JPH0367733B2 - - Google Patents

Info

Publication number
JPH0367733B2
JPH0367733B2 JP60099714A JP9971485A JPH0367733B2 JP H0367733 B2 JPH0367733 B2 JP H0367733B2 JP 60099714 A JP60099714 A JP 60099714A JP 9971485 A JP9971485 A JP 9971485A JP H0367733 B2 JPH0367733 B2 JP H0367733B2
Authority
JP
Japan
Prior art keywords
mol
polymer
separation performance
membrane
metaphenylenediamine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60099714A
Other languages
Japanese (ja)
Other versions
JPS61259727A (en
Inventor
Yoshimitsu Sakaguchi
Hiroshi Kawada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP9971485A priority Critical patent/JPS61259727A/en
Publication of JPS61259727A publication Critical patent/JPS61259727A/en
Publication of JPH0367733B2 publication Critical patent/JPH0367733B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/56Polyamides, e.g. polyester-amides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は水素又はヘリウムの分離に関し良好な
分離性能を有するガス分離用膜に関するものであ
る。 (従来の技術) ガス分離用膜としてはポリスルホンとシリコン
系ポリマーとを複合化させた複合膜が知られてい
る(特開昭53−86684号公報)。この膜はモンサン
ト社よりプリズムセパレーターとして市販されて
いる。この膜に用いられているシリコン系ポリマ
ーは耐熱性が悪く、高温(例えば100℃)では分
離性能の低下が大きい。 耐熱性の良いポリマーの1つとして芳香族ポリ
アミドが知られている。特にビス〔4−(4−ア
ミノフエノキシ)フエニル〕スルホンとイソフタ
ル酸又はテレフタル酸とから得られるポリ(アミ
ド・エーテル・スルホン)のガス分離性能がすぐ
れているという報告がある(特開昭58−55006)。
該ポリアミドから得られた膜は、前記のポリスル
ホンよりはガス分離性能が良く、又耐熱性にもす
ぐれている。しかしながら分離性能は充分なもの
ではない。 (発明が解決しようとする問題点) 本発明者らは前記ポリ(アミド・エーテル・ス
ルホン)の良好な性質を保ちながら、更に水素又
はヘリウム分離性能を向上すべく鋭意検討した結
果、特定の低分子量ジアミン成分を共重合したポ
リ(アミド・エーテル・スルホン)が良好な耐熱
性、製膜性を保ちながら、分離性能が著しく向上
することを見い出し本発明に到達した。 (発明を解決するための手段) すなわち本発明はビス〔4−(4−アミノフエ
ノキシ)フエニル〕スルホン20モル%〜80モル%
およびメタフエニレンジアミン20モル%〜80モル
%をジアミン成分とし、酸成分がイソフタル酸成
分80モル%以上であるポリ(アミド・エーテル・
スルホン)からなるすぐれた耐熱性、製膜性およ
び水素又はヘリウム分離性能を有するガス分離性
能を得るに到つた。 本発明のポリマーに用いられるジアミンはビス
〔4−(4−アミノフエノキシ)フエニル〕スルホ
ンおよびメタフエニレンジアミンである。メタフ
エニレンジアミンの使用量は両者の合計量に対
し、20モル%〜80モル%であ。20モル%より少い
場合は、共重合による分離性能の向上は認められ
ず、逆に分離係数は低下する。又80モル%より多
い場合は、分離係数は増加するが、ポリマーの溶
解性が著しく低下し膜構造を非対称膜化する際の
溶媒条件が厳しく限定され、良好な分離膜を得る
ことは困難になる。メタフエニレンジアミンが20
モル%〜80モル%の範囲において、分離性能、溶
解性ともにすぐれた性能を示す。好ましくはメタ
フエニレンジアミン30モル%〜80モル%の範囲が
特にすぐれている。 共重合するジアミン成分としては、メタフエニ
レンジアミンがすぐれている。メタフエニレンジ
アミンのかわりに、結合位置の異なる異性体であ
るパラフエニレンジアミンを用いても効果はな
く、分離係数は低下する。 酸成分としては、主としてイソフタル酸成分が
用いられる。他に芳香族ジカルボン酸成分を用い
ることができるが、その使用量は全酸成分に対し
20モル%以下が好ましい。例えば、イソフタル酸
成分のかわりにテレフタル酸成分を用いた場合、
分離係数は低下する。 ポリマーはジアミンとジカルボン酸クロリドと
の反応により得られる。反応の方法は溶液重合法
や界面重合法が採用される。該ポリマーから得ら
れる分離膜の形状は、平膜、スパイラル型あるい
は中空糸型等特に制限はないが、分離性能、特に
ガスの透過量を向上させるために、膜は非対称構
造をとることが望ましい。 該ポリマーはN−メチルピロリドン、N,N−
ジメチルホルムアミドあるいはN,N−ジメチル
アセトアミド等適当な極性溶媒に溶解する。ま
た、非対称膜を形成する際の遅凝固剤であるグリ
コール類等と上記溶媒との混合溶媒にも溶解す
る。従つて膜は通常該ポリマーをこれらの溶媒に
溶解した溶液から作製される。例えば、該ポリマ
ーをN−メチルピロリドンと遅凝固剤であるグリ
コール類との混合液に溶解した後ガラス板上に流
延、一定時間放置後水等非溶剤中へ浸漬すること
により非対称膜を得ることができる。 (発明の効果) 本発明のポリマーから得られた膜は高い降伏点
を持つため、高温(例えば100℃)でも高い分離
係数を示す。該膜は、水素やヘリウム低分子量の
ガスと窒素や一酸化炭素等高分子量のガスを分離
する場合に適している。 本発明においてビス〔4−(4−アミノフエノ
キシ)フエニル〕スルホンとともに用いる低分子
量ジアミンとしてパラフエニレンジアミンを用い
ると分離係数は低下する。また、酸成分としてテ
レフタル酸を用いた場合にも分離係数は低下す
る。ビス〔4−(4−アミノフエノキシ)フエニ
ル〕スルホンとメタフエニレンジアミンをジアミ
ン成分に、イソフタル酸成分を主な酸成分とする
膜においてきわだつた水素又はヘリウム分離性能
の向上がおこる。 (実施例) 以下に実施例でもつて本発明を具体的に説明す
るが、これでもつて本発明が限定されるものでは
ない。なお実施例において、ガス分離性能や還元
比粘度等は以下の要領に従つて測定した。 (1) 還元比粘度(ηsp/c) 溶媒 N,N−ジメチルアセトアミド(参考例
2のみ硫酸) 温度 30℃ 濃度 500mg/100ml (2) 膜の作製 ポリマー5gを45mlのN−メチルピロリドン
に溶解する。該溶液をガラス板上に固定したポ
リプロピレンフイルム上に流延した後、80℃の
乾燥器中に1時間入れ溶媒を蒸発させる。室温
まで放冷した後ポリプロピレンフイルムから膜
をはがし、ガラス板上に置く。ガラス板上に固
定した後真空乾燥器内に入れ150℃にて14〜16
時間1mmHg以下に保ち、残留溶媒の除去およ
び熱処理を行う。得られた膜を用いて、ガスの
分離性能および耐熱性の測定を行つた。 (3) ガス分離性能の測定 ガス分離性能の測定は製科研式ガス透過測定
装置を用いて30℃で行つた。水素および一酸化
炭素の透過係数を計算し、両者の比から分離係
数を求めた。 (4) 耐熱性(降伏温度)の測定 島津製作所製の熱機械特性測定装置を用いて
試料フイルムが荷重により伸び始める温度を測
定した。昇温温度は10℃/min、雰囲気は混合
ガス(O2/N2=21/79)である。 (5) 溶解性テスト ポリマー14.0gを、N−メチルピロリドン
16.9g、プロピレングリコール9.1gの混合溶
媒中100℃で撹拌し、溶解の程度を目視判定し
た。 実施例 1 撹拌器、温度計、窒素導入管および試料投入口
付の500mlフラスコ中にビス〔4−(4−アミノフ
エノキシ)フエニル〕スルホン18.0g
(0.0416mol)およびメタフエニレンジアミン3.0
g(0.0278mol)を入れ、窒素ガスを導入する。
脱水したN−メチルピロリドン200mlを加え撹拌
する。完全に溶解した後、氷浴で内温が4℃にな
るまで冷却する。試薬投入口からイソフタル酸ジ
クロリド粉末14.1g(0.0695mol)を投入し、1
時間氷浴で冷却したまま撹拌する。その後室温で
1時間反応させた後、2メタノール中に注ぐこ
とによりポリマー固体を得た。該ポリマーを家庭
用ミキサーを用いて5回水洗した後、140℃で減
圧乾燥した。ポリマーの還元比粘度は1.41、降伏
温度は325℃であつた。水素の透過係数は5.0×
10-10cm2.cm/cm2.sec.cmHg、水素、一酸化炭素
の分離係数は87であつた。また、このポリマーは
上記溶解テスト条件で溶解した。 参考例 1 実施例1と同じ反応器でビス〔4−(4−アミ
ノフエノキシ)フエニル〕スルホン42.3g
(0.0999mol)をN−メチルピロリドン300mlに溶
解、4℃まで氷浴で冷却した後、イソフタル酸ジ
クロリド粉末20.3g(0.1000mol)を投入、他は
実施例1と同様にして還元比粘度1.25のポリマー
を得た。該ポリマーの降伏温度は315℃、水素の
透過係数は3.3×1010cm2.cm/cm2.sec.cmHg、水
素、一酸化炭素の分離係数は73であつた。 実施例 2 実施例1と同様にして、メタフエニレンジアミ
ン含有量の異るポリマーを得た。得られたポリマ
ーの組成、耐熱性およびガス分離性能を第1表に
示す。これらのポリマーはすべて上記の溶解性テ
スト条件で溶解した。 参考例 2 実施例2と同様にして、メタフエニレンジアミ
ン含有量が実施例2より多いポリマーおよび少な
いポリマーを得た。得られたポリマーの組成、耐
熱性およびガス分離性能を第1表に示す。 参考例 3 実施例2において、メタフエニレンジアミンの
かわりにパラフエニレンジアミンを用いて、含有
量の異るポリマーを得た。得られたポリマーの組
成、耐熱性およびガス分離性能の第2表に示す。 参考例 4 実施例1において、ビス〔4−(4−アミノフ
エノキシ)フエニル〕スルホン19.5g
(0.0451mol)、メタフエニレンジアミン2.1g
(0.0194mol)およびテレフタル酸ジクロリド13.1
g(0.0645mol)を用いて重合した。得られたポ
リマーの還元比粘度は2.03、水素の透過係数は
4.9×1010cm2.cm/cm2.sec.cmHg、水素、一酸化
炭素の分離係数は56であつた。
(Industrial Application Field) The present invention relates to a gas separation membrane having good separation performance for hydrogen or helium separation. (Prior Art) As a gas separation membrane, a composite membrane in which polysulfone and a silicone polymer are combined is known (Japanese Unexamined Patent Publication No. 86684/1984). This membrane is commercially available as a prism separator from Monsanto. The silicone-based polymer used in this membrane has poor heat resistance, and its separation performance decreases significantly at high temperatures (for example, 100°C). Aromatic polyamide is known as one of the polymers with good heat resistance. In particular, it has been reported that poly(amide ether sulfone) obtained from bis[4-(4-aminophenoxy)phenyl]sulfone and isophthalic acid or terephthalic acid has excellent gas separation performance (JP-A-58-55006 ).
A membrane obtained from the polyamide has better gas separation performance than the polysulfone described above, and also has excellent heat resistance. However, the separation performance is not sufficient. (Problems to be Solved by the Invention) The present inventors have conducted intensive studies to further improve the hydrogen or helium separation performance while maintaining the good properties of the poly(amide ether sulfone). The present invention was achieved by discovering that poly(amide ether sulfone) copolymerized with a molecular weight diamine component can significantly improve separation performance while maintaining good heat resistance and film forming properties. (Means for Solving the Invention) That is, the present invention provides bis[4-(4-aminophenoxy)phenyl]sulfone from 20 mol% to 80 mol%.
Poly(amide, ether,
We have achieved gas separation performance with excellent heat resistance, film-forming properties, and hydrogen or helium separation performance. The diamines used in the polymers of this invention are bis[4-(4-aminophenoxy)phenyl]sulfone and metaphenylenediamine. The amount of metaphenylenediamine used is 20 mol% to 80 mol% based on the total amount of both. When the amount is less than 20 mol%, no improvement in separation performance due to copolymerization is observed, and on the contrary, the separation coefficient decreases. If the amount exceeds 80 mol%, the separation coefficient increases, but the solubility of the polymer decreases significantly, and the solvent conditions for forming an asymmetric membrane structure are severely limited, making it difficult to obtain a good separation membrane. Become. Metaphenylenediamine 20
In the range of mol% to 80 mol%, both separation performance and solubility are excellent. Preferably, the range of metaphenylenediamine from 30 mol% to 80 mol% is particularly excellent. As a diamine component to be copolymerized, metaphenylene diamine is excellent. Even if paraphenylenediamine, which is an isomer with a different bonding position, is used instead of metaphenylenediamine, there is no effect and the separation coefficient decreases. As the acid component, an isophthalic acid component is mainly used. Other aromatic dicarboxylic acid components can be used, but the amount used is based on the total acid component.
It is preferably 20 mol% or less. For example, if a terephthalic acid component is used instead of an isophthalic acid component,
The separation factor decreases. The polymer is obtained by reacting a diamine with a dicarboxylic acid chloride. A solution polymerization method or an interfacial polymerization method is adopted as the reaction method. The shape of the separation membrane obtained from the polymer is not particularly limited, such as flat membrane, spiral type, or hollow fiber type, but in order to improve separation performance, especially the amount of gas permeation, it is desirable that the membrane has an asymmetric structure. . The polymer is N-methylpyrrolidone, N,N-
Dissolve in a suitable polar solvent such as dimethylformamide or N,N-dimethylacetamide. It is also dissolved in a mixed solvent of the above solvent and glycols, which are slow coagulating agents when forming an asymmetric membrane. Membranes are therefore usually prepared from solutions of the polymers in these solvents. For example, an asymmetric membrane is obtained by dissolving the polymer in a mixture of N-methylpyrrolidone and glycols as a slow-coagulating agent, casting it on a glass plate, leaving it for a certain period of time, and then immersing it in a non-solvent such as water. be able to. (Effects of the Invention) Since the membrane obtained from the polymer of the present invention has a high yield point, it exhibits a high separation coefficient even at high temperatures (for example, 100° C.). This membrane is suitable for separating low molecular weight gases such as hydrogen and helium from high molecular weight gases such as nitrogen and carbon monoxide. In the present invention, when paraphenylenediamine is used as the low molecular weight diamine used with bis[4-(4-aminophenoxy)phenyl]sulfone, the separation coefficient decreases. The separation coefficient also decreases when terephthalic acid is used as the acid component. A remarkable improvement in hydrogen or helium separation performance occurs in a membrane containing bis[4-(4-aminophenoxy)phenyl]sulfone and metaphenylenediamine as diamine components and isophthalic acid component as the main acid component. (Example) The present invention will be specifically explained below with reference to Examples, but the present invention is not limited thereto. In the examples, gas separation performance, reduced specific viscosity, etc. were measured according to the following procedures. (1) Reduced specific viscosity (ηsp/c) Solvent N,N-dimethylacetamide (sulfuric acid only in Reference Example 2) Temperature 30°C Concentration 500mg/100ml (2) Membrane preparation Dissolve 5g of polymer in 45ml of N-methylpyrrolidone . The solution was cast onto a polypropylene film fixed on a glass plate, and then placed in a dryer at 80° C. for 1 hour to evaporate the solvent. After cooling to room temperature, the polypropylene film was peeled off and placed on a glass plate. After fixing it on a glass plate, put it in a vacuum dryer at 150℃ for 14 to 16 hours.
Removal of residual solvent and heat treatment are performed while maintaining the temperature at 1 mmHg or less for a time. Using the obtained membrane, gas separation performance and heat resistance were measured. (3) Measurement of gas separation performance Gas separation performance was measured at 30°C using a Seikagaku-style gas permeation measuring device. The permeability coefficients of hydrogen and carbon monoxide were calculated, and the separation coefficient was determined from the ratio of the two. (4) Measurement of heat resistance (yield temperature) The temperature at which the sample film begins to stretch under load was measured using a thermomechanical property measuring device manufactured by Shimadzu Corporation. The heating temperature was 10° C./min, and the atmosphere was a mixed gas (O 2 /N 2 =21/79). (5) Solubility test 14.0g of polymer was added to N-methylpyrrolidone.
The solution was stirred at 100° C. in a mixed solvent of 16.9 g and 9.1 g of propylene glycol, and the degree of dissolution was visually determined. Example 1 18.0 g of bis[4-(4-aminophenoxy)phenyl]sulfone was placed in a 500 ml flask equipped with a stirrer, thermometer, nitrogen inlet tube, and sample inlet.
(0.0416mol) and metaphenylenediamine 3.0
g (0.0278 mol) and introduced nitrogen gas.
Add 200 ml of dehydrated N-methylpyrrolidone and stir. After completely melting, cool in an ice bath until the internal temperature reaches 4°C. Inject 14.1g (0.0695mol) of isophthalic acid dichloride powder from the reagent inlet, and
Stir while cooling in an ice bath for an hour. Thereafter, the mixture was reacted at room temperature for 1 hour, and then poured into 2 methanol to obtain a polymer solid. The polymer was washed with water five times using a household mixer, and then dried under reduced pressure at 140°C. The reduced specific viscosity of the polymer was 1.41, and the yield temperature was 325°C. Hydrogen permeability coefficient is 5.0×
10 -10 cm 2 . cm/ cm2 . The separation coefficient for sec.cmHg, hydrogen, and carbon monoxide was 87. Moreover, this polymer dissolved under the above dissolution test conditions. Reference Example 1 In the same reactor as Example 1, 42.3 g of bis[4-(4-aminophenoxy)phenyl]sulfone
(0.0999 mol) was dissolved in 300 ml of N-methylpyrrolidone, cooled to 4°C in an ice bath, and then 20.3 g (0.1000 mol) of isophthalic acid dichloride powder was added. A polymer was obtained. The yield temperature of the polymer is 315°C, and the hydrogen permeability coefficient is 3.3×10 10 cm 2 . cm/ cm2 . The separation coefficient for sec.cmHg, hydrogen, and carbon monoxide was 73. Example 2 Polymers having different metaphenylenediamine contents were obtained in the same manner as in Example 1. Table 1 shows the composition, heat resistance, and gas separation performance of the obtained polymer. All of these polymers dissolved under the solubility test conditions described above. Reference Example 2 In the same manner as in Example 2, polymers with higher and lower metaphenylenediamine contents than those in Example 2 were obtained. Table 1 shows the composition, heat resistance, and gas separation performance of the obtained polymer. Reference Example 3 In Example 2, paraphenylenediamine was used instead of metaphenylenediamine to obtain polymers with different contents. Table 2 shows the composition, heat resistance and gas separation performance of the obtained polymer. Reference Example 4 In Example 1, 19.5 g of bis[4-(4-aminophenoxy)phenyl]sulfone
(0.0451mol), metaphenylenediamine 2.1g
(0.0194mol) and terephthalic acid dichloride 13.1
g (0.0645 mol). The reduced specific viscosity of the obtained polymer was 2.03, and the hydrogen permeation coefficient was
4.9×10 10 cm 2 . cm/ cm2 . The separation coefficient for sec.cmHg, hydrogen, and carbon monoxide was 56.

【表】【table】

【表】 ○ 溶解、△ 溶解後経時変化で不溶化、×
不溶
[Table] ○ Dissolved, △ Insolubilized due to changes over time after dissolution, ×
insoluble

【表】 第1表、第2表より、ビス〔4−(4−アミノ
フエノキシ)フエニル〕スルホンとイソフタル酸
ジクロリドからなるポリマーと比較して、本発明
により明らかになつたことは以下のことである。 (1) メタフエニレンジアミンを20モル%〜80モル
%共重合した膜において、分離性能および非対
称膜作製用溶媒系に対する溶解性ともに優れた
性能を示す。 (2) メタフエニレンジアミンを共重合しても、20
モル%以下では分離性能は低下し、80モル%以
上では非対称膜作製用溶媒系に対する溶解性が
低下する。 (3) パラフエニレンジアミンを共重合しても分離
性能は低下する。 (4) イソフタル酸成分のかわりにテレフタル酸成
分を用いても分離性能は低下する。
[Table] From Tables 1 and 2, the following was clarified by the present invention in comparison with a polymer consisting of bis[4-(4-aminophenoxy)phenyl]sulfone and isophthalic acid dichloride. . (1) Membranes copolymerized with 20 mol% to 80 mol% of metaphenylenediamine exhibit excellent performance in both separation performance and solubility in solvent systems for asymmetric membrane preparation. (2) Even if metaphenylenediamine is copolymerized, 20
If the amount is less than mol %, the separation performance will decrease, and if it is more than 80 mol %, the solubility in the solvent system for producing an asymmetric membrane will decrease. (3) Even if paraphenylenediamine is copolymerized, the separation performance decreases. (4) Even if a terephthalic acid component is used instead of an isophthalic acid component, the separation performance will decrease.

Claims (1)

【特許請求の範囲】 1 ビス〔4−(4−アミノフエノキシ)フエニ
ル〕スルホン20モル%〜80モル%およびメタフエ
ニレンジアミン20モル%〜80モル%をジアミン成
分とし、酸成分がイソフタル酸成分80モル%以上
であるポリ(アミド・エーテル・スルホン)から
成る水素又はヘリウムを分離する気体分離膜。
[Scope of Claims] 1 20 mol% to 80 mol% of bis[4-(4-aminophenoxy)phenyl]sulfone and 20 mol% to 80 mol% of metaphenylenediamine are used as diamine components, and the acid component is 80 mol% of isophthalic acid component. A gas separation membrane that separates hydrogen or helium, consisting of poly(amide ether sulfone) in a mole percent or more.
JP9971485A 1985-05-13 1985-05-13 Separation membrane Granted JPS61259727A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9971485A JPS61259727A (en) 1985-05-13 1985-05-13 Separation membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9971485A JPS61259727A (en) 1985-05-13 1985-05-13 Separation membrane

Publications (2)

Publication Number Publication Date
JPS61259727A JPS61259727A (en) 1986-11-18
JPH0367733B2 true JPH0367733B2 (en) 1991-10-24

Family

ID=14254740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9971485A Granted JPS61259727A (en) 1985-05-13 1985-05-13 Separation membrane

Country Status (1)

Country Link
JP (1) JPS61259727A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5393324A (en) * 1993-11-05 1995-02-28 L'air Liquide S.A. Aromatic polyetherketone gas separation membranes

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5270989A (en) * 1975-12-06 1977-06-13 Bayer Ag Copolyamide semipermeable membrane
JPS5270990A (en) * 1975-12-06 1977-06-13 Bayer Ag Copolyamide semipermeable membrane
JPS5855006A (en) * 1981-09-28 1983-04-01 Mitsubishi Chem Ind Ltd Polysulfone ether amide membrane

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5270989A (en) * 1975-12-06 1977-06-13 Bayer Ag Copolyamide semipermeable membrane
JPS5270990A (en) * 1975-12-06 1977-06-13 Bayer Ag Copolyamide semipermeable membrane
JPS5855006A (en) * 1981-09-28 1983-04-01 Mitsubishi Chem Ind Ltd Polysulfone ether amide membrane

Also Published As

Publication number Publication date
JPS61259727A (en) 1986-11-18

Similar Documents

Publication Publication Date Title
KR102287501B1 (en) Highly-selective polyimide membranes with increased permeance, said membranes consisting of block copolyimides
JP2004516131A (en) Copolyimide gas separation membrane
JPH08501978A (en) Gas separation membrane made of alkyl-substituted polyimide, polyamide and polyamide-imide
JPH03178325A (en) Production of aromatic polyimide membrane
US5608014A (en) Blends of polyethersulfones with aromatic polymides, polyamides or polyamide-imides useful for making gas separation membranes
US5917137A (en) Gas separation membranes of blends of polyethersulfones with aromatic polyimides
US5939520A (en) Gas separation membranes based on regiospecific polyamide-imides
KR0161313B1 (en) Polyimide amicester and process for preparing the same
CN108114615A (en) A kind of polyimide gas separating film material and preparation and application
JPH04227829A (en) Semipermeable membrane and component separation method of gas mixture
CN110922596A (en) Polyether ether benzimide-ether sulfone copolymer, preparation method and application thereof, polyether ether ketone-ether sulfone copolymer and preparation method thereof
CN111234224A (en) Modified aramid polymer with polyimide structure, aramid film casting liquid, lithium battery diaphragm, preparation method of lithium battery diaphragm and lithium battery
JPH0367733B2 (en)
EP0450979A2 (en) Tri-component polyimide composition and preparation thereof
JPH0550334B2 (en)
JPH0252530B2 (en)
JPH0252531B2 (en)
JPH0122001B2 (en)
KR100351628B1 (en) New polyimides and gas separation Membrane
KR100398059B1 (en) Fluorine-based polyimide composite membrane for gas separation
JPH0685860B2 (en) Separation membrane manufacturing method
JP3456256B2 (en) Polyimide copolymer and method for producing the same
JP2827212B2 (en) Polyamideimide separation membrane
KR20140068639A (en) Novel polyimide derivatives, preparation method thereof and polymer gas separation membrane comprising the same
KR0133427B1 (en) Preparation of polyimide membrane

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term