of 1 or more, preferably 1 to 100,000.
n is a number of 0 or more, preferably 0 to 100,000.
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
 式(2)中、X、Y、Z、R、m及びnは、それぞれ式(1)のX、Y、Z、R、m及びnと同義である。 Wherein (2), X S, Y S, Z S, R S, m and n are X S of each formula (1), Y S, Z S, R S, and m and n synonymous.
 上記式(1)及び(2)において、非反応性基Rがアルキル基である場合、このアルキル基の例としては、メチル、エチル、へキシル、オクチル、デシル、及びオクタデシルを挙げることができる。また、非反応性基Rがフルオロアルキル基である場合、このフルオロアルキル基としては、例えば、-CHCHCF、-CHCH13が挙げられる。 In the above formulas (1) and (2), when the non-reactive group R S is an alkyl group, examples of the alkyl group include methyl, ethyl, hexyl, octyl, decyl, and octadecyl. . When the non-reactive group R is a fluoroalkyl group, examples of the fluoroalkyl group include —CH 2 CH 2 CF 3 and —CH 2 CH 2 C 6 F 13 .
 上記式(1)及び(2)において、反応性基Xが置換アルキル基である場合、このアルキル基の例としては、炭素数1~18のヒドロキシアルキル基、炭素数1~18のアミノアルキル基、炭素数1~18のカルボキシアルキル基、炭素数1~18のクロロアルキル基、炭素数1~18のグリシドキシアルキル基、グリシジル基、炭素数7~16のエポキシシクロへキシルアルキル基、炭素数4~18の(1-オキサシクロブタン-3-イル)アルキル基、メタクリロキシアルキル基、及びメルカプトアルキル基が挙げられる。
 上記ヒドロキシアルキル基を構成するアルキル基の炭素数は1~10の整数であることが好ましく、例えば、-CHCHCHOHが挙げられる。
 上記アミノアルキル基を構成するアルキル基の炭素数は1~10の整数であることが好ましく、例えば、-CHCHCHNHが挙げられる。
 上記カルボキシアルキル基を構成するアルキル基の炭素数は1~10の整数であることが好ましく、例えば、-CHCHCHCOOHが挙げられる。
 上記クロロアルキル基を構成するアルキル基の炭素数は1~10の整数であることが好ましく、好ましい例としては-CHClが挙げられる。
 上記グリシドキシアルキル基を構成するアルキル基の好ましい炭素数は1~10の整数であり、好ましい例としては、3-グリシジルオキシプロピルが挙げられる。
 上記炭素数7~16のエポキシシクロへキシルアルキル基の好ましい炭素数は8~12の整数である。
 炭素数4~18の(1-オキサシクロブタン-3-イル)アルキル基の好ましい炭素数は4~10の整数である。
 上記メタクリロキシアルキル基を構成するアルキル基の好ましい炭素数は1~10の整数であり、例えば、-CHCHCH-OOC-C(CH)=CHが挙げられる。
 上記メルカプトアルキル基を構成するアルキル基の好ましい炭素数は1~10の整数であり、例えば、-CHCHCHSHが挙げられる。
 m及びnは、化合物の分子量が5,000~1,000,000になる数であることが好ましい。
In the above formulas (1) and (2), when the reactive group XS is a substituted alkyl group, examples of the alkyl group include a hydroxyalkyl group having 1 to 18 carbon atoms and an aminoalkyl group having 1 to 18 carbon atoms. A carboxyalkyl group having 1 to 18 carbon atoms, a chloroalkyl group having 1 to 18 carbon atoms, a glycidoxyalkyl group having 1 to 18 carbon atoms, a glycidyl group, an epoxycyclohexylalkyl group having 7 to 16 carbon atoms, Examples thereof include a (1-oxacyclobutan-3-yl) alkyl group having 4 to 18 carbon atoms, a methacryloxyalkyl group, and a mercaptoalkyl group.
The number of carbon atoms of the alkyl group constituting the hydroxyalkyl group is preferably an integer of 1 to 10, for example, —CH 2 CH 2 CH 2 OH.
The number of carbon atoms in the alkyl group constituting the aminoalkyl group is preferably an integer of 1 to 10, for example, —CH 2 CH 2 CH 2 NH 2 .
The number of carbon atoms of the alkyl group constituting the carboxyalkyl group is preferably an integer of 1 to 10, and examples thereof include —CH 2 CH 2 CH 2 COOH.
The alkyl group constituting the chloroalkyl group preferably has an integer of 1 to 10, and a preferred example is —CH 2 Cl.
A preferable carbon number of the alkyl group constituting the glycidoxyalkyl group is an integer of 1 to 10, and a preferred example is 3-glycidyloxypropyl.
The preferable number of carbon atoms of the epoxy cyclohexyl alkyl group having 7 to 16 carbon atoms is an integer of 8 to 12.
A preferable carbon number of the (1-oxacyclobutan-3-yl) alkyl group having 4 to 18 carbon atoms is an integer of 4 to 10.
A preferable carbon number of the alkyl group constituting the methacryloxyalkyl group is an integer of 1 to 10, and examples thereof include —CH 2 CH 2 CH 2 —OOC—C (CH 3 ) ═CH 2 .
A preferable carbon number of the alkyl group constituting the mercaptoalkyl group is an integer of 1 to 10, and examples thereof include —CH 2 CH 2 CH 2 SH.
m and n are preferably numbers that give a molecular weight of 5,000 to 1,000,000 of the compound.
 上記式(1)及び(2)において、反応性基含有シロキサン単位(式中、その数がnで表される構成単位)と反応性基を有さないシロキサン単位(式中、その数がmで表される構成単位)の分布に特に制限はない。すなわち、式(1)及び(2)中、(Si(R)(R)-O)単位と(Si(R)(X)-O)単位はランダムに分布していてもよい。 In the above formulas (1) and (2), a reactive group-containing siloxane unit (wherein the number is a structural unit represented by n) and a siloxane unit having no reactive group (wherein the number is m The distribution of the structural unit represented by That is, in the formulas (1) and (2), the (Si (R S ) (R S ) —O) units and the (Si (R S ) (X S ) —O) units may be randomly distributed. .
-主鎖にシロキサン構造と非シロキサン構造を有する化合物-
 シロキサン化合物層に用いうる、主鎖にシロキサン構造と非シロキサン構造を有する化合物としては、例えば、下記式(3)~(7)で表される化合物が挙げられる。
-Compounds with siloxane and non-siloxane structures in the main chain-
Examples of the compound having a siloxane structure and a non-siloxane structure in the main chain that can be used in the siloxane compound layer include compounds represented by the following formulas (3) to (7).
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
 式(3)中、R、m及びnは、それぞれ式(1)のR、m及びnと同義である。Rは-O-又は-CH-であり、RS1は水素原子又はメチルである。式(3)の両末端はアミノ基、水酸基、カルボキシ基、トリメチルシリル基、エポキシ基、ビニル基、水素原子、置換アルキル基であることが好ましい。 Wherein (3), R S, m and n are respectively the same as R S, m and n in formula (1). R L is —O— or —CH 2 —, and R S1 is a hydrogen atom or methyl. Both ends of the formula (3) are preferably an amino group, a hydroxyl group, a carboxy group, a trimethylsilyl group, an epoxy group, a vinyl group, a hydrogen atom, or a substituted alkyl group.
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
 式(4)中、m及びnは、それぞれ式(1)におけるm及びnと同義である。 In Formula (4), m and n are synonymous with m and n in Formula (1), respectively.
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
 式(5)中、m及びnは、それぞれ式(1)におけるm及びnと同義である。 In formula (5), m and n have the same meanings as m and n in formula (1), respectively.
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
 式(6)中、m及びnは、それぞれ式(1)におけるm及びnと同義である。式(6)の両末端はアミノ基、水酸基、カルボキシ基、トリメチルシリル基、エポキシ基、ビニル基、水素原子、又は置換アルキル基が結合していることが好ましい。 In Formula (6), m and n are synonymous with m and n in Formula (1), respectively. It is preferable that the both ends of Formula (6) have an amino group, a hydroxyl group, a carboxy group, a trimethylsilyl group, an epoxy group, a vinyl group, a hydrogen atom, or a substituted alkyl group bonded thereto.
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
 式(7)中、m及びnは、それぞれ式(1)におけるm及びnと同義である。式(7)の両末端はアミノ基、水酸基、カルボキシ基、トリメチルシリル基、エポキシ、ビニル基、水素原子、又は置換アルキル基が結合していることが好ましい。 In formula (7), m and n are synonymous with m and n in formula (1), respectively. It is preferable that an amino group, a hydroxyl group, a carboxy group, a trimethylsilyl group, an epoxy, a vinyl group, a hydrogen atom, or a substituted alkyl group is bonded to both ends of the formula (7).
 上記式(3)~(7)において、シロキサン構造単位と非シロキサン構造単位とは、ランダムに分布していてもよい。 In the above formulas (3) to (7), the siloxane structural unit and the non-siloxane structural unit may be randomly distributed.
 主鎖にシロキサン構造と非シロキサン構造を有する化合物は、全繰り返し構造単位の合計モル数に対して、シロキサン構造単位を50モル%以上含有することが好ましく、70モル%以上含有することがさらに好ましい。 The compound having a siloxane structure and a non-siloxane structure in the main chain preferably contains 50 mol% or more of siloxane structural units, more preferably 70 mol% or more, based on the total number of moles of all repeating structural units. .
 シロキサン化合物層に用いるシロキサン化合物の重量平均分子量は、薄膜化と耐久性の両立の観点から、5,000~1,000,000であることが好ましい。重量平均分子量の測定方法は上述したとおりである。 The weight average molecular weight of the siloxane compound used in the siloxane compound layer is preferably 5,000 to 1,000,000 from the viewpoint of achieving both a thin film and durability. The method for measuring the weight average molecular weight is as described above.
 さらに、シロキサン化合物層を構成するシロキサン化合物の好ましい例としては、ポリジメチルシロキサン、ポリメチルフェニルシロキサン、ポリジフェニルシロキサン、ポリスルホン/ポリヒドロキシスチレン/ポリジメチルシロキサン共重合体、ジメチルシロキサン/メチルビニルシロキサン共重合体、ジメチルシロキサン/ジフェニルシロキサン/メチルビニルシロキサン共重合体、メチル-3,3,3-トリフルオロプロピルシロキサン/メチルビニルシロキサン共重合体、ジメチルシロキサン/メチルフェニルシロキサン/メチルビニルシロキサン共重合体、ジフェニルシロキサン/ジメチルシロキサン共重合体末端ビニル、ポリジメチルシロキサン末端ビニル、ポリジメチルシロキサン末端H、及びジメチルシロキサン/メチルハイドロシロキサン共重合体から選ばれる1種又は2種以上が挙げられる。なお、これらは架橋反応物を形成している形態も含まれる。 Furthermore, preferable examples of the siloxane compound constituting the siloxane compound layer include polydimethylsiloxane, polymethylphenylsiloxane, polydiphenylsiloxane, polysulfone / polyhydroxystyrene / polydimethylsiloxane copolymer, dimethylsiloxane / methylvinylsiloxane copolymer. Polymer, dimethylsiloxane / diphenylsiloxane / methylvinylsiloxane copolymer, methyl-3,3,3-trifluoropropylsiloxane / methylvinylsiloxane copolymer, dimethylsiloxane / methylphenylsiloxane / methylvinylsiloxane copolymer, diphenyl Siloxane / dimethylsiloxane copolymer terminal vinyl, polydimethylsiloxane terminal vinyl, polydimethylsiloxane terminal H, and dimethylsiloxane / methyl One or more selected from hydro siloxane copolymer. In addition, these include the form which forms the cross-linking reaction product.
 本発明の複合膜において、シロキサン化合物層の厚さは、平滑性及びガス透過性の観点から、0.01~5μmであることが好ましく、0.05~1μmであることがより好ましい。
 また、シロキサン化合物層の40℃、4MPaにおける気体透過率は二酸化炭素透過速度で100GPU以上であることが好ましく、300GPU以上であることがより好ましく、1000GPU以上であることがさらに好ましい。
In the composite film of the present invention, the thickness of the siloxane compound layer is preferably from 0.01 to 5 μm, more preferably from 0.05 to 1 μm, from the viewpoint of smoothness and gas permeability.
Further, the gas permeability at 40 ° C. and 4 MPa of the siloxane compound layer is preferably 100 GPU or more, more preferably 300 GPU or more, and further preferably 1000 GPU or more in terms of carbon dioxide transmission rate.
〔ガス分離非対称膜〕
 本発明のガス分離膜は、非対称膜であってもよい。非対称膜は、ポリイミド化合物を含む溶液を用いて相転換法によって形成することができる。相転換法は、ポリマー溶液を凝固液と接触させて相転換させながら膜を形成する公知の方法であり、本発明ではいわゆる乾湿式法が好適に用いられる。乾湿式法は、膜形状にしたポリマー溶液の表面の溶液を蒸発させて薄い緻密層を形成し、ついで凝固液(ポリマー溶液の溶媒とは相溶し、ポリマーは不溶な溶剤)に浸漬し、その際生じる相分離現象を利用して微細孔を形成して多孔質層を形成させる方法であり、ロブ・スリラージャンらの提案(例えば、米国特許第3,133,132号明細書)したものである。
[Gas separation asymmetric membrane]
The gas separation membrane of the present invention may be an asymmetric membrane. The asymmetric membrane can be formed by a phase change method using a solution containing a polyimide compound. The phase inversion method is a known method for forming a film while bringing a polymer solution into contact with a coagulation liquid to cause phase conversion. In the present invention, a so-called dry / wet method is suitably used. The dry and wet method evaporates the solution on the surface of the polymer solution in the form of a film to form a thin dense layer, and then immerses it in a coagulation liquid (solvent that is compatible with the solvent of the polymer solution and the polymer is insoluble), This is a method of forming a porous layer by forming micropores using the phase separation phenomenon that occurs at that time, and proposed by Rob Thrillerjan et al. (For example, US Pat. No. 3,133,132) It is.
 本発明のガス分離非対称膜において、緻密層あるいはスキン層と呼ばれるガス分離に寄与する表層の厚さは特に限定されない。表層の厚さは、実用的なガス透過性を付与する観点から、0.01~5.0μmであることが好ましく、0.05~1.0μmであることがより好ましい。一方、緻密層より下部の多孔質層はガス透過性の抵抗を下げると同時に機械強度の付与の役割を担うものであり、その厚さは非対称膜としての自立性が付与される限りにおいては特に限定されるものではない。この厚さは、5~500μmであることが好ましく、5~200μmであることがより好ましく、5~100μmであることがさらに好ましい。 In the gas separation asymmetric membrane of the present invention, the thickness of the surface layer contributing to gas separation called a dense layer or skin layer is not particularly limited. The thickness of the surface layer is preferably 0.01 to 5.0 μm and more preferably 0.05 to 1.0 μm from the viewpoint of imparting practical gas permeability. On the other hand, the porous layer below the dense layer lowers the gas permeability resistance and at the same time plays a role of imparting mechanical strength, and its thickness is particularly limited as long as it is self-supporting as an asymmetric membrane. It is not limited. This thickness is preferably 5 to 500 μm, more preferably 5 to 200 μm, and even more preferably 5 to 100 μm.
 本発明のガス分離非対称膜は、平膜であってもあるいは中空糸膜であってもよい。非対称中空糸膜は乾湿式紡糸法により製造することができる。乾湿式紡糸法は、乾湿式法を紡糸ノズルから吐出して中空糸状の目的形状としたポリマー溶液に適用して非対称中空糸膜を製造する方法である。より詳しくは、ポリマー溶液をノズルから中空糸状の目的形状に吐出させ、吐出直後に空気又は窒素ガス雰囲気中を通した後、ポリマーを実質的には溶解せず且つポリマー溶液の溶媒とは相溶性を有する凝固液に浸漬して非対称構造を形成し、その後乾燥し、さらに必要に応じて加熱処理して分離膜を製造する方法である。 The gas separation asymmetric membrane of the present invention may be a flat membrane or a hollow fiber membrane. The asymmetric hollow fiber membrane can be produced by a dry and wet spinning method. The dry-wet spinning method is a method for producing an asymmetric hollow fiber membrane by applying a dry-wet method to a polymer solution that is discharged from a spinning nozzle to have a hollow fiber-shaped target shape. More specifically, the polymer solution is discharged from a nozzle into a hollow fiber-shaped target shape, and after passing through an air or nitrogen gas atmosphere immediately after discharge, the polymer is not substantially dissolved and is compatible with the solvent of the polymer solution. In this method, an asymmetric structure is formed by immersing in a coagulating liquid containing, then dried, and further heat-treated as necessary to produce a separation membrane.
 ノズルから吐出させるポリイミド化合物を含む溶液の溶液粘度は、吐出温度(例えば10℃)で2~17000Pa・s、好ましくは10~1500Pa・s、特に好ましくは20~1000Pa・sであることが、中空糸状などの吐出後の形状を安定に得ることができるので好ましい。凝固液への浸漬は、一次凝固液に浸漬して中空糸状等の膜の形状が保持出来る程度に凝固させた後、案内ロールに巻き取り、ついで二次凝固液に浸漬して膜全体を十分に凝固させることが好ましい。凝固した膜の乾燥は、凝固液を炭化水素などの溶媒に置換してから行うのが効率的である。乾燥のための加熱処理は、用いたポリイミド化合物の軟化点又は二次転移点よりも低い温度で実施することが好ましい。 The solution viscosity of the solution containing the polyimide compound discharged from the nozzle is 2 to 17000 Pa · s, preferably 10 to 1500 Pa · s, particularly preferably 20 to 1000 Pa · s at the discharge temperature (for example, 10 ° C.). It is preferable because a shape after discharge such as a thread shape can be stably obtained. For immersion in the coagulation liquid, the film is immersed in the primary coagulation liquid and solidified to such an extent that the shape of the hollow fiber or the like can be maintained, wound on a guide roll, and then immersed in the secondary coagulation liquid to fully saturate the entire film. It is preferable to solidify. It is efficient to dry the coagulated film after replacing the coagulating liquid with a solvent such as hydrocarbon. The heat treatment for drying is preferably performed at a temperature lower than the softening point or secondary transition point of the used polyimide compound.
〔ガス分離層の保護層〕
 本発明のガス分離膜は、上記ガス分離層上に保護層として、ガス分離層に接してシロキサン化合物層が設けられていてもよい。
 上記シロキサン化合物層は、下記数式(I)で表されるクロロホルム浸漬前後のSi比が0.6~1.0の範囲内にあることが好ましい。
[Protective layer of gas separation layer]
In the gas separation membrane of the present invention, a siloxane compound layer may be provided on the gas separation layer as a protective layer in contact with the gas separation layer.
In the siloxane compound layer, the Si ratio before and after immersion in chloroform represented by the following formula (I) is preferably in the range of 0.6 to 1.0.
数式(I)
 Si比=(クロロホルム浸漬後のSi-KαX線強度)/(クロロホルム浸漬前のSi-KαX線強度)
Formula (I)
Si ratio = (Si-Kα X-ray intensity after chloroform immersion) / (Si-Kα X-ray intensity before chloroform immersion)
 Si比は、シロキサン化合物層をクロロホルム中に、25℃で12時間浸漬し、この浸漬前後のシロキサン化合物層表面にX線を照射し、そのSi-KαX線(1.74keV)のピーク(2θ=144.6deg)の強度を測定することにより算出される。Si-KαX線強度の測定方法は、例えば特開平6-88792号公報に記載されている。クロロホルム中への浸漬により、浸漬前に比べてSi-KαX線強度が低下する場合、低分子量成分が存在し、これが溶出していることを意味する。したがって、クロロホルム中への浸漬後において、Si-KαX線強度の低下度合が小さい程、シロキサン化合物層を構成するポリマーがより高分子化され、クロロホルム中に溶出しにくくなっていることを意味する。 The Si ratio was determined by immersing the siloxane compound layer in chloroform at 25 ° C. for 12 hours, and irradiating the surface of the siloxane compound layer before and after the immersion with X-rays, and the Si—KαX-ray (1.74 keV) peak (2θ = It is calculated by measuring the intensity of 144.6 deg). A method for measuring the Si-Kα X-ray intensity is described in, for example, Japanese Patent Application Laid-Open No. 6-88792. When the Si-Kα X-ray intensity is reduced by immersion in chloroform as compared with that before immersion, it means that a low molecular weight component is present and eluted. Therefore, the smaller the degree of decrease in the Si-Kα X-ray intensity after immersion in chloroform, the higher the polymer constituting the siloxane compound layer, and the more difficult it is to elute in chloroform.
 シロキサン化合物層のSi比が0.6~1.0の範囲内であることにより、シロキサン化合物を層中に、高密度且つ均質に存在させることができ、膜欠陥を効果的に防ぎ、ガス分離性能をより高めることができる。また、高圧、高温且つ高湿条件下における使用や、トルエン等の不純物成分によるガス分離層の可塑化をより抑えることが可能となる。
 本発明におけるシロキサン化合物層のSi比は、0.7~1.0が好ましく、0.75~1.0がより好ましく、0.8~1.0がさらに好ましく、0.85~1.0が特に好ましい。
When the Si ratio of the siloxane compound layer is in the range of 0.6 to 1.0, the siloxane compound can be present in the layer with high density and uniformity, effectively preventing film defects and gas separation. The performance can be further increased. In addition, use under high pressure, high temperature and high humidity conditions, and plasticization of the gas separation layer due to impurity components such as toluene can be further suppressed.
The Si ratio of the siloxane compound layer in the present invention is preferably 0.7 to 1.0, more preferably 0.75 to 1.0, still more preferably 0.8 to 1.0, and 0.85 to 1.0. Is particularly preferred.
 保護層に用いる上記シロキサン化合物層は、シロキサン化合物同士が、-O-M-O--S-M-S--NRC(=O)--NRC(=O)NR-O-CH-O--S-CHCH-OC(=O)O--CH(OH)CHOCO--CH(OH)CHO--CH(OH)CHS--CH(OH)CHNR-CH(CHOH)CHOCO--CH(CHOH)CHO--CH(CHOH)CHS--CH(CHOH)CHN(R-CHCH-C(=O)O(R-SO (R及び-PO (Rから選ばれる連結基を介して連結した構造を有することが好ましい。
 式中、Mは2~4価の金属原子を示す。R、R、R 、R、及びRは水素原子又はアルキル基を示す。は連結部位を示す。
In the siloxane compound layer used for the protective layer, the siloxane compounds are made of * -O-M-O- * , * -SMS- * , * -NR a C (= O)- * , * -NR. b C (═O) NR b* , * —O—CH 2 —O— * , * —S—CH 2 CH 2* , * —OC (═O) O— * , * —CH (OH) CH 2 OCO— * , * —CH (OH) CH 2 O— * , * —CH (OH) CH 2 S— * , * —CH (OH) CH 2 NR c— * , * —CH (CH 2 OH) ) CH 2 OCO— * , * —CH (CH 2 OH) CH 2 O— * , * —CH (CH 2 OH) CH 2 S— * , * —CH (CH 2 OH) CH 2 N (R c ) 2* , * −CH 2 CH 2* , * −C (═O) O N + (R d ) 3* , * -SO 3 - N + (R e ) 3 - * and * -PO 3 - N + (R f) 3 - preferably has a connection structure through a linking group selected from *.
In the formula, M represents a divalent to tetravalent metal atom. R a , R b , R c , R d , R e , and R f represent a hydrogen atom or an alkyl group. * Indicates a linking site.
 上記金属原子Mとしては、例えば、アルミニウム(Al)、鉄(Fe)、ベリリウム(Be)、ガリウム(Ga)、バナジウム(V)、インジウム(In)、チタン(Ti)、ジルコニウム(Zr)、銅(Cu)、コバルト(Co)、ニッケル(Ni)、亜鉛(Zn)、カルシウム(Ca)、マグネシウム(Mg)、イットリウム(Y)、スカンジウム(Sc)、クロム(Cr)、マンガン(Mn)、モリブデン(Mo)及びホウ素(B)から選ばれる金属原子が挙げられ、なかでもTi、In、Zr、Fe、Zn、Al、Ga及びBから選ばれる金属原子が好ましく、Ti、In、及びAlから選ばれる金属原子がより好ましく、Alがさらに好ましい。 Examples of the metal atom M include aluminum (Al), iron (Fe), beryllium (Be), gallium (Ga), vanadium (V), indium (In), titanium (Ti), zirconium (Zr), and copper. (Cu), cobalt (Co), nickel (Ni), zinc (Zn), calcium (Ca), magnesium (Mg), yttrium (Y), scandium (Sc), chromium (Cr), manganese (Mn), molybdenum Examples include metal atoms selected from (Mo) and boron (B), and among these, metal atoms selected from Ti, In, Zr, Fe, Zn, Al, Ga, and B are preferable, and selected from Ti, In, and Al. The metal atom is more preferable, and Al is more preferable.
 上記R、R、R 、R、及びRとして採り得るアルキル基は、好ましくは炭素数1~20、より好ましくは炭素数1~10、さらに好ましくは炭素数1~7、特に好ましくは炭素数1~4のアルキル基である。このアルキル基は直鎖でも分岐を有してもよいが、直鎖であることがより好ましい。このアルキル基の好ましい具体例として、例えばメチル、エチル、イソプロピル、n-ブチル、t-ブチル、ペンチル、ヘキシル、ヘプチル、オクチル、及び1-エチルペンチルを挙げることができる。 The alkyl group that can be taken as R a , R b , R c , R d , R e , and R f is preferably 1 to 20 carbon atoms, more preferably 1 to 10 carbon atoms, still more preferably 1 to carbon atoms. 7, particularly preferably an alkyl group having 1 to 4 carbon atoms. This alkyl group may be linear or branched, but is more preferably linear. Specific examples of preferred alkyl groups include methyl, ethyl, isopropyl, n-butyl, t-butyl, pentyl, hexyl, heptyl, octyl and 1-ethylpentyl.
 シロキサン化合物同士が上記連結基を介して連結した構造を有することにより、シロキサン化合物層のSi比を上記好ましい範囲内にまでより高めやすくなる。 When the siloxane compound has a structure in which the siloxane compounds are linked via the linking group, the Si ratio of the siloxane compound layer is easily increased to the preferred range.
 シロキサン化合物同士を、上記連結基を介して連結する反応について以下に説明する。 The reaction for linking siloxane compounds to each other through the linking group will be described below.
-O-M-O-
 上記連結基-O-M-O-は、例えば、ヒドロキシ基、カルボキシ基、スルホ基等の-OHを有する基(活性水素含有基)を有するシロキサン化合物と、下記式(B)で表される金属錯体(架橋剤)との間の配位子交換反応により形成することができる。
< * -OMO- * >
The linking group * —O—M—O— * is represented by, for example, a siloxane compound having a group having —OH (an active hydrogen-containing group) such as a hydroxy group, a carboxy group, or a sulfo group, and the following formula (B): It can be formed by a ligand exchange reaction with a metal complex (crosslinking agent).
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
 式中、Mは上記金属原子Mと同義であり、好ましい形態も同じである。Lはアルコキシ基、アリールオキシ基、アセチルアセトナト基、アシルオキシ基、ヒドロキシ基又はハロゲン原子を示す。yは2~4の整数を示す。
 Lとして採りうるアルコキシ基は、その炭素数が1~10が好ましく、1~4がより好ましく、1~3がさらに好ましい。Lとして採りうるアルコキシ基の具体例としては、例えば、メトキシ、エトキシ、tert-ブトキシ、及びイソプロポキシが挙げられる。
 Lとして採りうるアリールオキシ基は、その炭素数が6~10が好ましく、6~8がより好ましく、6~7がさらに好ましい。Lとして採りうるアリールオキシ基の具体例としては、例えば、フェノキシ、4-メトキシフェノキシ、及びナフトキシを挙げることができる。
 Lとして採りうるアシルオキシ基は、その炭素数が、2~10が好ましく、2~6がより好ましく、2~4がさらに好ましい。Lとして採りうるアシルオキシ基の具体例としては、例えば、アセトキシ、プロパノイルオキシ、ピバロイルオキシ、及びアセチルオキシを挙げることができる。
 Lとして採りうるハロゲン原子に特に制限はなく、フッ素原子、塩素原子、臭素原子及びヨウ素原子が挙げられる。なかでも塩素原子が好ましい。
In formula, M is synonymous with the said metal atom M, and its preferable form is also the same. L L represents an alkoxy group, an aryloxy group, an acetylacetonato group, an acyloxy group, a hydroxy group or a halogen atom. y represents an integer of 2 to 4.
The alkoxy group that can be taken as L L preferably has 1 to 10 carbon atoms, more preferably 1 to 4 carbon atoms, and still more preferably 1 to 3 carbon atoms. Specific examples of the alkoxy group that can be taken as L L include, for example, methoxy, ethoxy, tert-butoxy, and isopropoxy.
The aryloxy group that can be taken as L L preferably has 6 to 10 carbon atoms, more preferably 6 to 8 carbon atoms, and still more preferably 6 to 7 carbon atoms. Specific examples of the aryloxy group that can be taken as L L include, for example, phenoxy, 4-methoxyphenoxy, and naphthoxy.
The acyloxy group that can be taken as L L preferably has 2 to 10 carbon atoms, more preferably 2 to 6 carbon atoms, and still more preferably 2 to 4 carbon atoms. Specific examples of the acyloxy group that can be taken as L L include, for example, acetoxy, propanoyloxy, pivaloyloxy, and acetyloxy.
There is no particular restriction on the halogen atom that can take as L L, a fluorine atom, a chlorine atom, a bromine atom and an iodine atom. Of these, a chlorine atom is preferable.
 上記式(B)で表される金属錯体は、シロキサン化合物層を形成する際の塗布液に用いる有機溶媒に対して可溶であることが好ましい。より具体的には、25℃において、テトラヒドロフラン100gに対して上記式(B)で表される金属錯体の溶解度が0.01~10gであることが好ましく、0.1~1.0gであることがより好ましい。上記式(B)で表される金属錯体が上記有機溶媒に対して可溶であることにより、より均質な架橋シロキサン化合物層を形成することができる。 It is preferable that the metal complex represented by the above formula (B) is soluble in an organic solvent used for a coating solution when forming a siloxane compound layer. More specifically, the solubility of the metal complex represented by the above formula (B) with respect to 100 g of tetrahydrofuran at 25 ° C. is preferably 0.01 to 10 g, and preferably 0.1 to 1.0 g. Is more preferable. When the metal complex represented by the formula (B) is soluble in the organic solvent, a more uniform crosslinked siloxane compound layer can be formed.
 上記式(B)で表される金属錯体の好ましい具体例としては、アルミニウムアセチルアセトナト、ガリウムアセチルアセトナト、インジウムアセチルアセトナト、ジルコニウムアセチルアセトナト、コバルトアセチルアセトナト、カルシウムアセチルアセトナト、ニッケルアセチルアセトナト、亜鉛アセチルアセトナト、マグネシウムアセチルアセトナト、塩化第二鉄、酢酸銅(II)、アルミニウムイソプロポキシド、チタニウムイソプロポキシド、ホウ酸、及び三フッ化ホウ素・ジエチルエーテル錯体から選ばれる金属錯体が挙げられる。 Preferred examples of the metal complex represented by the formula (B) include aluminum acetylacetonate, gallium acetylacetonate, indium acetylacetonate, zirconium acetylacetonate, cobalt acetylacetonate, calcium acetylacetonate, nickel acetyl. Metals selected from acetonato, zinc acetylacetonate, magnesium acetylacetonate, ferric chloride, copper (II) acetate, aluminum isopropoxide, titanium isopropoxide, boric acid, and boron trifluoride-diethyl ether complex A complex.
 上記配位子交換反応の一例を示すと下記の通りである。なお、下記例はシロキサン化合物がヒドロキシ基を有する場合を示すが、シロキサン化合物がカルボキシ基やスルホ基等の活性水素含有基を有する場合にも、同様の配位子交換反応が進行し、-O-M-O-で表される連結基が形成される。 An example of the ligand exchange reaction is as follows. The following examples show the case where the siloxane compound has a hydroxy group, but when the siloxane compound has an active hydrogen-containing group such as a carboxy group or a sulfo group, the same ligand exchange reaction proceeds, * − A linking group represented by O—M—O— * is formed.
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041
 式中、Rはシロキサン化合物残基を示す(すなわちR-OHはヒドロキシ基を有するシロキサン化合物を示す)。
 Mが4価の金属原子(y=4)の場合、R-OHは1つのMに対して通常4つまで配位しうる(上記(a)の形態)。本発明においては、Mが4価の金属原子の場合には、R-OHが2つ配位した形態(上記(c)の形態)、3つ配位した形態(上記(b)の形態)、及び4つ配位した形態(上記(a)の形態)いずれの形態も、-O-M-O-で表される連結基を有する形態に包含されるものとする。
In the formula, R P represents a siloxane compound residue (that is, R P —OH represents a siloxane compound having a hydroxy group).
When M is a tetravalent metal atom (y = 4), R P —OH can usually coordinate up to 4 to one M (form (a) above). In the present invention, when M is a tetravalent metal atom, two forms of R P —OH are coordinated (form (c) above), and three are coordinated (form (b) above) ) And 4-coordinated form (form (a) above) are all encompassed by the form having a linking group represented by * —O—M—O— * .
 Mが3価の金属原子の場合(y=3)、R-OHは1つのMに対して通常3つまで配位しうる(上記(d)の形態)。本発明においては、Mが3価の金属原子の場合には、R-OHが2つ配位した形態(上記(e)の形態)、3つ配位した形態(上記(d)の形態)のいずれの形態も、-O-M-O-で表される連結基を有する形態に包含されるものとする。 When M is a trivalent metal atom (y = 3), R P —OH can usually be coordinated to one M up to three (form (d) above). In the present invention, when M is a trivalent metal atom, two forms of R P —OH are coordinated (form (e) above), and three are coordinated (form (d) above) any form of) are also intended to be encompassed in the form having a linking group represented by * -O-M-O- *.
 Mが2価の金属原子の場合(y=2)、上記(f)の形態が、本発明で規定する-O-M-O-で表される連結基を有する形態である。
 また、上記の各式の説明には示していないが、上記シロキサン化合物R-OHがRP1-(OH)で表される場合(RP1はシロキサン化合物残基、hは2以上の整数、すなわち1分子中にヒドロキシ基を2つ以上有する形態である場合)、RP1-(OH)の1分子中に存在する2つ以上のOHが1つのMに配位していてもよい。この形態も-O-M-O-で表される連結基を有する形態に包含されるものとする。
When M is a divalent metal atom (y = 2), the form of the (f) is in the form having a linking group represented by the present invention defined by * -O-M-O- *.
Although not shown in the description of each formula above, when the siloxane compound R P —OH is represented by R P1 — (OH) h (R P1 is a siloxane compound residue, h is an integer of 2 or greater) That is, in the case of two or more hydroxy groups in one molecule), two or more OH present in one molecule of R P1- (OH) h may be coordinated to one M. . This embodiment also * intended to be encompassed by embodiments having a -O-M-O-* a linking group represented.
-S-M-S-
 上記連結構造-S-M-S-は、例えば、チオール基を有するシロキサン化合物と、上記式(B)で表される金属錯体との間の配位子交換反応により形成することが出来る。この反応は、上述した-O-M-O-を形成するための反応においてR-OHをR-SHに代えた反応形態である。-SHも活性水素含有基であるため、上記と同様に配位子交換反応を行うことができる。
< * -SMS- * >
The linking structure * -SMS— * can be formed by, for example, a ligand exchange reaction between a siloxane compound having a thiol group and the metal complex represented by the above formula (B). . This reaction is a reaction form in which R P —OH is replaced with R P —SH in the above-described reaction for forming * —O—M—O— * . Since —SH is also an active hydrogen-containing group, a ligand exchange reaction can be performed in the same manner as described above.
-NRC(=O)-
 上記連結基-NRC(=O)-は、例えば、カルボキシ基を有するシロキサン化合物と、アミノ基を有するシロキサン化合物とを、脱水縮合剤(例えばカルボジイミド化合物)の存在下で反応させることにより形成することができる。この反応は下記式で表すことができる。
 
 R-COOH + R-N(R
       ⇒ R-C(=O)-NR-R + H
 上記式中、Rはシロキサン化合物残基を示す。左辺において1つのNに連結する2つのRのうち1つは水素原子であり、残りは水素原子又はアルキル基である(つまり、右辺のRは水素原子又はアルキル基である。
 また、上記連結基は、カルボキシ基を有するシロキサン化合物と、架橋剤としての、アミノ基を2つ以上有する化合物とを反応させることで形成することもできる。また、アミノ基を有するシロキサン化合物と、架橋剤としての、カルボキシ基を2つ以上有する化合物とを反応させることによっても、上記連結基を形成させることができる。
< *- NR < a > C (= O)- * >
The linking group * —NR a C (═O) — * is obtained, for example, by reacting a siloxane compound having a carboxy group with a siloxane compound having an amino group in the presence of a dehydration condensing agent (for example, a carbodiimide compound). Can be formed. This reaction can be represented by the following formula.

R P —COOH + R P —N (R A ) 2
⇒ R P —C (═O) —NR A —R P + H 2 O
In the above formula, RP represents a siloxane compound residue. One of the two R A linked to one N on the left side is a hydrogen atom, and the rest is a hydrogen atom or an alkyl group (that is, R A on the right side is a hydrogen atom or an alkyl group.
The linking group can also be formed by reacting a siloxane compound having a carboxy group with a compound having two or more amino groups as a crosslinking agent. Moreover, the said coupling group can also be formed by making the siloxane compound which has an amino group, and the compound which has two or more carboxy groups as a crosslinking agent react.
-NRC(=O)NR
 上記連結基-NRC(=O)NRは、例えば、アミノ基を有するシロキサン化合物と、架橋剤としてのクロロギ酸エステルとを反応させることにより形成することができる。この反応は下記式で表すことができる。
 
 2R-N(R + Cl-C(=O)-O-RCl
    ⇒ R-RN-C(=O)-NR-R + HCl + HO-RCl
 上記式中、Rはシロキサン化合物残基を示し、RClはクロロギ酸エステルのアルコール残基を示す。左辺において1つのNに連結する2つのRのうち1つは水素原子であり、残りは水素原子又はアルキル基である(つまり、右辺のRは水素原子又はアルキル基である)。
<* -NR b C (= O ) NR b - *>
The linking group * —NR b C (═O) NR b* can be formed, for example, by reacting a siloxane compound having an amino group with a chloroformate as a crosslinking agent. This reaction can be represented by the following formula.

2R P —N (R B ) 2 + Cl—C (═O) —O—R Cl
⇒ R P —R B N—C (═O) —NR B —R P + HCl + HO—R Cl
In the above formula, RP represents a siloxane compound residue, and R Cl represents an alcohol residue of chloroformate. One of the two R B is coupled to one of N in the left side is a hydrogen atom, the remainder is a hydrogen atom or an alkyl group (i.e., the right side of the R B is a hydrogen atom or an alkyl group).
-O-CH-O-
 上記連結基-O-CH-O-は、例えば、ヒドロキシ基を有するシロキサン化合物と、架橋剤としてのホルムアルデヒドとを反応させることにより形成することができる。この反応は下記式で表すことができる。
 
 2R-OH + H-C(=O)-H
            ⇒ R-O-CH(O-R)-H + H
 上記式中、Rはシロキサン化合物残基を示す。
<* -O-CH 2 -O- * >
The linking group * —O—CH 2 —O— * can be formed, for example, by reacting a siloxane compound having a hydroxy group with formaldehyde as a crosslinking agent. This reaction can be represented by the following formula.

2R P —OH + HC (═O) —H
⇒ R P —O—CH (O—R P ) —H + H 2 O
In the above formula, RP represents a siloxane compound residue.
-S-CHCH
 上記連結基-S-CHCHは、例えば、チオール基を有するシロキサン化合物と、ビニル基を有するシロキサン化合物とを反応させることにより形成することができる。この反応は下記式で表すことができる。
 
 R-SH + R-CH=CH
         ⇒ R-S-CH-CH-R
 上記式中、Rはシロキサン化合物残基を示す。
 なお、チオール基を有するシロキサン化合物と、架橋剤としての、ビニル基を2つ以上有する化合物とを反応させた場合にも、上記連結基を形成させることができる。また、ビニル基を有するシロキサン化合物と、架橋剤としての、チオール基を2つ以上有する化合物とを反応させることによっても、上記連結基を形成することができる。
<* -S-CH 2 CH 2 - *>
The linking group * —S—CH 2 CH 2* can be formed, for example, by reacting a siloxane compound having a thiol group with a siloxane compound having a vinyl group. This reaction can be represented by the following formula.

R P —SH + R P —CH═CH 2
⇒ R P —S—CH 2 —CH 2 —R P
In the above formula, RP represents a siloxane compound residue.
The linking group can also be formed when a siloxane compound having a thiol group is reacted with a compound having two or more vinyl groups as a crosslinking agent. Alternatively, the linking group can be formed by reacting a siloxane compound having a vinyl group with a compound having two or more thiol groups as a crosslinking agent.
-OC(=O)O-
 上記連結基-OC(=O)O-は、例えば、ヒドロキシ基を有するシロキサン化合物と、架橋剤としてのクロロギ酸エステルとを反応させることにより形成することができる。この反応は下記式で表すことができる。
 
 2R-OH + Cl-C(=O)-O-RCl
      ⇒ R-O-C(=O)-O-R + HCl + HO-RCl
 上記式中、Rはシロキサン化合物残基を示し、RClはクロロギ酸エステルのアルコール残基を示す。
< *- OC (= O) O- * >
The linking group * —OC (═O) O— * can be formed, for example, by reacting a siloxane compound having a hydroxy group with a chloroformate as a crosslinking agent. This reaction can be represented by the following formula.

2R P —OH + Cl—C (═O) —O—R Cl
⇒ R P —O—C (═O) —O—R P + HCl + HO—R Cl
In the above formula, RP represents a siloxane compound residue, and R Cl represents an alcohol residue of chloroformate.
-C(=O)O(R
 上記連結基-C(=O)O(Rは、例えば、カルボキシ基を有するシロキサン化合物と、アミノ基を有するシロキサン化合物とを反応させることにより形成することができる。この反応は下記式で表すことができる。
 
 R-COOH + R-N(R
  ⇒ R-CO-O-NH(R-R
 上記式中、Rはシロキサン化合物残基を示す。Rは水素原子又はアルキル基を示す。
 なお、カルボキシ基を有するシロキサン化合物と、架橋剤としての、アミノ基を2つ以上有する化合物とを反応させることによっても、上記連結構造を形成することができる。また、アミノ基を有するシロキサン化合物と、架橋剤としての、カルボキシ基を2つ以上有する化合物とを反応させることによっても、上記連結基を形成することができる。
<* -C (= O) O - N + (R d) 3 - *>
The linking group * —C (═O) O N + (R d ) 3* can be formed, for example, by reacting a siloxane compound having a carboxy group with a siloxane compound having an amino group. . This reaction can be represented by the following formula.

R P —COOH + R P —N (R D ) 2
⇒ R P -CO-O - -N + H (R D) 2 -R P
In the above formula, RP represents a siloxane compound residue. R D represents a hydrogen atom or an alkyl group.
In addition, the said connection structure can also be formed by making the siloxane compound which has a carboxy group, and the compound which has two or more amino groups as a crosslinking agent react. Moreover, the said coupling group can also be formed by making the siloxane compound which has an amino group, and the compound which has two or more carboxy groups as a crosslinking agent react.
-SO (R
 上記連結基-SO (Rは、例えば、スルホ基を有するシロキサン化合物と、アミノ基を有するシロキサン化合物とを反応させることにより形成することができる。この反応は下記式で表すことができる。
 
 R-SOH + R-N(R
  ⇒ R-SO-O-NH(R-R
 上記式中、Rはシロキサン化合物残基を示す。Rは水素原子又はアルキル基を示す。
 なお、スルホ基を有するシロキサン化合物と、架橋剤としての、アミノ基を2つ以上有する化合物とを反応させることによっても、上記連結基を形成することができる。また、アミノ基を有するシロキサン化合物と、架橋剤としての、スルホ基を2つ以上有する化合物とを反応させることによっても、上記連結基を形成することができる。
<* -SO 3 - N + ( R e) 3 - *>
The linking group * -SO 3 - N + (R e) 3 - * , for example, can be formed by reacting a siloxane compound having a sulfo group, a siloxane compound having an amino group. This reaction can be represented by the following formula.

R P —SO 3 H + R P —N (R E ) 2
⇒ R P -SO 2 -O - -N + H (R E) 2 -R P
In the above formula, RP represents a siloxane compound residue. R E represents a hydrogen atom or an alkyl group.
The linking group can also be formed by reacting a siloxane compound having a sulfo group with a compound having two or more amino groups as a crosslinking agent. The linking group can also be formed by reacting a siloxane compound having an amino group with a compound having two or more sulfo groups as a crosslinking agent.
-PO(R
 上記連結構造-PO(Rは、例えば、ホスホン酸基を有するシロキサン化合物と、アミノ基を有するシロキサン化合物とを反応させることにより形成することができる。この反応は下記式で表すことができる。
 
 R-PO + R-N(R
  ⇒ R-P(=O)(OH)-O-NH(R-R
 上記式中、Rはシロキサン残基を示す。Rは水素原子又はアルキル基を示す。
 なお、ホスホン酸基を有するシロキサン化合物と、架橋剤としてのアミノ基を2つ以上有する化合物とを反応させることによっても、上記連結基を形成することができる。また、アミノ基を有するシロキサン化合物と、架橋剤としての、スルホン酸基を2つ以上有する化合物とを反応させることによっても、上記連結基を形成することができる。
<* -PO 3 H - N + (R f) 3 - *>
The connecting structure * —PO 3 H N + (R f ) 3* can be formed, for example, by reacting a siloxane compound having a phosphonic acid group with a siloxane compound having an amino group. This reaction can be represented by the following formula.

R P —PO 3 H 2 + R P —N (R F ) 2
⇒ R P -P (= O) (OH) -O -- N + H (R F ) 2 -R P
In the above formula, RP represents a siloxane residue. R F represents a hydrogen atom or an alkyl group.
The linking group can also be formed by reacting a siloxane compound having a phosphonic acid group with a compound having two or more amino groups as a crosslinking agent. The linking group can also be formed by reacting a siloxane compound having an amino group with a compound having two or more sulfonic acid groups as a crosslinking agent.
-CH(OH)CHOCO-
 上記連結基-CH(OH)CHOCO-は、例えば、エポキシ基を有するシロキサン化合物と、カルボキシ基を有するシロキサン化合物とを反応させることで形成させることができる。
 また、上記連結基は、エポキシ基を有するシロキサン化合物と、架橋剤としての、カルボキシ基を2つ以上有する化合物とを反応させたり、カルボキシ基を有するシロキサン化合物と、架橋剤としての、エポキシ基を2つ以上有する化合物とを反応させたりすることで形成することもできる。
<* -CH (OH) CH 2 OCO- *>
The linking group * —CH (OH) CH 2 OCO— * can be formed, for example, by reacting a siloxane compound having an epoxy group with a siloxane compound having a carboxy group.
The linking group is obtained by reacting a siloxane compound having an epoxy group with a compound having two or more carboxy groups as a crosslinking agent, or a siloxane compound having a carboxy group and an epoxy group as a crosslinking agent. It can also be formed by reacting with two or more compounds.
-CH(OH)CHO-
 上記連結基-CH(OH)CHO-は、例えば、エポキシ基を有するシロキサン化合物と、ヒドロキシ基を有するシロキサン化合物とを反応させることで形成させることができる。
 また、上記連結基は、エポキシ基を有するシロキサン化合物と、架橋剤としての、ヒドロキシ基を2つ以上有する化合物とを反応させたり、ヒドロキシ基を有するシロキサン化合物と、架橋剤としての、エポキシ基を2つ以上有する化合物とを反応させたりすることで形成することもできる。
< *- CH (OH) CH 2 O- * >
The linking group * —CH (OH) CH 2 O— * can be formed, for example, by reacting a siloxane compound having an epoxy group with a siloxane compound having a hydroxy group.
In addition, the linking group is obtained by reacting a siloxane compound having an epoxy group with a compound having two or more hydroxy groups as a crosslinking agent, or a siloxane compound having a hydroxy group and an epoxy group as a crosslinking agent. It can also be formed by reacting with two or more compounds.
-CH(OH)CHS-
 上記連結基-CH(OH)CHS-は、例えば、エポキシ基を有するシロキサン化合物と、チオール基を有するシロキサン化合物とを反応させることで形成させることができる。
 また、上記連結基は、エポキシ基を有するシロキサン化合物と、架橋剤としての、チオール基を2つ以上有する化合物とを反応させたり、チオール基を有するシロキサン化合物と、架橋剤としての、エポキシ基を2つ以上有する化合物とを反応させたりすることで形成することもできる。
< *- CH (OH) CH 2 S- * >
The linking group * —CH (OH) CH 2 S— * can be formed, for example, by reacting a siloxane compound having an epoxy group with a siloxane compound having a thiol group.
The linking group is obtained by reacting a siloxane compound having an epoxy group with a compound having two or more thiol groups as a crosslinking agent, or a siloxane compound having a thiol group and an epoxy group as a crosslinking agent. It can also be formed by reacting with two or more compounds.
-CH(OH)CHNR
 上記連結基-CH(OH)CHNRは、例えば、エポキシ基を有するシロキサン化合物と、アミノ基を有するシロキサン化合物とを反応させることで形成させることができる。
 また、上記連結基は、エポキシ基を有するシロキサン化合物と、架橋剤としての、アミノ基を2つ以上有する化合物とを反応させたり、アミノ基を有するシロキサン化合物と、架橋剤としての、エポキシ基を2つ以上有する化合物とを反応させたりすることで形成することもできる。
<* -CH (OH) CH 2 NR c - *>
The linking group * —CH (OH) CH 2 NR c* can be formed, for example, by reacting a siloxane compound having an epoxy group with a siloxane compound having an amino group.
In addition, the linking group includes a reaction between a siloxane compound having an epoxy group and a compound having two or more amino groups as a crosslinking agent, or a siloxane compound having an amino group and an epoxy group as a crosslinking agent. It can also be formed by reacting with two or more compounds.
-CH(CHOH)CHOCO-
 上記連結基-CH(CHOH)CHOCO-は、上述した-CH(OH)CHOCO-の形成において、エポキシ基をオキセタニル基に代えることで形成することができる。
<* -CH (CH 2 OH) CH 2 OCO- *>
The linking group * —CH (CH 2 OH) CH 2 OCO— * can be formed by replacing the epoxy group with an oxetanyl group in the above-described formation of * —CH (OH) CH 2 OCO— * .
-CH(CHOH)CHO-
 上記連結基-CH(CHOH)CHO-は、上述した-CH(OH)CHO-の形成において、エポキシ基をオキセタニル基に代えることで形成することができる。
<* -CH (CH 2 OH) CH 2 O- *>
The linking group * —CH (CH 2 OH) CH 2 O— * can be formed by replacing the epoxy group with an oxetanyl group in the above-described formation of * —CH (OH) CH 2 O— * .
-CH(CHOH)CHS-
 上記連結基-CH(CHOH)CHS-は、上述した-CH(OH)CHS-の形成において、エポキシ基をオキセタニル基に代えることで形成することができる。
<* -CH (CH 2 OH) CH 2 S- *>
The linking group * —CH (CH 2 OH) CH 2 S— * can be formed by replacing the epoxy group with an oxetanyl group in the above-described formation of * —CH (OH) CH 2 S— * .
-CH(CHOH)CHNR
 上記連結基-CH(CHOH)CHNRは、上述した-CH(OH)CHNRの形成において、エポキシ基をオキセタニル基に代えることで形成することができる。
< *- CH (CH 2 OH) CH 2 NR c - * >
The linking group * —CH (CH 2 OH) CH 2 NR c* can be formed by replacing the epoxy group with an oxetanyl group in the above-described formation of * —CH (OH) CH 2 NR c*. it can.
-CHCH
 上記連結基-CHCHは、例えば、ビニル基((メタ)アクリロイル基等)を有するシロキサン化合物同士を重合反応させることにより形成することができる。また、ビニル基を有するシロキサン化合物のビニル基と、ヒドロシリル基を有するシロキサン化合物のヒドロシリル基とを反応させることにより形成することもできる。
 本発明において、-CHCHを介して連結した構造には、-S-CHCHを介して連結した構造は含まれないものとする。
<* -CH 2 CH 2 - * >
The linking group * —CH 2 CH 2* can be formed, for example, by polymerizing siloxane compounds having a vinyl group (such as a (meth) acryloyl group). It can also be formed by reacting a vinyl group of a siloxane compound having a vinyl group with a hydrosilyl group of a siloxane compound having a hydrosilyl group.
In the present invention, the structure linked via * —CH 2 CH 2* does not include the structure linked via * —S—CH 2 CH 2* .
 シロキサン化合物層は、上記連結構造を1種有してもよいし、2種以上有してもよい。 The siloxane compound layer may have one type of the above-mentioned connection structure or two or more types.
 保護層である上記シロキサン化合物層中、シロキサン化合物同士の連結構造は、連結構造を形成するための反応性、連結構造の化学的安定性の観点から、上記-O-M-O--S-M-S--O-CH-O--S-CHCH-OC(=O)O--CHCH、及び-C(=O)O(Rから選ばれる連結基を介した連結構造の1種又は2種以上が好ましく、-O-M-O--S-M-S--O-CH-O-及び-S-CHCH-CHCHから選ばれる連結基を介した連結構造の1種又は2種以上がより好ましく、-O-M-O-及び-CHCHから選ばれる連結基を介した連結構造の1種又は2種がさらに好ましい。 In the siloxane compound layer as the protective layer, the siloxane compound-linked structure has the above-described * -O-MO- * , from the viewpoint of the reactivity for forming the linked structure and the chemical stability of the linked structure. * —SMS— * , * —O—CH 2 —O— * , * —S—CH 2 CH 2* , * —OC (═O) O— * , * —CH 2 CH 2* , And * -C (═O) O N + (R d ) 3* are preferably one or more of a linking structure via a linking group selected from the group * -O—M—O— * , * -S-M-S- * , * -O-CH 2 -O- * and * -S-CH 2 CH 2 - *, * -CH 2 CH 2 - * linked via a linking group selected from More preferably, one or more of the structures are selected from * —O—M—O— * and * —CH 2 CH 2*. 1 type or 2 types of the connection structure via the connecting group which is said is more preferable.
 保護層である上記シロキサン化合物層の原料として用いるシロキサン化合物(上記連結基を介した連結構造が形成される前のシロキサン化合物)は、上記連結構造を与える官能基を有するシロキサン化合物であれば特に制限はない。このポリシロキサン化合物の好ましい例としては、メタアクリレート変性ポリジアルキルシロキサン、メタアクリレート変性ポリジアリールシロキサン、メタアクリレート変性ポリアルキルアリールシロキサン、チオール変性ポリジアルキルシロキサン、チオール変性ポリジアリールシロキサン、チオール変性ポリアルキルアリールシロキサン、ヒドロキシ変性ポリジアルキルシロキサン、ヒドロキシ変性ポリジアリールシロキサン、ヒドロキシ変性ポリアルキルアリールシロキサン、アミン変性ポリジアルキルシロキサン、アミン変性ポリジアリールシロキサン、アミン変性ポリアルキルアリールシロキサン、ビニル変性ポリジアルキルシロキサン、ビニル変性ポリジアリールシロキサン、ビニル変性ポリアルキルアリールシロキサン、カルボキシ変性ポリジアルキルシロキサン、カルボキシ変性ポリジアリールシロキサン、カルボキシ変性ポリアルキルアリールシロキサン、ヒドロシリル変性ポリジアルキルシロキサン、ヒドロシリル変性ポリジアリールシロキサン、ヒドロシリル変性ポリアルキルアリールシロキサン、エポキシ変性ポリジアルキルシロキサン、エポキシ変性ポリジアリールシロキサン、エポキシ変性ポリアルキルアリールシロキサン、オキセタニル変性ポリジアルキルシロキサン、オキセタニル変性ポリジアリールシロキサン、及びオキセタニル変性ポリアルキルアリールシロキサンから選ばれる1種又は2種以上が挙げられる。
 また、上記例示のポリシロキサン化合物において、各官能基による変性部位は末端でもよく側鎖であってもよい。また、1分子中に2つ以上の変性部位があることが好ましい。また、上記変性により導入された各官能基はさらに置換基を有してもよい。
 また、上記「ポリアルキルアリールシロキサン」におけるアルキル基とアリール基の量比に特に制限はない。すなわち、「ポリアルキルアリールシロキサン」はその構造中に、ジアルキルシロキサン構造やジアリールシロキサン構造を有していてもよい。
 上記例示のシロキサン化合物において、アルキル基の炭素数は1~10が好ましく、1~5がより好ましく、1~3がさらに好ましく、メチルが特に好ましい。また、上記例示のシロキサン化合物において、アリール基の炭素数は6~20が好ましく、6~15がより好ましく、6~12がさらに好ましく、フェニルが特に好ましい。
The siloxane compound used as a raw material for the siloxane compound layer that is a protective layer (the siloxane compound before the formation of the linking structure via the linking group) is particularly limited as long as it is a siloxane compound having a functional group that gives the linking structure. There is no. Preferred examples of the polysiloxane compound include methacrylate-modified polydialkylsiloxane, methacrylate-modified polydiarylsiloxane, methacrylate-modified polyalkylarylsiloxane, thiol-modified polydialkylsiloxane, thiol-modified polydiarylsiloxane, and thiol-modified polyalkylarylsiloxane. , Hydroxy modified polydialkyl siloxane, hydroxy modified polydiaryl siloxane, hydroxy modified polyalkylaryl siloxane, amine modified polydialkyl siloxane, amine modified polydiaryl siloxane, amine modified polyalkylaryl siloxane, vinyl modified polydialkyl siloxane, vinyl modified polydiaryl siloxane , Vinyl-modified polyalkylaryl siloxane, carbon Boxy modified polydialkyl siloxane, carboxy modified polydiaryl siloxane, carboxy modified polyalkylaryl siloxane, hydrosilyl modified polydialkyl siloxane, hydrosilyl modified polydiaryl siloxane, hydrosilyl modified polyalkylaryl siloxane, epoxy modified polydialkyl siloxane, epoxy modified polydiaryl siloxane, Examples thereof include one or more selected from epoxy-modified polyalkylaryl siloxane, oxetanyl-modified polydialkyl siloxane, oxetanyl-modified polydiaryl siloxane, and oxetanyl-modified polyalkylaryl siloxane.
Further, in the above-exemplified polysiloxane compound, the modification site by each functional group may be a terminal or a side chain. Moreover, it is preferable that there are two or more modified sites in one molecule. Each functional group introduced by the modification may further have a substituent.
In addition, the amount ratio of the alkyl group to the aryl group in the “polyalkylaryl siloxane” is not particularly limited. That is, the “polyalkylarylsiloxane” may have a dialkylsiloxane structure or a diarylsiloxane structure in its structure.
In the siloxane compounds exemplified above, the alkyl group preferably has 1 to 10 carbon atoms, more preferably 1 to 5, more preferably 1 to 3, and particularly preferably methyl. In the above exemplified siloxane compound, the aryl group preferably has 6 to 20 carbon atoms, more preferably 6 to 15 carbon atoms, still more preferably 6 to 12 carbon atoms, and particularly preferably phenyl.
 保護層である上記シロキサン化合物層は、下記(a)及び(b)から選ばれる少なくとも1つの構造を有することが好ましい。
(a)下記一般式(1a)で表される構造と、下記一般式(2a)又は(3a)で表される構造とを有する構造
The siloxane compound layer as a protective layer preferably has at least one structure selected from the following (a) and (b).
(A) A structure having a structure represented by the following general formula (1a) and a structure represented by the following general formula (2a) or (3a)
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000042
(b)下記一般式(4a)で表される構造
Figure JPOXMLDOC01-appb-C000043
(B) Structure represented by the following general formula (4a)
Figure JPOXMLDOC01-appb-C000043
 式中、RSLはアルキル基あるいはアリール基を示す。Lは単結合又は2価の連結基を示す。X-O-M-O--S-M-S--O-CH-O--S-CHCH-OC(=O)O--CHCH、及び-C(=O)O(Rから選ばれる連結基を示す。Mは、Zr、Fe、Zn、B、Al又はGaを示し、Rは水素原子又はアルキル基を表す。a1及びb1は2以上の整数(好ましくは5以上の整数)である。「」は連結部位を示す。「**」はシロキサン結合中の連結部位を示す(すなわち、一般式(1a)~(3a)において、**の隣がO原子の場合、**はSi原子との連結部位を示し、**の隣がSi原子の場合、**はO原子との連結部位を示す)。
 また、一般式(4a)の末端構造は、水素原子、メルカプト基、アミノ基、ビニル基、カルボキシ基、オキセタン基、スルホン酸基、及びホスホン酸基から選ばれる基であることが好ましい。
In the formula, R SL represents an alkyl group or an aryl group. L A is a single bond or a divalent linking group. X A is * -OM 1 -O- * , * -SM 1 -S- * , * -O-CH 2 -O- * , * -S-CH 2 CH 2- * , * -OC A linking group selected from (═O) O— * , * —CH 2 CH 2* , and * —C (═O) O N + (R d ) 3* . M 1 represents Zr, Fe, Zn, B, Al, or Ga, and R d represents a hydrogen atom or an alkyl group. a1 and b1 are integers of 2 or more (preferably integers of 5 or more). “ * ” Indicates a linking site. “**” represents a linking site in a siloxane bond (that is, in the general formulas (1a) to (3a), when ** is an O atom, ** represents a linking site with a Si atom, * When * is next to a Si atom, ** represents a connecting site with an O atom).
The terminal structure of the general formula (4a) is preferably a group selected from a hydrogen atom, a mercapto group, an amino group, a vinyl group, a carboxy group, an oxetane group, a sulfonic acid group, and a phosphonic acid group.
 上記RSL及びRがアルキル基の場合、好ましくは炭素数1~10、より好ましくは炭素数1~5、さらに好ましくは炭素数1~3のアルキル基であり、メチルであることが特に好ましい。
 上記RSLがアリール基の場合、その炭素数は6~20が好ましく、6~15がより好ましく、6~12がさらに好ましく、特に好ましくはフェニル基である。
When R SL and R d are alkyl groups, they are preferably alkyl groups having 1 to 10 carbon atoms, more preferably 1 to 5 carbon atoms, still more preferably 1 to 3 carbon atoms, and particularly preferably methyl. .
When R SL is an aryl group, the carbon number thereof is preferably 6 to 20, more preferably 6 to 15, still more preferably 6 to 12, and particularly preferably a phenyl group.
 上記Lが2価の連結基の場合、アルキレン基(好ましくは炭素数1~10、より好ましくは炭素数1~5のアルキレン基)、アリーレン基(炭素数6~20、より好ましくは炭素数6~15のアリーレン基、さらに好ましくはフェニレン基)又は-Si(RSL-O-が好ましい(RSLは一般式(2a)のRSLと同義であり、好ましい形態も同じである。-Si(RSL-O-中の「O」が、上記一般式に示されたSiと連結する)。 If the L A is a divalent linking group, an alkylene group (preferably an alkylene group of 1 to 5 having 1 to 10 carbon atoms, more preferably carbon), an arylene group (6 to 20 carbon atoms, more preferably a carbon number arylene group having 6 to 15, more preferably synonymous with R SL phenylene group), or -Si (R SL) 2 -O- is preferred (R SL is the general formula (2a), a preferred form also the same. “O” in —Si (R SL ) 2 —O— is linked to Si shown in the above general formula).
 上記(a)の構造は、上記一般式(1a)~(3a)のいずれかで表される構造の他に、下記式(5a)で表される繰り返し単位を有することが好ましい。 The structure (a) preferably has a repeating unit represented by the following formula (5a) in addition to the structure represented by any one of the above general formulas (1a) to (3a).
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000044
 上記式(5a)で表される繰り返し単位は、シロキサン化合物層中において、上記式(5a)で表される繰り返し単位同士が互いにシロキサン結合で連結した構造をとって存在することも好ましい。 It is also preferred that the repeating unit represented by the above formula (5a) is present in the siloxane compound layer with a structure in which the repeating units represented by the above formula (5a) are connected to each other by a siloxane bond.
 本発明におけるシロキサン化合物層中、上記式(5a)で表される繰り返し単位の含有率は、0.01~0.55であることが好ましく、0.03~0.40であることがより好ましく、さらに好ましくは0.05~0.25である。
 式(5a)で表される繰り返し単位の含有率は、2.5cm四方に切り出したシロキサン化合物層を測定用試料とし、この測定用試料をX線光電子分光法(装置:Ulvac-PHI社製QuantraSXM)により、X線源:Al-Kα線(1490eV,25W,100umφ)、測定領域:300μm×300μm、Pass Energy 55eV、 Step 0.05eVの条件で、Si2p(98~104eV付近)を測定し、T成分(103eV)とQ成分(104eV)のピークを分離及び定量し、比較することで求められる。すなわち、式(5a)で表される繰り返し単位(Q成分)のSi-O結合エネルギーピークの蛍光X線強度[SA]と、式(5a)で表される繰り返し単位以外の構造(T成分)のSi-O結合エネルギーピークの強度の合計[ST]に基づき[SA]/([SA]+[ST])を算出し、式(5a)で表される繰り返し単位の含有率とする。
In the siloxane compound layer in the present invention, the content of the repeating unit represented by the above formula (5a) is preferably 0.01 to 0.55, more preferably 0.03 to 0.40. More preferably, it is 0.05 to 0.25.
The content of the repeating unit represented by the formula (5a) was determined by using a siloxane compound layer cut into a 2.5 cm square as a measurement sample, and the measurement sample was subjected to X-ray photoelectron spectroscopy (apparatus: Quantra SXM manufactured by Ulvac-PHI). ) To measure Si2p (near 98 to 104 eV) under the conditions of X-ray source: Al—Kα ray (1490 eV, 25 W, 100 μm), measurement region: 300 μm × 300 μm, Pass Energy 55 eV, Step 0.05 eV, and T It is obtained by separating, quantifying and comparing the peaks of the component (103 eV) and the Q component (104 eV). That is, the fluorescent X-ray intensity [SA] of the Si—O bond energy peak of the repeating unit (Q component) represented by the formula (5a) and the structure (T component) other than the repeating unit represented by the formula (5a) [SA] / ([SA] + [ST]) is calculated on the basis of the total intensity [ST] of Si—O bond energy peaks, and is defined as the content of the repeating unit represented by the formula (5a).
 本発明において、シロキサン化合物層の厚さは10~3000nmであることが好ましく、100~1500nmであることがより好ましい。 In the present invention, the thickness of the siloxane compound layer is preferably 10 to 3000 nm, more preferably 100 to 1500 nm.
〔ガス分離膜の用途と特性〕
 本発明のガス分離膜(複合膜及び非対称膜)は、ガス分離回収法、ガス分離精製法として好適に用いることができる。例えば、水素、ヘリウム、一酸化炭素、二酸化炭素、硫化水素、酸素、窒素、アンモニア、硫黄酸化物、窒素酸化物、メタン、エタンなどの炭化水素、プロピレンなどの不飽和炭化水素、テトラフルオロエタンなどのパーフルオロ化合物などのガスを含有する気体混合物から特定の気体を効率よく分離し得るガス分離膜とすることができる。特に二酸化炭素/炭化水素(メタン)を含む気体混合物から二酸化炭素を選択分離するガス分離膜とすることが好ましい。
[Uses and characteristics of gas separation membranes]
The gas separation membrane (composite membrane and asymmetric membrane) of the present invention can be suitably used as a gas separation recovery method and gas separation purification method. For example, hydrogen, helium, carbon monoxide, carbon dioxide, hydrogen sulfide, oxygen, nitrogen, ammonia, sulfur oxides, nitrogen oxides, hydrocarbons such as methane and ethane, unsaturated hydrocarbons such as propylene, tetrafluoroethane, etc. A gas separation membrane capable of efficiently separating a specific gas from a gas mixture containing a gas such as a perfluoro compound. In particular, a gas separation membrane that selectively separates carbon dioxide from a gas mixture containing carbon dioxide / hydrocarbon (methane) is preferable.
 とりわけ、分離処理されるガスが二酸化炭素とメタンとの混合ガスである場合においては、40℃、5MPaにおける二酸化炭素の透過速度が20GPU超であることが好ましく、30GPU超であることがより好ましく、35~500GPUであることがより好ましい。二酸化炭素とメタンとの透過速度比(RCO2/RCH4)は15以上であることが好ましく、20以上であることがより好ましい。RCO2は二酸化炭素の透過速度、RCH4はメタンの透過速度を示す。
 なお、1GPUは1×10-6cm(STP)/cm・sec・cmHgである。
In particular, when the gas to be separated is a mixed gas of carbon dioxide and methane, the permeation rate of carbon dioxide at 40 ° C. and 5 MPa is preferably more than 20 GPU, more preferably more than 30 GPU, More preferably, it is 35 to 500 GPU. The permeation rate ratio between carbon dioxide and methane (R CO2 / R CH4 ) is preferably 15 or more, and more preferably 20 or more. R CO2 represents the permeation rate of carbon dioxide, and R CH4 represents the permeation rate of methane.
1 GPU is 1 × 10 −6 cm 3 (STP) / cm 2 · sec · cmHg.
〔その他の成分等〕
 本発明のガス分離膜のガス分離層には、膜物性を調整するため、各種高分子化合物を添加することもできる。高分子化合物としては、アクリル系重合体、ポリウレタン樹脂、ポリアミド樹脂、ポリエステル樹脂、エポキシ樹脂、フェノール樹脂、ポリカーボネート樹脂、ポリビニルブチラール樹脂、ポリビニルホルマール樹脂、シェラック、ビニル系樹脂、アクリル系樹脂、ゴム系樹脂、ワックス類、その他の天然樹脂等が使用できる。また、これらは2種以上併用してもかまわない。
 また、液物性調整のためにノニオン性界面活性剤、カチオン性界面活性剤及び/又は有機フルオロ化合物などを添加することもできる。
[Other ingredients]
Various polymer compounds can be added to the gas separation layer of the gas separation membrane of the present invention in order to adjust the membrane properties. High molecular compounds include acrylic polymers, polyurethane resins, polyamide resins, polyester resins, epoxy resins, phenol resins, polycarbonate resins, polyvinyl butyral resins, polyvinyl formal resins, shellac, vinyl resins, acrylic resins, rubber resins. Waxes and other natural resins can be used. Two or more of these may be used in combination.
In addition, a nonionic surfactant, a cationic surfactant, and / or an organic fluoro compound can be added to adjust liquid properties.
 界面活性剤の具体例としては、アルキルベンゼンスルホン酸塩、アルキルナフタレンスルホン酸塩、高級脂肪酸塩、高級脂肪酸エステルのスルホン酸塩、高級アルコールエーテルの硫酸エステル塩、高級アルコールエーテルのスルホン酸塩、高級アルキルスルホンアミドのアルキルカルボン酸塩、アルキルリン酸塩などのアニオン界面活性剤、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレン脂肪酸エステル、ソルビタン脂肪酸エステル、アセチレングリコールのエチレンオキサイド付加物、グリセリンのエチレンオキサイド付加物、ポリオキシエチレンソルビタン脂肪酸エステルなどの非イオン性界面活性剤、また、この他にもアルキルベタイン及びアミドベタインなどの両性界面活性剤、シリコン系界面活性剤、フッソ系界面活性剤などを含めて、従来公知である界面活性剤及びその誘導体から適宜選ぶことができる。 Specific examples of the surfactant include alkylbenzene sulfonate, alkylnaphthalene sulfonate, higher fatty acid salt, sulfonate of higher fatty acid ester, sulfate ester of higher alcohol ether, sulfonate of higher alcohol ether, higher alkyl Anionic surfactants such as alkyl carboxylates of sulfonamides, alkyl phosphates, polyoxyethylene alkyl ethers, polyoxyethylene alkyl phenyl ethers, polyoxyethylene fatty acid esters, sorbitan fatty acid esters, ethylene oxide adducts of acetylene glycol, Nonionic surfactants such as ethylene oxide adducts of glycerin and polyoxyethylene sorbitan fatty acid esters, and other amphoterics such as alkyl betaines and amide betaines Surface active agents, silicone surface active agents, including such fluorine-based surfactant, can be appropriately selected from surfactants and derivatives thereof are known.
 また、高分子分散剤を含んでいてもよく、この高分子分散剤として、具体的にはポリビニルピロリドン、ポリビニルアルコール、ポリビニルメチルエーテル、ポリエチレンオキシド、ポリエチレングリコール、ポリプロピレングリコール、ポリアクリルアミド等が挙げられ、中でもポリビニルピロリドンを用いることが好ましい。 In addition, a polymer dispersant may be included, and specific examples of the polymer dispersant include polyvinyl pyrrolidone, polyvinyl alcohol, polyvinyl methyl ether, polyethylene oxide, polyethylene glycol, polypropylene glycol, and polyacrylamide. Of these, polyvinylpyrrolidone is preferably used.
 本発明のガス分離膜を形成する条件に特に制限はないが、温度は-30~100℃が好ましく、-10~80℃がより好ましく、5~50℃が特に好ましい。 The conditions for forming the gas separation membrane of the present invention are not particularly limited, but the temperature is preferably −30 to 100 ° C., more preferably −10 to 80 ° C., and particularly preferably 5 to 50 ° C.
 本発明においては、膜の形成時に空気や酸素などの気体を共存させてもよいが、不活性ガス雰囲気下であることが望ましい。
 本発明のガス分離膜において、ガス分離層中のポリイミド化合物の含有量は、所望のガス分離性能が得られれば特に制限はない。ガス分離性能をより向上させる観点から、ガス分離層中のポリイミド化合物の含有量は、20質量%以上であることが好ましく、40質量%以上であることがより好ましく、60質量%以上であることがさらに好ましく、70質量%以上であることが特に好ましい。また、ガス分離層中のポリイミド化合物の含有量は、100質量%であってもよいが、99質量%以下が好ましい。
In the present invention, a gas such as air or oxygen may coexist at the time of forming the film, but it is preferably in an inert gas atmosphere.
In the gas separation membrane of the present invention, the content of the polyimide compound in the gas separation layer is not particularly limited as long as desired gas separation performance can be obtained. From the viewpoint of further improving the gas separation performance, the content of the polyimide compound in the gas separation layer is preferably 20% by mass or more, more preferably 40% by mass or more, and 60% by mass or more. Is more preferable, and 70% by mass or more is particularly preferable. Further, the content of the polyimide compound in the gas separation layer may be 100% by mass, but is preferably 99% by mass or less.
〔ガス混合物の分離方法〕
 本発明のガス分離方法は、本発明のガス分離膜を用いて2成分以上の混合ガスから特定のガスを分離する方法である。本発明のガス分離方法では、二酸化炭素及びメタンを含む混合ガスから二酸化炭素を選択的に透過させることを含む方法である。ガス分離の際の圧力は0.5~10MPaであることが好ましく、1~10MPaであることがより好ましく、2~7MPaであることがさらに好ましい。また、ガス分離温度は、-30~90℃であることが好ましく、15~70℃であることがさらに好ましい。二酸化炭素とメタンガスとを含む混合ガスにおいて、二酸化炭素とメタンガスの混合比に特に制限はないが、二酸化炭素:メタンガス=1:99~99:1(体積比)であることが好ましく、二酸化炭素:メタンガス=5:95~90:10であることがより好ましい。
[Separation method of gas mixture]
The gas separation method of the present invention is a method for separating a specific gas from a mixed gas of two or more components using the gas separation membrane of the present invention. The gas separation method of the present invention is a method including selectively permeating carbon dioxide from a mixed gas containing carbon dioxide and methane. The pressure during gas separation is preferably 0.5 to 10 MPa, more preferably 1 to 10 MPa, and further preferably 2 to 7 MPa. The gas separation temperature is preferably −30 to 90 ° C., more preferably 15 to 70 ° C. In the mixed gas containing carbon dioxide and methane gas, the mixing ratio of carbon dioxide and methane gas is not particularly limited, but is preferably carbon dioxide: methane gas = 1: 99 to 99: 1 (volume ratio). More preferably, methane gas = 5: 95 to 90:10.
[ガス分離モジュール又はガス分離装置]
 本発明のガス分離膜を用いてガス分離膜モジュールを調製することができる。モジュールの例としては、スパイラル型、中空糸型、プリーツ型、管状型、プレート&フレーム型などが挙げられる。
 また、本発明のガス分離複合膜又はガス分離膜モジュールを用いて、ガスを分離回収又は分離精製させるための手段を有するガス分離装置を得ることができる。本発明のガス分離複合膜は、例えば、特開2007-297605号公報に記載のような吸収液と併用した膜及び/又は吸収ハイブリッド法としての気体分離回収装置に適用してもよい。
[Gas separation module or gas separation device]
A gas separation membrane module can be prepared using the gas separation membrane of the present invention. Examples of modules include spiral type, hollow fiber type, pleated type, tubular type, plate & frame type and the like.
In addition, a gas separation apparatus having means for separating and recovering or purifying gas can be obtained using the gas separation composite membrane or gas separation membrane module of the present invention. The gas separation composite membrane of the present invention may be applied to, for example, a membrane used in combination with an absorbing solution as described in JP-A-2007-297605 and / or a gas separation and recovery device as an absorption hybrid method.
 以下に実施例に基づき本発明を更に詳細に説明するが、本発明はこれらの実施例により限定されるものではない。なお、本実施例において、「部」、「%」とは、特に断りのない限り、「質量部」、「質量%」を意味する。 Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited to these examples. In this example, “parts” and “%” mean “parts by mass” and “mass%” unless otherwise specified.
[合成例1] ポリイミド化合物(P-101)の合成
Figure JPOXMLDOC01-appb-C000045

 2Lの三口フラスコに2,4,6-トリメチル-1,3-フェニレンジアミン(TrMPD、東京化成株式会社製、製品番号:T1275)20.4g(0.14mol)、N-メチルピロリドン(NMP、和光純薬株式会社製、製品番号:132-12101)423.9gを加えて溶解させ、窒素気流下で攪拌しているところに、4,4‘-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物(6FDA、東京化成株式会社製、製品番号:H1438)60.3g(0.14mol)を加え、40℃で3.5時間攪拌した。その後、ピリジン(和光純薬株式会社製、製品番号:166-05316)3.2g(0.04mol)、無水酢酸(和光純薬株式会社製、製品番号:011-00276)45.8g(0.45mol)をそれぞれ加えて、さらに80℃で3時間攪拌した。その後、40℃以下に冷却し、反応液にアセトン500.0mLを加え、希釈した。3Lの三口フラスコに希釈液を移液し、攪拌しているところに、メタノール2.0Lを滴下した。得られたポリマー結晶を吸引ろ過し、40℃で送風乾燥させて69.5gのポリイミド化合物(P-101)を得た。
[Synthesis Example 1] Synthesis of polyimide compound (P-101)
Figure JPOXMLDOC01-appb-C000045

In a 2 L three-necked flask, 20.4 g (0.14 mol) of 2,4,6-trimethyl-1,3-phenylenediamine (TrMPD, manufactured by Tokyo Chemical Industry Co., Ltd., product number: T1275), N-methylpyrrolidone (NMP, sum) 423.9 g (product number: 132-12101) manufactured by Kojun Pharmaceutical Co., Ltd. was added and dissolved, and 4,4 ′-(hexafluoroisopropylidene) diphthalic anhydride (6FDA) was stirred under a nitrogen stream. 60.3 g (0.14 mol) manufactured by Tokyo Chemical Industry Co., Ltd., product number: H1438) was added, and the mixture was stirred at 40 ° C. for 3.5 hours. Thereafter, 3.2 g (0.04 mol) of pyridine (manufactured by Wako Pure Chemical Industries, Ltd., product number: 166-05316), 45.8 g (0.002 mol) of acetic anhydride (manufactured by Wako Pure Chemical Industries, Ltd., product number: 011-00276). 45 mol) was added, and the mixture was further stirred at 80 ° C. for 3 hours. Then, it cooled to 40 degrees C or less, and 500.0 mL of acetone was added and diluted to the reaction liquid. The diluted solution was transferred to a 3 L three-necked flask, and 2.0 L of methanol was added dropwise to the stirring solution. The obtained polymer crystals were suction filtered and air dried at 40 ° C. to obtain 69.5 g of a polyimide compound (P-101).
[合成例2] ポリイミド化合物(P-102)の合成
 ポリイミド化合物(P-102)についても、TrMPDを2,3,5,6-テトラメチル-1,4-フェニレンジアミン(東京化成株式会社製、製品番号:T1457)に変えた以外は、同様の方法で合成した。
Figure JPOXMLDOC01-appb-C000046
[Synthesis Example 2] Synthesis of polyimide compound (P-102) For the polyimide compound (P-102), TrMPD was converted to 2,3,5,6-tetramethyl-1,4-phenylenediamine (manufactured by Tokyo Chemical Industry Co., Ltd.). The product was synthesized in the same manner except that the product number was changed to T1457).
Figure JPOXMLDOC01-appb-C000046
[合成例3] ポリイミド化合物(P-103)の合成
 ポリイミド化合物(P-103)についても、TrMPDをTrMPDおよび2,4-ジアミノトルエン(東京化成株式会社製、製品番号:D0123)の組み合わせ(等モル比)に変えた以外は、同様の方法で合成した。
Figure JPOXMLDOC01-appb-C000047
[Synthesis Example 3] Synthesis of polyimide compound (P-103) Also for polyimide compound (P-103), a combination of TrMPD and TrMPD and 2,4-diaminotoluene (product number: D0123, manufactured by Tokyo Chemical Industry Co., Ltd.) The compound was synthesized in the same manner except that the molar ratio was changed.
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-T000048
Figure JPOXMLDOC01-appb-T000048
[実施例1]
<平滑層付PAN多孔質膜の作製>
(ジアルキルシロキサン基を有する放射線硬化性ポリマー溶液の調製)
 150mLの三口フラスコにUV9300(Momentive社製)39g、X-22-162C(信越化学工業社製)10g、DBU(1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン)0.007gを加え、n-ヘプタン50gに溶解させた。これを95℃で168時間維持させて、ポリ(シロキサン)基を有する放射線硬化性ポリマー溶液(25℃で粘度22.8mPa・s)を得た。
(重合性の放射線硬化性組成物の調製)
 上記放射線硬化性ポリマー溶液5gを20℃まで冷却し、n-ヘプタン95gで希釈した。得られた溶液に対し、光重合開始剤であるUV9380C(Momentive社製)0.5g及びオルガチックスTA-10(マツモトファインケミカル社製)0.1gを添加し、重合性の放射線硬化性組成物を調製した。
(重合性の放射線硬化性組成物の多孔質支持体への塗布、平滑層の形成)
 PAN(ポリアクリロニトリル)多孔質膜(不織布上にポリアクリロニトリル多孔質膜が存在、不織布を含め、膜厚は約180μm)を支持体として上記の重合性の放射線硬化性組成物をスピンコートした後、UV強度24kW/m、処理時間10秒のUV処理条件でUV処理(Fusion UV System社製、Light Hammer 10、D-バルブ)を行った後、乾燥させた。このようにして、多孔質支持体上にジアルキルシロキサン基を有する厚み1μmの平滑層を形成した。
<複合膜の作製>
 上記平滑層付きPAN多孔質層上に、ガス分離膜を形成し、図2に示すようなガス分離複合膜を作製した(図2には平滑層は図示していない)。
 300mlナスフラスコに、ポリイミド化合物(P-101)を0.80g、多官能アミン(A-1)を0.08g(ポリイミドに対して10質量部)、メチルエチルケトン79.20gを混合して30分攪拌した。その後、得られた架橋ポリイミド化合物の内、8.0gを、上記平滑層を付与したPAN多孔質膜上にスピンコートして架橋ポリイミド化合物(P-101)を含んでなるガス分離層を形成し、複合膜を得た。架橋ポリイミド化合物(P-101)層の厚さは約100nmであり、ポリアクリロニトリル多孔質膜の厚さは不織布を含めて約180μmであった。
 なお、これらのポリアクリロニトリル多孔質膜の分画分子量は100,000以下のものを使用した。また、この多孔質膜の40℃、5MPaにおける二酸化炭素の透過性は、25000GPUであった。
[Example 1]
<Production of PAN porous membrane with smooth layer>
(Preparation of radiation curable polymer solution having dialkylsiloxane group)
In a 150 mL three-necked flask, 39 g of UV9300 (manufactured by Momentive), 10 g of X-22-162C (manufactured by Shin-Etsu Chemical Co., Ltd.), 0.007 g of DBU (1,8-diazabicyclo [5.4.0] undec-7-ene) And dissolved in 50 g of n-heptane. This was maintained at 95 ° C. for 168 hours to obtain a radiation curable polymer solution having a poly (siloxane) group (viscosity of 22.8 mPa · s at 25 ° C.).
(Preparation of polymerizable radiation curable composition)
5 g of the radiation curable polymer solution was cooled to 20 ° C. and diluted with 95 g of n-heptane. To the obtained solution, 0.5 g of UV9380C (manufactured by Momentive) as a photopolymerization initiator and 0.1 g of organics TA-10 (manufactured by Matsumoto Fine Chemical) are added to obtain a polymerizable radiation-curable composition. Prepared.
(Application of polymerizable radiation curable composition to porous support, formation of smooth layer)
PAN (polyacrylonitrile) porous membrane (polyacrylonitrile porous membrane is present on the nonwoven fabric, including the nonwoven fabric, the film thickness is about 180 μm) After spin coating the above polymerizable radiation curable composition as a support, After UV treatment (Fusion UV System, Light Hammer 10, D-bulb) under UV treatment conditions with a UV intensity of 24 kW / m and a treatment time of 10 seconds, it was dried. In this way, a smooth layer having a thickness of 1 μm and having a dialkylsiloxane group was formed on the porous support.
<Production of composite membrane>
A gas separation membrane was formed on the PAN porous layer with the smooth layer to produce a gas separation composite membrane as shown in FIG. 2 (the smooth layer is not shown in FIG. 2).
In a 300 ml eggplant flask, 0.80 g of polyimide compound (P-101), 0.08 g of polyfunctional amine (A-1) (10 parts by mass with respect to polyimide) and 79.20 g of methyl ethyl ketone were mixed and stirred for 30 minutes. did. Thereafter, 8.0 g of the obtained cross-linked polyimide compound was spin-coated on the PAN porous film provided with the smooth layer to form a gas separation layer containing the cross-linked polyimide compound (P-101). A composite membrane was obtained. The thickness of the crosslinked polyimide compound (P-101) layer was about 100 nm, and the thickness of the polyacrylonitrile porous film including the nonwoven fabric was about 180 μm.
These polyacrylonitrile porous membranes had a molecular weight cut-off of 100,000 or less. Further, the permeability of carbon dioxide at 40 ° C. and 5 MPa of this porous membrane was 25000 GPU.
[実施例2~6、実施例8および比較例1~3]
 上記実施例1における<複合膜の作製>において、ポリイミド化合物、多官能アミンを下記表2に記載のとおりに変更することで、実施例2~8および比較例1~3の複合膜を作製した。
[Examples 2 to 6, Example 8 and Comparative Examples 1 to 3]
In <Production of Composite Film> in Example 1 above, the composite films of Examples 2 to 8 and Comparative Examples 1 to 3 were produced by changing the polyimide compound and the polyfunctional amine as shown in Table 2 below. .
[試験例1] ガス透過性の評価
 得られた各実施例及び比較例の、架橋ポリイミド化合物からなるガス分離膜(複合膜)に対して、GTRテック株式会社製ガス透過率測定装置を用い、二酸化炭素(CO)とメタン(CH)が1:9(体積比)の混合ガスをガス供給側の全圧力が5MPa(COの分圧:2MPa)、流量500mL/min、40℃となるように調整し、ガス分離層側から供給した。ガス分離膜を透過してきたガスをガスクロマトグラフィーにより分析した。膜のガス透過性は、ガス透過率(Permeance)としてガス透過速度を算出することにより比較した。ガス透過率(ガス透過速度)の単位はGPU(ジーピーユー)単位〔1GPU=1×10-6cm(STP)/cm・sec・cmHg〕で表した。
 ガス分離選択性は、この膜のCHの透過速度RCH4に対するCOの透過速度RCO2の比率(RCO2/RCH4)として計算した。
[Test Example 1] Evaluation of gas permeability For the gas separation membrane (composite membrane) made of a crosslinked polyimide compound in each of the obtained Examples and Comparative Examples, a gas permeability measuring device manufactured by GTR Tech Co., Ltd. was used. A mixed gas of carbon dioxide (CO 2 ) and methane (CH 4 ) of 1: 9 (volume ratio) has a total pressure of 5 MPa (CO 2 partial pressure: 2 MPa), a flow rate of 500 mL / min, 40 ° C. It adjusted so that it might become, and it supplied from the gas separation layer side. The gas that had permeated the gas separation membrane was analyzed by gas chromatography. The gas permeability of the membrane was compared by calculating the gas permeation rate as gas permeability (Permeance). The unit of gas permeability (gas permeation rate) was expressed in GPU (GPI) unit [1 GPU = 1 × 10 −6 cm 3 (STP) / cm 2 · sec · cmHg].
The gas separation selectivity was calculated as the ratio of the CO 2 permeation rate R CO2 to the CH 4 permeation rate R CH4 of this membrane (R CO2 / R CH4 ).
[試験例2] トルエン暴露試験
 トルエン溶媒を張った蓋のできるガラス製容器内に、100mlビーカーを静置し、さらに各実施例および比較例において作製したガス分離膜(複合膜)をビーカーの中に入れ、ガラス製の蓋を施し、密閉系とした。その後、40℃条件下で24時間保存した後、上記と同様にガス分離性能を評価した。
[Test Example 2] Toluene exposure test A 100 ml beaker was placed in a glass container with a lid covered with a toluene solvent, and the gas separation membranes (composite membranes) prepared in each Example and Comparative Example were placed in the beaker. And a glass lid was applied to form a sealed system. Then, after storing for 24 hours at 40 ° C., gas separation performance was evaluated in the same manner as described above.
[試験例3] トルエン膨潤率
 上記各実施例及び比較例で調製した架橋ポリイミド化合物(0.3g)、多官能アミン(ポリイミド化合物に対して、表2記載の比率の質量(仕込み量))、メチルエチルケトン(9.7g)を混合した後、清浄なシャーレ(12cmφ)の上にキャストした。25℃にて12時間乾燥し、90℃にて7日間アニールし、架橋ポリイミド化合物をシャーレから取り出した。得られた架橋ポリイミド化合物からなる単膜の質量を測定した後、飽和トルエン蒸気に曝した後の質量を測定した。より詳細には、トルエン溶媒を張った蓋のできる金属製容器内に、100mLビーカーを入れ、蓋をして12時間静置した。続いて上記架橋ポリイミド化合物からなる単膜をビーカーの中に入れて蓋をし、25℃条件下で12時間静置したのち、容器から取り出し、質量を測定した。
 トルエン膨潤率を以下の式で算出した。
  トルエン膨潤率=<{(トルエン暴露後の質量)-(トルエン暴露前の質量)}/(トルエン暴露前の質量)>×100
[Test Example 3] Toluene swelling ratio Cross-linked polyimide compound (0.3 g) prepared in each of the above Examples and Comparative Examples, polyfunctional amine (the mass of the ratio described in Table 2 (charge amount) with respect to the polyimide compound), Methyl ethyl ketone (9.7 g) was mixed and cast on a clean petri dish (12 cmφ). It dried at 25 degreeC for 12 hours, annealed at 90 degreeC for 7 days, and took out the crosslinked polyimide compound from the petri dish. After measuring the mass of the obtained single film made of the crosslinked polyimide compound, the mass after exposure to saturated toluene vapor was measured. More specifically, a 100 mL beaker was placed in a metal container with a lid covered with a toluene solvent, which was covered and allowed to stand for 12 hours. Subsequently, the single film made of the crosslinked polyimide compound was put in a beaker, covered, allowed to stand at 25 ° C. for 12 hours, taken out from the container, and the mass was measured.
The toluene swelling rate was calculated by the following formula.
Toluene swelling ratio = <{(mass after exposure to toluene) − (mass before exposure to toluene)} / (mass before exposure to toluene)> × 100
[試験例4] イミド環開環率
 試験例3記載の方法と同様にして多官能アミンを加えて作製した膜について、赤外吸収スペクトルを測定した(透過法)。1760~1800cm-1付近のピーク面積を680~770cm-1付近のピーク面積で割った値を求めた。この値を、多官能アミンを加えない膜についての該値で割ることで、イミド環残存率が求まる。100%から、イミド環残存率(%)を引いた値がイミド環開環率である。
Test Example 4 Imide Ring Opening Rate An infrared absorption spectrum was measured for a film prepared by adding a polyfunctional amine in the same manner as described in Test Example 3 (transmission method). The peak area around 1760 ~ 1800 cm -1 was determined divided by the peak area in the vicinity of 680 ~ 770 cm -1. By dividing this value by the value for the film to which no polyfunctional amine is added, the imide ring residual ratio is obtained. A value obtained by subtracting the imide ring residual rate (%) from 100% is the imide ring opening rate.
[実施例7] 浸漬
 実施例1において、多官能アミンを添加せずに作成した架橋ポリイミド化合物からなる複合膜を多官能アミン(A-1)の10質量パーセントのメタノール溶液に、10分間浸漬させた。取り出した後、メタノールで洗浄し、70℃で12時間乾燥させた。
 上記と同様に、浸漬前後のガス透過性、ガス分離性、トルエン膨潤率及びイミド環開環率を測定し、それらを求めた。
[Example 7] Immersion In Example 1, a composite film made of a crosslinked polyimide compound prepared without adding a polyfunctional amine was immersed in a 10 mass percent methanol solution of the polyfunctional amine (A-1) for 10 minutes. It was. After taking out, it wash | cleaned with methanol and it was made to dry at 70 degreeC for 12 hours.
In the same manner as described above, gas permeability before and after immersion, gas separability, toluene swelling rate and imide ring opening rate were measured and determined.
 上記の各試験例の結果を下記表2に示す。尚、下表中のClogP値は、表に記載されているアミン種の構造に基づき、ChemBioDraw Ultra(商品名)によって計算をした。 The results of each of the above test examples are shown in Table 2 below. The ClogP values in the table below were calculated by ChemBioDraw ™ Ultra (trade name) based on the structure of the amine species described in the table.
Figure JPOXMLDOC01-appb-T000049

 
Figure JPOXMLDOC01-appb-T000049

 
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000050
(A-1)東京化成株式会社製、製品番号:T1243
(A-2)Aldrich社製、製品番号:460699
(A-3)J.Am.Chem.Soc.,2015,137(2),pp.843~849に記載の方法で合成した。
(A-4)Angew.Chem.,2014,vol.53,#22,pp.5609~5613に記載の方法で合成した。
(A-5)J.Am.Chem.Soc.,2007,vol.129,#14,pp.4377~4385に記載の方法で合成した。
(A-6)東京化成株式会社製、製品番号:B1083
(A-1) manufactured by Tokyo Chemical Industry Co., Ltd., product number: T1243
(A-2) Aldrich, product number: 460699
(A-3) J. Org. Am. Chem. Soc. , 2015, 137 (2), pp. It was synthesized by the method described in 843-849.
(A-4) Angew. Chem. , 2014, vol. 53, # 22, pp. It was synthesized by the method described in 5609-5613.
(A-5) J. Org. Am. Chem. Soc. , 2007, vol. 129, # 14, pp. Synthesized by the method described in 4377-4385.
(A-6) manufactured by Tokyo Chemical Industry Co., Ltd., product number: B1083
 上記表2に示される通り、比較ポリマーを用いた比較例のガス分離膜は、製膜ができなかった(比較例2)か、又は、CO透過速度に劣る結果となり、さらにガス分離選択性においても劣る結果となった(比較例1、3)。
 これに対し、本発明の式(1)で表される構造単位を含む架橋ポリイミド化合物を含有したガス分離膜は、上記各比較例に比べてガス透過速度が大きく向上し、さらにガス分離選択性においても優れた性能を示すとともに可塑化耐性にも優れた(実施例1~7)。すなわち、本発明で規定する架橋ポリイミド化合物をガス分離層として有するガス分離膜を用いることにより、高圧条件下の使用においても、優れたガス透過性と優れたガス分離選択性の両立を高度なレベルで実現することができ、高速、高選択性のガス分離が可能となるとともに、可塑化耐性にも優れたことがわかる。
As shown in Table 2 above, the gas separation membrane of the comparative example using the comparative polymer failed to form a membrane (Comparative Example 2) or resulted in inferior CO 2 permeation rate, and gas separation selectivity. The results were also inferior (Comparative Examples 1 and 3).
On the other hand, the gas separation membrane containing the cross-linked polyimide compound containing the structural unit represented by the formula (1) of the present invention has a greatly improved gas permeation rate as compared with the above comparative examples, and further gas separation selectivity. Also exhibited excellent performance and excellent plasticization resistance (Examples 1 to 7). That is, by using a gas separation membrane having the cross-linked polyimide compound defined in the present invention as a gas separation layer, a high level of both excellent gas permeability and excellent gas separation selectivity even in use under high pressure conditions. It can be realized that the gas separation at high speed and high selectivity is possible, and the plasticization resistance is also excellent.
 以上の結果から、本発明のガス分離膜を用いると、優れた気体分離方法、ガス分離モジュール、このガス分離モジュールを備えたガス分離装置を提供できることが分かった。また、本発明のガス分離膜用組成物及びガス分離膜の製造方法によれば、上記ガス分離膜を与えることができて好適である。 From the above results, it was found that when the gas separation membrane of the present invention was used, an excellent gas separation method, a gas separation module, and a gas separation apparatus equipped with this gas separation module could be provided. Moreover, according to the composition for gas separation membranes and the method for producing gas separation membranes of the present invention, the gas separation membrane can be provided, which is preferable.
1 ガス分離層
2 多孔質層
3 不織布層
10、20 ガス分離複合膜
DESCRIPTION OF SYMBOLS 1 Gas separation layer 2 Porous layer 3 Nonwoven fabric layer 10, 20 Gas separation composite membrane

Claims (17)

  1.  下記式(1)で表される構造単位を含むポリイミド化合物を含有するガス分離層を有する、ガス分離膜。
    Figure JPOXMLDOC01-appb-C000001

     式(1)中、Ra1は下記式(I-1)~(I-28)のいずれかで表される4価の基を示す。ここでX~Xは単結合又は2価の連結基を、Lは-CH=CH-又は-CH-を、R及びRは水素原子又は置換基を示し、*は式(1)中のカルボニル基との結合部位を示す。
     Lanは、n+1価の連結基を示し、nは2以上の整数である。
    Figure JPOXMLDOC01-appb-C000002
    The gas separation membrane which has a gas separation layer containing the polyimide compound containing the structural unit represented by following formula (1).
    Figure JPOXMLDOC01-appb-C000001

    In the formula (1), R a1 represents a tetravalent group represented by any of the following formulas (I-1) to (I-28). Here, X 1 to X 3 represent a single bond or a divalent linking group, L represents —CH═CH— or —CH 2 —, R 1 and R 2 represent a hydrogen atom or a substituent, and * represents a formula ( 1) shows the binding site with the carbonyl group in
    L an, shows a n + 1 valent connecting group, n represents an integer of 2 or more.
    Figure JPOXMLDOC01-appb-C000002
  2.  上記式(1)で表される構造単位が下記式(2)で表される構造単位である、請求項1に記載のガス分離膜。
    Figure JPOXMLDOC01-appb-C000003

     式(2)中、Lは、n+1価の連結基を示し、L及びLbnは、それぞれ独立に2価の脂肪族基を示す。Ra1、nは式(1)中と同義である。
    The gas separation membrane according to claim 1, wherein the structural unit represented by the formula (1) is a structural unit represented by the following formula (2).
    Figure JPOXMLDOC01-appb-C000003

    In Formula (2), L a represents an n + 1 valent linking group, and L b and L bn each independently represent a divalent aliphatic group. R a1 and n have the same meanings as in formula (1).
  3.  上記式(2)におけるL及びLbnが、それぞれ独立に炭素数が2以上の脂肪族基である、請求項2に記載のガス分離膜。 The gas separation membrane according to claim 2, wherein L b and L bn in the formula (2) are each independently an aliphatic group having 2 or more carbon atoms.
  4.  式{y/(x+y)}で表されるイミド環のアミンによる開環率が50%未満である、請求項1~3のいずれか1項に記載のガス分離膜。
    式中、xは下記式xで表されるイミド環構造の数を表し、yはイミド環がアミンにより開環した下記yで表される構造の数を表す。
    Figure JPOXMLDOC01-appb-C000004

     上記式x及び式y中、Ra1は上記式(1)と同義であり、*は、ポリイミド化合物の残基との結合部位を示す。
    The gas separation membrane according to any one of claims 1 to 3, wherein the ring-opening ratio of the imide ring represented by the formula {y / (x + y)} with an amine is less than 50%.
    In the formula, x represents the number of imide ring structures represented by the following formula x, and y represents the number of structures represented by the following y in which the imide ring is opened by an amine.
    Figure JPOXMLDOC01-appb-C000004

    In the above formula x and formula y, R a1 has the same meaning as in the above formula (1), and * represents a bonding site with the residue of the polyimide compound.
  5.  上記ガス分離膜が、上記ガス分離層をガス透過性の支持層の上側に有するガス分離複合膜である、請求項1~4のいずれか1項に記載のガス分離膜。 The gas separation membrane according to any one of claims 1 to 4, wherein the gas separation membrane is a gas separation composite membrane having the gas separation layer on the upper side of a gas-permeable support layer.
  6.  分離処理されるガスが二酸化炭素とメタンの混合ガスである場合において、40℃、5MPaにおける二酸化炭素の透過速度が20GPU超であり、二酸化炭素とメタンとの透過速度比(RCO2/RCH4)が15以上である、請求項1~5のいずれか1項に記載のガス分離膜。 In the case where the gas to be separated is a mixed gas of carbon dioxide and methane, the permeation rate of carbon dioxide at 40 ° C. and 5 MPa exceeds 20 GPU, and the permeation rate ratio of carbon dioxide and methane (R CO2 / R CH4 ) The gas separation membrane according to any one of Claims 1 to 5, wherein is 15 or more.
  7.  上記支持層が多孔質層と不織布層とからなり、不織布層、多孔質層、ガス分離層がこの順に設けられている、請求項1~6のいずれか1項に記載のガス分離膜。 The gas separation membrane according to any one of claims 1 to 6, wherein the support layer comprises a porous layer and a nonwoven fabric layer, and the nonwoven fabric layer, the porous layer, and the gas separation layer are provided in this order.
  8.  二酸化炭素及びメタンを含むガスから二酸化炭素を選択的に透過させる、請求項1~7のいずれか1項に記載のガス分離膜。 The gas separation membrane according to any one of claims 1 to 7, wherein carbon dioxide is selectively permeated from a gas containing carbon dioxide and methane.
  9.  請求項1~7のいずれか1項に記載のガス分離膜を具備するガス分離モジュール。 A gas separation module comprising the gas separation membrane according to any one of claims 1 to 7.
  10.  請求項9に記載のガス分離モジュールを備えたガス分離装置。 A gas separation apparatus comprising the gas separation module according to claim 9.
  11.  請求項1~8のいずれか1項に記載のガス分離膜を用いて、二酸化炭素及びメタンを含むガスから二酸化炭素を選択的に透過させるガス分離方法。 A gas separation method for selectively permeating carbon dioxide from a gas containing carbon dioxide and methane, using the gas separation membrane according to any one of claims 1 to 8.
  12.  下記式(3)で表される構造単位を含むポリイミド化合物、及び下記式(4)で表される多官能アミンを含む、ガス分離膜用組成物。
    Figure JPOXMLDOC01-appb-C000005

     上記式(3)中、Ra1は下記式(I-1)~(I-28)のいずれかで表される4価の基を示す。ここでX~Xは単結合又は2価の連結基を、Lは-CH=CH-又は-CH-を、R及びRは水素原子又は置換基を示し、*は式(3)中のカルボニル基との結合部位を示す。
    Figure JPOXMLDOC01-appb-C000006

     上記式(4)中、Lanは、n+1価の連結基を示し、nは2以上の整数である。
    The composition for gas separation membranes containing the polyimide compound containing the structural unit represented by following formula (3), and the polyfunctional amine represented by following formula (4).
    Figure JPOXMLDOC01-appb-C000005

    In the above formula (3), R a1 represents a tetravalent group represented by any of the following formulas (I-1) to (I-28). Wherein the X 1 ~ X 3 represents a single bond or a divalent linking group, L is -CH = CH- or -CH 2 - and, R 1 and R 2 represents a hydrogen atom or a substituent, and * the formula ( 3) shows the binding site with the carbonyl group in it.
    Figure JPOXMLDOC01-appb-C000006

    In the above formula (4), Lan represents an n + 1 valent linking group, and n is an integer of 2 or more.
  13.  上記式(4)で表されるポリイミド化合物のCLogP値が0.5以下である、請求項12に記載のガス分離膜用組成物。 The composition for gas separation membrane according to claim 12, wherein the ClogP value of the polyimide compound represented by the above formula (4) is 0.5 or less.
  14.  請求項13に記載のガス分離膜用組成物を塗布する工程と、塗布した前記ガス分離膜用組成物を乾燥する工程とを有する、ガス分離膜の製造方法。 A method for producing a gas separation membrane, comprising a step of applying the composition for gas separation membrane according to claim 13 and a step of drying the applied composition for gas separation membrane.
  15.  上記ガス分離膜用組成物を多孔質膜上に塗布する、請求項12又は13に記載のガス分離膜の製造方法。 The method for producing a gas separation membrane according to claim 12 or 13, wherein the composition for gas separation membrane is applied onto a porous membrane.
  16.  下記式(3)で表される構造単位を含むポリイミド化合物を含んでなる膜を、下記式(4)で表される多官能アミンを含む溶液に浸漬させる、ガス分離膜の製造方法。
    Figure JPOXMLDOC01-appb-C000007

     上記式(3)中、Ra1は下記式(I-1)~(I-28)のいずれかで表される4価の基を示す。ここでX~Xは単結合又は2価の連結基を、Lは-CH=CH-又は-CH-を、R及びRは水素原子又は置換基を示し、*は式(3)中のカルボニル基との結合部位を示す。
    Figure JPOXMLDOC01-appb-C000008

     上記式(4)中、Lanは、n+1価の連結基を示し、nは2以上の整数である。
    The manufacturing method of a gas separation membrane which immerses the film | membrane containing the polyimide compound containing the structural unit represented by following formula (3) in the solution containing the polyfunctional amine represented by following formula (4).
    Figure JPOXMLDOC01-appb-C000007

    In the above formula (3), R a1 represents a tetravalent group represented by any of the following formulas (I-1) to (I-28). Wherein the X 1 ~ X 3 represents a single bond or a divalent linking group, L is -CH = CH- or -CH 2 - and, R 1 and R 2 represents a hydrogen atom or a substituent, and * the formula ( 3) shows the binding site with the carbonyl group in it.
    Figure JPOXMLDOC01-appb-C000008

    In the above formula (4), Lan represents an n + 1 valent linking group, and n is an integer of 2 or more.
  17.  上記式(4)で表されるポリイミド化合物のCLogP値が0.5以下である、請求項16に記載のガス分離膜用組成物。 The composition for gas separation membrane according to claim 16, wherein the CLogP value of the polyimide compound represented by the above formula (4) is 0.5 or less.
PCT/JP2017/011917 2016-04-14 2017-03-24 Gas separation membrane, gas separation module, gas separation device, gas separation method, gas separation membrane composition, and gas separation membrane production method WO2017179393A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018511950A JPWO2017179393A1 (en) 2016-04-14 2017-03-24 Gas separation membrane, gas separation module, gas separation apparatus, gas separation method, composition for gas separation membrane, and method for producing gas separation membrane

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016081272 2016-04-14
JP2016-081272 2016-04-14

Publications (1)

Publication Number Publication Date
WO2017179393A1 true WO2017179393A1 (en) 2017-10-19

Family

ID=60041766

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/011917 WO2017179393A1 (en) 2016-04-14 2017-03-24 Gas separation membrane, gas separation module, gas separation device, gas separation method, gas separation membrane composition, and gas separation membrane production method

Country Status (2)

Country Link
JP (1) JPWO2017179393A1 (en)
WO (1) WO2017179393A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111282457A (en) * 2020-02-21 2020-06-16 太原理工大学 Click chemical modified polyamide-polyimide coal bed gas denitrification concentration separation membrane

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0321336A (en) * 1989-06-01 1991-01-30 E I Du Pont De Nemours & Co Amine-modified polyimide film
JP2003082584A (en) * 2001-08-15 2003-03-19 Inst Of Materials Research & Engineering Chemical modification of polyimide
JP2004277743A (en) * 2003-03-13 2004-10-07 National Univ Of Singapore Polyimide treating process and polyimide membrane
JP2011509819A (en) * 2008-01-10 2011-03-31 シェブロン ユー.エス.エー. インコーポレイテッド Method for making cross-linked fiber membrane from high molecular weight monoesterified polyimide polymer
JP2013046902A (en) * 2011-07-28 2013-03-07 Fujifilm Corp Gas separation composite membrane, and gas separation module, gas separation apparatus and gas separation method using the same
JP2015536240A (en) * 2012-11-20 2015-12-21 ユーオーピー エルエルシー Crosslinked polyimide membrane for separation

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0321336A (en) * 1989-06-01 1991-01-30 E I Du Pont De Nemours & Co Amine-modified polyimide film
JP2003082584A (en) * 2001-08-15 2003-03-19 Inst Of Materials Research & Engineering Chemical modification of polyimide
JP2004277743A (en) * 2003-03-13 2004-10-07 National Univ Of Singapore Polyimide treating process and polyimide membrane
JP2011509819A (en) * 2008-01-10 2011-03-31 シェブロン ユー.エス.エー. インコーポレイテッド Method for making cross-linked fiber membrane from high molecular weight monoesterified polyimide polymer
JP2013046902A (en) * 2011-07-28 2013-03-07 Fujifilm Corp Gas separation composite membrane, and gas separation module, gas separation apparatus and gas separation method using the same
JP2015536240A (en) * 2012-11-20 2015-12-21 ユーオーピー エルエルシー Crosslinked polyimide membrane for separation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111282457A (en) * 2020-02-21 2020-06-16 太原理工大学 Click chemical modified polyamide-polyimide coal bed gas denitrification concentration separation membrane
CN111282457B (en) * 2020-02-21 2022-03-25 太原理工大学 Click chemical modified polyamide-polyimide coal bed gas denitrification concentration separation membrane

Also Published As

Publication number Publication date
JPWO2017179393A1 (en) 2019-01-31

Similar Documents

Publication Publication Date Title
WO2014087928A1 (en) Gas separation membrane, gas separation module, gas separation device, and gas separation method
WO2015041250A1 (en) Gas separation membrane, gas separation module, gas separation device, and gas separation method
US9975092B2 (en) Gas separation membrane and gas separation membrane module
JP5972774B2 (en) Gas separation composite membrane and method for producing the same
JP6521052B2 (en) Gas separation membrane, gas separation module, gas separation device, and gas separation method
WO2016136294A1 (en) Gas separation membrane, gas separation module, gas separation device, gas separation method, and method for producing gas separation asymmetric membrane
WO2015129554A1 (en) Gas separation membrane, gas separation module, gas separation device, and gas separation method
WO2016136395A1 (en) Gas separation asymmetric membrane, gas separation module, gas separation device, and gas separation method
US10537859B2 (en) Gas separation membrane, gas separation module, gas separation device, gas separation method, and polyimide compound
WO2017130604A1 (en) Gas separation membrane, gas separation module, gas separation device, and gas separation method
WO2017145747A1 (en) Gas separation membrane, gas separation module, gas separation device, and gas separation method
WO2015129553A1 (en) Gas separation membrane, gas separation module, gas separation device, and gas separation method
WO2017145432A1 (en) Gas separation membrane, gas separation module, gas separation device, gas separation method, composition for forming gas separation layer, method for producing gas separation membrane, polyimide compound and diamine monomer
WO2015033772A1 (en) Composite gas separation membrane, gas separation module, gas separation apparatus and gas separation method
WO2016047351A1 (en) Gas separation membrane, gas separation module, gas separator and gas separation method
WO2017179393A1 (en) Gas separation membrane, gas separation module, gas separation device, gas separation method, gas separation membrane composition, and gas separation membrane production method
WO2017175598A1 (en) Gas separation membrane, gas separation module, gas separation device, and gas separation method
WO2018043149A1 (en) Gas separation membrane, gas separation module, gas separation device, gas separation method, and polyimide compound
WO2017179396A1 (en) Gas separation membrane, gas separation module, gas separation device, gas separation method, gas separation membrane composition, and gas separation membrane production method
WO2017145905A1 (en) Polyimide compound, gas separation membrane, gas separation module, gas separation device, and gas separation method
WO2017145728A1 (en) Gas separation membrane, gas separation module, gas separation device, gas separation method, and polyimide compound
WO2017175695A1 (en) Gas separation membrane, gas separation module, gas separation device, and gas separation method
JP6323847B2 (en) Gas separation membrane, gas separation module, gas separation device, and gas separation method
JP2017131856A (en) Gas separation membrane, gas separation module, gas separation device and gas separation method

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018511950

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17782211

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17782211

Country of ref document: EP

Kind code of ref document: A1