JPH0251263A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH0251263A
JPH0251263A JP20104288A JP20104288A JPH0251263A JP H0251263 A JPH0251263 A JP H0251263A JP 20104288 A JP20104288 A JP 20104288A JP 20104288 A JP20104288 A JP 20104288A JP H0251263 A JPH0251263 A JP H0251263A
Authority
JP
Japan
Prior art keywords
region
type
conductivity type
resistor
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20104288A
Other languages
Japanese (ja)
Inventor
Kazuo Yamanaka
和夫 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP20104288A priority Critical patent/JPH0251263A/en
Publication of JPH0251263A publication Critical patent/JPH0251263A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/0802Resistors only

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To prevent insulation breakdown from occurring even in the case that the voltage drop at current application is great by dividing one conductivity type region in the direction of crossing the longitudinal direction of a resistor. CONSTITUTION:A resist layer 7 having an opening at the diffusion resistor formation region of an n-type silicon substrate 1 is formed, and after implanting ions of p-type impurity annealing is done so as to form a p-type region 2. Next, a resist layer 8 is formed, and then by patterning it, openings 9 that the width corresponding to the longitudinal direction of the resistor is a and the width in the direction crossing this at right angles is b are formed in a plural number so that the space between each opening may be c. In this case, the opening 9 is so formed as not to contact with the n-type silicon substrate 1. Next, after implanting ions of n-type impurity, annealing is done so as to form an n<+>-type region 3. Next, using a CVD method, silicon-dioxide layer 4 is formed at the surface, and by patterning it an opening is formed at a region for forming contact region 5, and then p-type impurity is diffused so as to form a p<++>-type contact region 5, and an electrode/wiring 6 is formed and diffusion resistor is formed. Hereby, the voltage which is applied between it and one conductivity type region divided from an opposite conductivity type region becomes lower than the breakdown voltage at a P-N junction part, and generation of insulation breakdown can be prevented.

Description

【発明の詳細な説明】 〔概要] 一導電型の半導体層の一部領域に形成された反対導電型
領域をもって構成されるいわゆる拡散抵抗の絶縁耐力を
向上する改良に関し、 通電時の電圧降下が大きい場合にも、絶縁破壊が起こら
ないように改良された拡散抵抗を提供することを目的と
し、 一導電型の半導体層の表層に反対導電型の領域が形成さ
れ、この反対導電型の領域の一部領域に、前記の一導電
型の半導体層と絶縁されて一導電型の領域が形成されて
なり、前記の反対導電型の領域をもって抵抗が構成され
てなる半導体装置において、前記の一導電型の領域は、
前記の抵抗の長手方向と交叉する方向に分割されるよう
に構成される。
[Detailed Description of the Invention] [Summary] Regarding an improvement to improve the dielectric strength of a so-called diffused resistor that is composed of a region of an opposite conductivity type formed in a partial region of a semiconductor layer of one conductivity type, the voltage drop when energized is reduced. In order to provide improved diffusion resistance so that dielectric breakdown does not occur even when the diffusion resistance is large, a region of an opposite conductivity type is formed on the surface layer of a semiconductor layer of one conductivity type, and a region of the opposite conductivity type is formed in the surface layer of a semiconductor layer of one conductivity type. In a semiconductor device in which a region of one conductivity type is formed in a partial region insulated from the semiconductor layer of one conductivity type, and a resistor is constituted by the region of the opposite conductivity type, the one conductivity type The area of the type is
The resistor is configured to be divided in a direction intersecting the longitudinal direction of the resistor.

〔産業上の利用分野〕[Industrial application field]

本発明は、一導電型の半導体層の一部領域に形成された
反対導電型領域をもって構成されるいわゆる拡散抵抗の
絶縁耐力を向上する改良に関する。
The present invention relates to an improvement in improving the dielectric strength of a so-called diffused resistor that is constituted by a region of an opposite conductivity type formed in a partial region of a semiconductor layer of one conductivity type.

〔従来の技術〕[Conventional technology]

従来技術に係る拡散抵抗について図を参照して説明する
A diffused resistor according to the prior art will be explained with reference to the drawings.

第5図参照 1は一導電型例えばn型の半導体層であり、2は反対導
電型のp型不純物を拡散して形成されたp0型の領域で
あり、4は絶縁膜であり、5はp゛°型のコンタクト領
域であり、6は電極・配線である。p゛型eMMU2を
もって抵抗が構成されている。抵抗値は、P9型領域2
に導入される不純物濃度と不純物拡散領域とによって調
整されるが、抵抗値の制御性をよくするため、特に、抵
抗値の高い領域の抵抗値の制御性をよくするため、次の
方法が使用されている。
Referring to FIG. 5, 1 is a semiconductor layer of one conductivity type, for example, an n-type, 2 is a p0 type region formed by diffusing p-type impurities of the opposite conductivity type, 4 is an insulating film, and 5 is a semiconductor layer of one conductivity type, for example, an n-type. It is a p゛° type contact region, and 6 is an electrode/wiring. A resistor is constituted by the p' type eMMU2. The resistance value is P9 type region 2
It is adjusted by the impurity concentration introduced in the region and the impurity diffusion region, but the following method is used to improve the controllability of the resistance value, especially in the region with high resistance value. has been done.

第6図参照 その方法は、p“型の抵抗SN[2の一部領域にn型不
純物を拡散してn型の半導体層!と絶縁されたn゛型の
領域3を形成し、このn゛型の領域3の不純物拡散領域
を調整することによって、抵抗を構成するp゛型の領域
2の通電面積を調整して抵抗値を制御する方法である。
Refer to FIG. 6. The method involves diffusing n-type impurities into a partial region of the p"-type resistor SN[2 to form an n-type region 3 insulated from the n-type semiconductor layer! This is a method of controlling the resistance value by adjusting the current-carrying area of the p'-type region 2 constituting the resistor by adjusting the impurity diffusion region of the p-type region 3.

〔発明が解決しようとする課題ゴ 第6図再参照 ところで、図に示すように拡散抵抗の電極・配線6の一
方を正の電源に接続し、他方を負の電源に接続して電流
を流すと、抵抗を構成するp0型の領域2内で電圧降下
が生ずる。一方、n゛型のM域3には、P−N接合を介
して正の電源側の電位が加わる。この結果、図にAをも
って示す領域のp゛型の領域2とn゛型の領域3との間
に、p゛型の領域2内に発生した電圧降下に相当する電
位差が発生し、この電位差がP−N接合部のブレークダ
ウン電圧よりも高いと、絶縁破壊が発生する。
[Problems to be Solved by the Invention]Refer to Figure 6 By the way, as shown in the figure, one of the electrodes/wirings 6 of the diffused resistor is connected to a positive power source, and the other is connected to a negative power source to flow a current. Then, a voltage drop occurs within the p0 type region 2 that constitutes the resistor. On the other hand, a positive power supply potential is applied to the n-type M region 3 via the PN junction. As a result, a potential difference corresponding to the voltage drop occurring in the p-type region 2 is generated between the p-type region 2 and the n-type region 3 in the region indicated by A in the figure, and this potential difference is higher than the breakdown voltage of the PN junction, dielectric breakdown occurs.

本発明の目的は、この欠点を解消することにあり、通電
時の電圧降下が大きい場合にも、絶縁破壊が起こらない
ように改良された拡散抵抗を提供することにある。
An object of the present invention is to eliminate this drawback, and to provide an improved diffused resistance that prevents dielectric breakdown even when the voltage drop during energization is large.

〔課題を解決するための手段〕[Means to solve the problem]

上記の目的は、一導電型の半導体層(1)の表層に反対
導電型の811M1(2)が形成され、この反対導電型
の領域(2)の一部領域に、前記の一導電型の半導体層
(1)と絶縁されて一導電型の領域(3)が形成されて
おり、前記の反対導電型の領域(2)をもって抵抗が構
成されている半導体装置において、前記の一導電型の領
域(3)が、前記の抵抗の長手方向と交叉する方向に分
割されることによって達成される。
The above purpose is to form 811M1 (2) of the opposite conductivity type on the surface layer of the semiconductor layer (1) of one conductivity type, and to form the 811M1 (2) of the opposite conductivity type in a part of the region (2) of the opposite conductivity type. In a semiconductor device in which a region (3) of one conductivity type is formed insulated from the semiconductor layer (1), and a resistor is constituted by the region (2) of the opposite conductivity type, the region (3) of one conductivity type is This is achieved by dividing the region (3) in a direction transverse to the longitudinal direction of the resistor.

〔作用〕[Effect]

本発明に係る半導体装置においては、一導電型の領域3
が抵抗の長手方向と交叉する方向に分割されており、分
割された一導電型の領域3の幅をそれぞれaとし、抵抗
を構成する反対導電型の領域2の長手方向の単位長さ当
りの抵抗値をRuとすると、抵抗に電流■が流れたとき
に、分割された一導電型の領域3の幅aに対応する領域
の反対導電型の領域2に発生する電圧降下はa−Ru・
■となる0分割された一導電型の領域3と反対導電型の
領域2との間には、この電圧降下a−Ru・Iに相当す
る電圧が加わるが、もし、電圧降下a−1? u−Iが
一導電型領域3と反対導電型の領域2との間のP−N接
合のブレークダウン電圧VII+より小さければブレー
クダウンは起こらない。
In the semiconductor device according to the present invention, the region 3 of one conductivity type
is divided in the direction crossing the longitudinal direction of the resistor, the width of each divided region 3 of one conductivity type is a, and the width per unit length in the longitudinal direction of the region 2 of the opposite conductivity type constituting the resistor is Assuming that the resistance value is Ru, when a current ■ flows through the resistor, the voltage drop that occurs in the region 2 of the opposite conductivity type to the region corresponding to the width a of the divided region 3 of one conductivity type is a−Ru・
A voltage corresponding to this voltage drop a-Ru·I is applied between the zero-divided region 3 of one conductivity type and the region 2 of the opposite conductivity type, which is 2, but if the voltage drop a-1? If u-I is smaller than the breakdown voltage VII+ of the P-N junction between the region 3 of one conductivity type and the region 2 of the opposite conductivity type, no breakdown will occur.

すなわち Van>a −Ru −1 を満足するように、分割される一導電型の領域3の幅a
を選定すれば、ブレークダウンは起こらない。
In other words, the width a of the region 3 of one conductivity type to be divided is such that Van>a −Ru −1 is satisfied.
If you select , breakdown will not occur.

〔実施例〕〔Example〕

以下、図面を参照しつ一1本発明の一実施例に係る半導
体装置の製造工程について説明し、本発明の構成をさら
に明らかにする。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the manufacturing process of a semiconductor device according to an embodiment of the present invention will be explained with reference to the drawings to further clarify the structure of the present invention.

第2図参照 例えばn型のシリコン基板1の拡散抵抗形成領域、例え
ば長さ約10On、幅約20nをもって囲まれた領域に
開口を有するレジスト層7を形成し、ボロン等のp型不
純物を表面不純物濃度が1×10′6〜I XIO”c
m−’程度となるようにイオン注入した後アニールをな
し、深さ2〜5n程度のp型の領域2を形成する。
Refer to FIG. 2. For example, a resist layer 7 having an opening is formed in a diffused resistance forming region of an n-type silicon substrate 1, for example, a region surrounded by a length of about 10 On and a width of about 20 On, and a p-type impurity such as boron is added to the surface. Impurity concentration is 1×10′6~IXIO”c
After ion implantation to a depth of about m-', annealing is performed to form a p-type region 2 with a depth of about 2 to 5 nm.

第3図、第4図参照 第4図は第3図の平面図である。See Figures 3 and 4. FIG. 4 is a plan view of FIG. 3.

レジスト層8を形成し、これをバターニングして、例え
ば抵抗の長手方向に対応する幅aが約10uであり、こ
れと直交する方向の幅すが約15nである開口9を、開
口相互間の間隙Cが約10βlとなるように複数個例え
ば3個形成する。この場合、開口9はn型のシリコン基
板lと接触しないように形成する。ヒ素等のn型の不純
物を表面不純物濃度がI XIO”〜I XIO”c+
s−’程度となるようにイオン注入した後アニールをな
し、厚さ1〜1.5μ程度のn°型の領域3を形成する
。なお、n。
A resist layer 8 is formed and patterned to form an opening 9 between the openings, for example, the width a corresponding to the longitudinal direction of the resistor is about 10u, and the width in the direction perpendicular to this is about 15n. A plurality of, for example, three, are formed so that the gap C is about 10βl. In this case, the opening 9 is formed so as not to contact the n-type silicon substrate l. The surface impurity concentration of n-type impurities such as arsenic is IXIO”~IXIO”c+
After ion implantation so as to have a thickness of about s-', annealing is performed to form an n° type region 3 having a thickness of about 1 to 1.5 μm. In addition, n.

型の領域3の不純物濃度をp°型の領域2の不純物濃度
より低くすれば、空乏層がn゛型の領域3側に形成され
るので、抵抗を構成するpI型の領域2の通電面積をよ
り正確に制御できる。
If the impurity concentration of the p-type region 3 is lower than the impurity concentration of the p-type region 2, a depletion layer is formed on the n-type region 3 side, so that the current-carrying area of the pI-type region 2 constituting the resistor is reduced. can be controlled more precisely.

第1a図、第1b図参照 第1b図は第1a図の平面図である。See Figures 1a and 1b. FIG. 1b is a plan view of FIG. 1a.

CVD法等を使用して表面に二酸化シリコン層4を形成
し、バターニングしてコンタクト領域5形成領域に開口
を形成し、p型の不純物ボロン等を不純物濃度が5Xl
O”〜1×10°cm−”程度となるように拡散して2
0′″型コンタクト領域5を形成し、全面にアルミニウ
ム膜を形成して、これをバターニングし、電極・配線6
を形成し、100Ω〜10にΩ程度の拡散抵抗を形成す
る。
A silicon dioxide layer 4 is formed on the surface using a CVD method or the like, and an opening is formed in the contact region 5 formation region by buttering, and a p-type impurity such as boron is added to the impurity concentration of 5Xl.
Diffuse it so that it is about 0"~1 x 10°cm-"2
A 0'' type contact region 5 is formed, an aluminum film is formed on the entire surface, and this is patterned to form an electrode/wiring 6.
, and form a diffused resistance of about 100Ω to 10Ω.

〔発明の効果〕〔Effect of the invention〕

以上説明せるとおり、本発明に係る半導体装置において
は、一導電型の半導体層の表面に反対導電型の領域が形
成され、この反対導電型の領域の一部領域に前記の一導
電型の半導体層と絶縁されて一導電型の領域が形成され
、前記の反対導電型の領域をもって抵抗が構成されてい
る半導体装置において、前記の一導電型の領域が抵抗の
長手方向と交叉する方向に分割されているため、抵抗を
構成する反対導電型の領域に発生する電圧降下が大きい
場合にも、反対導電型の領域と分割された一導電型の領
域との間に加わる電圧は、分割された一導電型の領域の
幅にほり比例して低(なるので、反対導電型の領域と分
割された一導電型の領域との間のP−N接合部のブレー
クダウン電圧よりも低くなり、絶縁破壊は起こらない。
As explained above, in the semiconductor device according to the present invention, a region of the opposite conductivity type is formed on the surface of the semiconductor layer of one conductivity type, and a part of the region of the opposite conductivity type is covered with the semiconductor layer of the one conductivity type. In a semiconductor device in which a region of one conductivity type is formed insulated from a layer, and a resistor is constituted by the region of the opposite conductivity type, the region of one conductivity type is divided in a direction intersecting the longitudinal direction of the resistor. Therefore, even if the voltage drop occurring in the regions of the opposite conductivity type that constitutes the resistor is large, the voltage applied between the region of the opposite conductivity type and the divided region of one conductivity type is The voltage decreases in proportion to the width of the region of one conductivity type, so it becomes lower than the breakdown voltage of the P-N junction between the region of the opposite conductivity type and the divided region of one conductivity type. No destruction will occur.

【図面の簡単な説明】[Brief explanation of the drawing]

第1a図は、本発明の一実施例に係る半導体装置の断面
図である。 第1b図は、本発明の一実施例に係る半導体装置の平面
図である。 第2図〜第4図は、本発明の一実施例に係る半導体装置
の工程図である。 第5図、第6図は、従来技術に係る半導体装置の断面図
である。 5・・・コンタクト領域、 6・・・電極・配線、 7.8・・・レジスト層、 9・・・開口。
FIG. 1a is a sectional view of a semiconductor device according to an embodiment of the present invention. FIG. 1b is a plan view of a semiconductor device according to an embodiment of the present invention. 2 to 4 are process diagrams of a semiconductor device according to an embodiment of the present invention. 5 and 6 are cross-sectional views of a semiconductor device according to the prior art. 5... Contact region, 6... Electrode/wiring, 7.8... Resist layer, 9... Opening.

Claims (1)

【特許請求の範囲】 一導電型の半導体層(1)の表層に反対導電型の領域(
2)が形成され、 該反対導電型の領域(2)の一部領域に、前記一導電型
の半導体層(1)と絶縁されて一導電型の領域(3)が
形成されてなり、 前記反対導電型の領域(2)をもって抵抗が構成されて
なる半導体装置において、 前記一導電型の領域(3)は、前記抵抗の長手方向と交
叉する方向に分割されてなる ことを特徴とする半導体装置。
[Claims] A region of the opposite conductivity type (
2) is formed, and a region (3) of one conductivity type is formed in a part of the region (2) of the opposite conductivity type, insulated from the semiconductor layer (1) of one conductivity type, and A semiconductor device in which a resistor is configured with a region (2) of an opposite conductivity type, characterized in that the region (3) of one conductivity type is divided in a direction intersecting the longitudinal direction of the resistor. Device.
JP20104288A 1988-08-13 1988-08-13 Semiconductor device Pending JPH0251263A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20104288A JPH0251263A (en) 1988-08-13 1988-08-13 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20104288A JPH0251263A (en) 1988-08-13 1988-08-13 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH0251263A true JPH0251263A (en) 1990-02-21

Family

ID=16434458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20104288A Pending JPH0251263A (en) 1988-08-13 1988-08-13 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH0251263A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5990538A (en) * 1996-02-01 1999-11-23 Micron Technology, Inc. High resistivity integrated circuit resistor
KR20020071099A (en) * 2001-03-03 2002-09-12 (주)에너펙텍 A hydrogen and oxygen generator
US6500723B1 (en) * 2001-10-05 2002-12-31 Motorola, Inc. Method for forming a well under isolation and structure thereof
JP2006518006A (en) * 2003-02-17 2006-08-03 オーエム エナジー リミテッド Plant for decomposing water by electrolysis

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5990538A (en) * 1996-02-01 1999-11-23 Micron Technology, Inc. High resistivity integrated circuit resistor
KR20020071099A (en) * 2001-03-03 2002-09-12 (주)에너펙텍 A hydrogen and oxygen generator
US6500723B1 (en) * 2001-10-05 2002-12-31 Motorola, Inc. Method for forming a well under isolation and structure thereof
JP2006518006A (en) * 2003-02-17 2006-08-03 オーエム エナジー リミテッド Plant for decomposing water by electrolysis
JP4729311B2 (en) * 2003-02-17 2011-07-20 オーエム エナジー リミテッド Plant for decomposing water by electrolysis

Similar Documents

Publication Publication Date Title
US5414290A (en) IGBT with self-aligning cathode pattern and method for producing it
EP0731985B1 (en) Improved mesh geometry for mos-gated semiconductor devices
JPH061766B2 (en) Integrated circuit electrode formation method
JPH0332234B2 (en)
JPH0251263A (en) Semiconductor device
JP3718223B2 (en) Semiconductor device for high voltage with vertical groove
JPH08507178A (en) Drift-free avalanche breakdown diode
FR2787637A1 (en) Peripheral structure for monolithic power device, comprising front and rear surfaces with cathode and anode connections, reverse and forward biased junctions, and insulating wall
US5204735A (en) High-frequency semiconductor device having emitter stabilizing resistor and method of manufacturing the same
US6215167B1 (en) Power semiconductor device employing field plate and manufacturing method thereof
JP4697384B2 (en) Semiconductor device
JP2719569B2 (en) Semiconductor device
JP2511023B2 (en) Bidirectional thyristor
JP2654056B2 (en) Method for manufacturing semiconductor device
KR900000826B1 (en) Semiconductor ic manufacturing method
WO2017159281A1 (en) Solar cell
KR0148699B1 (en) Semiconductor device
JPS6116563A (en) Semiconductor device
JP2002246595A (en) Transistor
JPH042161A (en) Bipolar integrated circuit
JPH0795583B2 (en) Semiconductor device
JPS6197968A (en) Semiconductor device
JPS5821370A (en) Semiconductor device
JPS5957476A (en) Manufacture of semiconductor device
JPS58101459A (en) Semiconductor device