JPH0250059A - Evaporator - Google Patents

Evaporator

Info

Publication number
JPH0250059A
JPH0250059A JP20153088A JP20153088A JPH0250059A JP H0250059 A JPH0250059 A JP H0250059A JP 20153088 A JP20153088 A JP 20153088A JP 20153088 A JP20153088 A JP 20153088A JP H0250059 A JPH0250059 A JP H0250059A
Authority
JP
Japan
Prior art keywords
refrigerant
evaporator
gas
tank
inlet port
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20153088A
Other languages
Japanese (ja)
Inventor
Masayoshi Enomoto
榎本 雅好
Shigeji Oishi
繁次 大石
Takeshi Matsunaga
健 松永
Yoshio Miyata
喜夫 宮田
Tadashi Nakabo
正 中坊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP20153088A priority Critical patent/JPH0250059A/en
Publication of JPH0250059A publication Critical patent/JPH0250059A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/03Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits
    • F28D1/0308Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other
    • F28D1/0325Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other the plates having lateral openings therein for circulation of the heat-exchange medium from one conduit to another
    • F28D1/0333Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other the plates having lateral openings therein for circulation of the heat-exchange medium from one conduit to another the plates having integrated connecting members
    • F28D1/0341Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other the plates having lateral openings therein for circulation of the heat-exchange medium from one conduit to another the plates having integrated connecting members with U-flow or serpentine-flow inside the conduits

Abstract

PURPOSE:To reduce the loss of pressure caused by refrigerant gas so as to improve the cooling capacity without structural improvement or use of special equipment by forming in a part of an evaporator passageway for refrigerant a shunt permitting refrigerant gas flowing in from the inlet port to flow directly to the outlet port. CONSTITUTION:In the upper part of a partition 7 in a tank 4 as a means of separation between an inlet port 2 and an outlet port 3 positioned adjacently, a shunt 8 is formed which permits refrigerant gas flowing in from an inlet port 2 to flow directly to an outlet port 3. The refrigerant taken in in two phases of gas and liquid through the inlet port 2 separates, as it flows through the tank 4, into liquid and gas due to a difference in specific gravity, the former flowing in the lower part of the tank 4 and the latter in the upper part of the tank 4. The liquid refrigerant which flows through flat tubes 5 is vaporized by heat exchange by means of corrugated fins 6 and the gasified refrigerant is discharged immediately through the outlet port 3. The loss of pressure caused by refrigerant gas can therefore be reduced.

Description

【発明の詳細な説明】 [産業上の利用分野コ この発明は車両用空調装置等の冷凍サイクルに使用され
る蒸発器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] This invention relates to an evaporator used in a refrigeration cycle of a vehicle air conditioner or the like.

[従来の技術] 従来、この種の蒸発器として、入口ポートから出口ポー
トまでの間で所定の延長距離をもって配設されると共に
周囲に伝熱フィンを有する冷媒蒸発路を備えた蒸発器が
一般的に知られている。
[Prior Art] Conventionally, this type of evaporator is generally an evaporator that is provided with a refrigerant evaporation path that is disposed with a predetermined extended distance from an inlet port to an outlet port and that has heat transfer fins around the evaporator. is known for.

例えば第14図に示すような積層型蒸発器31において
は、その入口ポート32が冷凍サイクルを構成する膨張
弁に接続され、出口ポート33が同じく冷凍サイクルを
構成する圧縮機に接続されている。そして、第15.1
6図に示すように、膨張弁から流送される気液2相状態
の冷媒が入口ポート32に導入された後、タンク部34
及び偏平管35等の冷媒蒸発路を通過する間に、伝熱フ
ィン36による熱交換作用に基いて液冷媒が気化され、
出口ポート33から導出される。
For example, in a stacked evaporator 31 as shown in FIG. 14, its inlet port 32 is connected to an expansion valve that constitutes a refrigeration cycle, and its outlet port 33 is connected to a compressor that also constitutes a refrigeration cycle. And Section 15.1
As shown in FIG. 6, after the gas-liquid two-phase refrigerant flowing from the expansion valve is introduced into the inlet port 32, the refrigerant enters the tank section 34.
While passing through the refrigerant evaporation path such as the flat tube 35, the liquid refrigerant is vaporized based on the heat exchange action by the heat transfer fins 36,
It is led out from the outlet port 33.

[発明が解決しようとする課題] ところが、従前の蒸発器31では、入口ポート32から
導入される気液2相状態の冷媒のうち液冷媒は熱交換に
寄与して気化されるが、ガス冷媒は熱交換に何ら寄与し
ないものであった。しかも、ガス冷媒は蒸発器31内に
て体積流量を増大させ、圧力損失を増大させることにな
った。従って、この圧力損失により、液冷媒の蒸発温度
が上昇して周囲との温度差が小さくなり、蒸発器31の
冷房能力が低下するという問題があった。
[Problems to be Solved by the Invention] However, in the conventional evaporator 31, among the gas-liquid two-phase refrigerant introduced from the inlet port 32, the liquid refrigerant contributes to heat exchange and is vaporized, but the gas refrigerant did not contribute to heat exchange in any way. Moreover, the gas refrigerant increases the volumetric flow rate within the evaporator 31, increasing the pressure loss. Therefore, due to this pressure loss, the evaporation temperature of the liquid refrigerant increases, the temperature difference with the surroundings becomes smaller, and the cooling capacity of the evaporator 31 is reduced.

そこで、ガス冷媒による圧力損失を低減させるために、
冷媒蒸発路の面積を増大させることが考えられる。しか
しながら、この場合には、冷媒から伝熱フィン36への
熱伝導が不利となるばかりでなく、蒸発器31自体が大
型化するという問題があった。
Therefore, in order to reduce pressure loss due to gas refrigerant,
It is conceivable to increase the area of the refrigerant evaporation path. However, in this case, there is a problem that not only is heat conduction from the refrigerant to the heat transfer fins 36 disadvantageous, but also that the evaporator 31 itself becomes large.

又、前記圧力損失を低減させるために、例えば実開昭5
7−36580号公報Gこ開示されているようにガス冷
媒を除去するだめの気液分離器を設けることも考えられ
る。しかしながら、この場合には、気液分離器骨のコス
ト高騰とスペース確保の点で問題があった。
In addition, in order to reduce the pressure loss, for example,
It is also conceivable to provide a gas-liquid separator for removing the gas refrigerant, as disclosed in Japanese Patent No. 7-36580. However, in this case, there were problems in terms of rising costs for the gas-liquid separator and securing space.

この発明は前述した事情に鑑みてなされたものであって
、その目的は、大型化を招来させることなく且つ特別な
部材を設けることなく、ガス冷媒による圧力損失を低減
して冷房能力を向上し得る蒸発器を提供することにある
This invention was made in view of the above-mentioned circumstances, and its purpose is to reduce pressure loss due to gas refrigerant and improve cooling capacity without increasing the size and without providing special components. Our goal is to provide an evaporator that can

[課題を解決するための手段] 上記の目的を達成するためにこの発明においては、入口
ポートから出口ポートまでの間で所定の延長距離をもっ
て配設されると共に周囲に伝熱フィンを有する冷媒蒸発
路を備えた蒸発器において、冷媒蒸発路の一部に、入口
ポート側から流入するガス冷媒を出口ポート側へ短絡さ
せるための短絡路を設けている。
[Means for Solving the Problem] In order to achieve the above object, the present invention provides a refrigerant evaporator which is disposed with a predetermined extended distance from an inlet port to an outlet port and has heat transfer fins around the refrigerant evaporator. In an evaporator equipped with a refrigerant evaporation path, a short-circuit path is provided in a part of the refrigerant evaporation path to short-circuit the gas refrigerant flowing from the inlet port side to the outlet port side.

[作用] 従って、入口ポートから導入される気液2相状態の冷媒
のうち、比重の軽いガス冷媒は短絡路を介して出口ポー
トへ導かれる。この結果、冷媒蒸発路内における圧力損
失が低減されて液冷媒の気化が効率良く行われ、冷房能
力が向上される。
[Operation] Therefore, among the gas-liquid two-phase refrigerant introduced from the inlet port, the gas refrigerant with a light specific gravity is guided to the outlet port via the short circuit. As a result, the pressure loss in the refrigerant evaporation path is reduced, the liquid refrigerant is efficiently vaporized, and the cooling capacity is improved.

[第1実施例コ 以下、この発明を積層型蒸発器に具体化した第1実施例
を第1図及び第2図に基いて詳細に説明する。
[First Embodiment] Hereinafter, a first embodiment in which the present invention is embodied in a stacked evaporator will be described in detail with reference to FIGS. 1 and 2.

第1図はこの実施例における積層型蒸発器1の部分破断
平面図であって、その全体外形は第14図に示す従来例
の蒸発器31と略同じである。又、この蒸発器1は周知
の冷凍サイクルの構成要素の一つであり、図示しない周
知の膨張弁及び圧縮機に接続されている。
FIG. 1 is a partially cutaway plan view of a stacked evaporator 1 in this embodiment, and its overall external shape is approximately the same as the conventional evaporator 31 shown in FIG. 14. Further, the evaporator 1 is one of the components of a well-known refrigeration cycle, and is connected to a well-known expansion valve and a compressor (not shown).

第1,2図に示すように、蒸発器1は側方へ突設されて
膨張弁に接続される入口ポート2と、同じく側方へ突設
されて圧縮機に接続される出口ボー1−3と、入口ポー
ト2から出口ポート3までの間で所定の延長距離をもっ
て配設され冷媒を流通させる冷媒蒸発路としてのタンク
部4及び偏平管5と、その偏平管5の周囲に形成されて
空気との熱交換を促進するための伝熱フィンとしてのコ
ルゲートフィン6とを備えている。そして、タンク部4
には気液2相状態の冷媒が流通する。
As shown in Figures 1 and 2, the evaporator 1 has an inlet port 2 that projects laterally and is connected to an expansion valve, and an outlet port 1 that also projects laterally and is connected to a compressor. 3, a tank portion 4 and a flat tube 5 as a refrigerant evaporation path which is disposed with a predetermined extension distance between the inlet port 2 and the outlet port 3 and allows the refrigerant to flow, and a flat tube 5 formed around the flat tube 5. It is provided with corrugated fins 6 as heat transfer fins for promoting heat exchange with air. And tank part 4
A gas-liquid two-phase refrigerant flows through the refrigerant.

上記の構成は従来例の蒸発器31と略同様のものである
。そして、入口ポート2から導入された冷媒は、第1図
に実線及び破線で示す経路をたどった後、出口ポート3
から導出される。
The above configuration is approximately the same as the evaporator 31 of the conventional example. The refrigerant introduced from the inlet port 2 follows the path shown by solid lines and broken lines in FIG.
It is derived from

第1,2図に示すように、この実施例では、隣接する入
口ポート2と出口ポート3とを区画するためにタンク部
4内に設けられた仕切壁7の上部に、入口ポート2側か
ら流入するガス冷媒を出口ポート3側へ短絡させるため
の短絡路8が形成されている。そして、この短絡路8の
点で従来例の蒸発器31と構成が異なっている。
As shown in FIGS. 1 and 2, in this embodiment, from the inlet port 2 side, a A short-circuit path 8 is formed to short-circuit the inflowing gas refrigerant to the outlet port 3 side. The configuration of this short-circuit path 8 differs from that of the conventional evaporator 31.

従って、入口ポート2から導入される気液2相状態の冷
媒は、第2図に示すようにタンク部4を通過する際に、
その比重の違いにより液冷媒はタンク部4の下側を、ガ
ス冷媒はタンク部4の上側を流れることになる。そして
、前記気液2相状態の冷媒のうち、液冷媒は偏平管5を
流れる際にコルゲートフィン6にて熱交換作用に基いて
気化される。一方、気液2相状態の冷媒のうち、ガス冷
媒は、矢印Aで示すように短絡路8を介して出口ポート
3へ直ちに導かれ、同ポート3より導出される。
Therefore, when the gas-liquid two-phase refrigerant introduced from the inlet port 2 passes through the tank section 4 as shown in FIG.
Due to the difference in specific gravity, the liquid refrigerant flows below the tank section 4, and the gas refrigerant flows above the tank section 4. Of the refrigerant in the gas-liquid two-phase state, the liquid refrigerant is vaporized by the corrugated fins 6 based on the heat exchange action when flowing through the flat tube 5. On the other hand, among the gas-liquid two-phase refrigerants, the gas refrigerant is immediately guided to the outlet port 3 via the short circuit path 8 as shown by arrow A, and is then led out from the port 3.

この結果、熱交換作用に直接寄与することのないガス冷
媒は、直ちに出口ポート3から排除され、ガス冷媒によ
る圧力損失を低減することができ、液冷媒の気化を効率
良く行うことができる。よって、蒸発器における冷房能
力を向上することができる。
As a result, the gas refrigerant that does not directly contribute to the heat exchange action is immediately removed from the outlet port 3, the pressure loss due to the gas refrigerant can be reduced, and the liquid refrigerant can be vaporized efficiently. Therefore, the cooling capacity of the evaporator can be improved.

[第2実施例コ 次に、別の位置に短絡路を設けた場合の第2実施例を第
3図に従って説明する。
[Second Embodiment] Next, a second embodiment in which a short circuit path is provided at a different position will be described with reference to FIG.

第3図はこの実施例における積層型蒸発器11の概略構
成を説明する斜視図である。又、この蒸発器11は周知
の冷凍サイクルの構成要素の一つであり、図示しない周
知の膨張弁及び圧縮機に接続されている。
FIG. 3 is a perspective view illustrating the schematic structure of the stacked evaporator 11 in this embodiment. Further, this evaporator 11 is one of the components of a well-known refrigeration cycle, and is connected to a well-known expansion valve and a compressor (not shown).

全体略箱形をなす蒸発器11は、その上部に上部タンク
12、下部に下部タンク13をそれぞれ備えている。上
部タンク12と下部タンク13との間には所定の延長距
離をもって配設された管路部14が配設され、その管路
部14の周囲には空気との熱交換を促進するための伝熱
フィン(図示路)が設けられている。そして、前記各部
材12〜14により、冷媒を流通させる冷媒蒸発路が構
成されている。
The evaporator 11, which is generally box-shaped as a whole, has an upper tank 12 at its upper part and a lower tank 13 at its lower part. A pipe section 14 is provided between the upper tank 12 and the lower tank 13 with a predetermined extension distance, and a conductor is provided around the pipe section 14 to promote heat exchange with the air. Heat fins (paths shown) are provided. Each of the members 12 to 14 constitutes a refrigerant evaporation path through which the refrigerant flows.

上部タンク12及管路部14は仕切壁15によりそれぞ
れ2室12A、12B、14A、14Bに区画されてい
る。又、上部タンク12の1室12A側は仕切壁16に
より更に2つの小室12a。
The upper tank 12 and the pipe section 14 are each divided into two chambers 12A, 12B, 14A, and 14B by a partition wall 15. Further, on the side of the first chamber 12A of the upper tank 12, two further small chambers 12a are formed by a partition wall 16.

12bに区画されている。更に、その一方の小室12a
には側方へ突出されて膨張弁に接続される入口ポート1
7が設けられ、他方の小室12bには側方へ突出されて
圧縮機に接続される出口ポート18が設けられている。
It is divided into 12b. Furthermore, one of the small chambers 12a
has an inlet port 1 which projects laterally and is connected to the expansion valve.
7 is provided, and the other small chamber 12b is provided with an outlet port 18 that projects laterally and is connected to the compressor.

即ち、この実施例では、前記第1実施例において入口ポ
ート2と出口ポート3とが隣接して配設されているもの
とは異なり、入口ポート17と出口ポート1日とが両側
へ離間して配設されている。
That is, in this embodiment, unlike the first embodiment in which the inlet port 2 and the outlet port 3 are arranged adjacent to each other, the inlet port 17 and the outlet port 1 are spaced apart on both sides. It is arranged.

上記の構成は従来例の積層型蒸発器31と略同様のもの
である。そして、入口ポート17から導入される気液2
相状態の冷媒は、実線及び2点鎖線で示す経路をたどっ
た後、出口ポート18から導出されるようになっている
The above configuration is substantially the same as that of the conventional stacked evaporator 31. Then, the gas and liquid 2 introduced from the inlet port 17
The refrigerant in phase is led out from the outlet port 18 after following the path shown by the solid line and the two-dot chain line.

この実施例では、上部タンク12の小室12a側におい
てその仕切壁15に、入口ポート17側から流入するガ
ス冷媒を出口ポート18側へ短絡させるための短絡路1
9が形成されている。
In this embodiment, a short-circuit path 1 is provided in the partition wall 15 on the small chamber 12a side of the upper tank 12 for short-circuiting the gas refrigerant flowing from the inlet port 17 side to the outlet port 18 side.
9 is formed.

従って、入口ポート17から導入される気液2相状態の
冷媒のうち、液冷媒は第3図に実線及び2点鎖線で示す
経路をたどって上部タンク12、管路部14及び下部タ
ンク13を流れ、管路部14を流れる際に伝熱フィンに
て熱交換作用に基いて気化される。一方、気液2相状態
の冷媒のうち、ガス冷媒は、矢印Bで示すように小室1
2aから短絡路19を介して他方の室12Bへ導かれ、
早期に出口ポート18から導出される。
Therefore, among the gas-liquid two-phase refrigerant introduced from the inlet port 17, the liquid refrigerant flows through the upper tank 12, the pipe section 14, and the lower tank 13 by following the path shown by the solid line and the two-dot chain line in FIG. As it flows through the pipe section 14, it is vaporized by the heat exchange action at the heat transfer fins. On the other hand, among the gas-liquid two-phase refrigerants, the gas refrigerant is in the small chamber 1 as shown by arrow B.
2a to the other chamber 12B via the short circuit 19,
from the outlet port 18 at an early stage.

この結果、熱交換作用に直接寄与することのないガス冷
媒は、早期に出口ポート18から排除され、ガス冷媒に
よる圧力損失を低減することができ、液冷媒の気化を効
率良く行うことができる。
As a result, the gas refrigerant that does not directly contribute to the heat exchange action is quickly removed from the outlet port 18, the pressure loss due to the gas refrigerant can be reduced, and the liquid refrigerant can be vaporized efficiently.

よって、蒸発器における冷房能力を向上することができ
る。
Therefore, the cooling capacity of the evaporator can be improved.

ここで、前記第1及び第2の実施例の蒸発器11を使用
して行った実験結果に基くモリエル線図を第4図に示す
。この図において、破線は従来例の蒸発器31を使用し
て行った結果を示し、実線は本実施例の蒸発器11を使
用して行った結果を示している。
Here, FIG. 4 shows a Mollier diagram based on the results of experiments conducted using the evaporators 11 of the first and second embodiments. In this figure, the broken line shows the results obtained using the evaporator 31 of the conventional example, and the solid line shows the results obtained using the evaporator 11 of the present embodiment.

圧力損失が低減された分だけ、本実施例の蒸発器11の
単位重量当たりの熱交換量Δ11は従来例の蒸発器31
の熱交換量Δillよりも増大し、これに対応して圧縮
器の消費動力Δ12は従来例の蒸発器31を使用した場
合の消費動力Δi21に比べて減少していることがわか
る。
The heat exchange amount Δ11 per unit weight of the evaporator 11 of this embodiment is greater than that of the conventional evaporator 31 by the amount that the pressure loss is reduced.
It can be seen that the heat exchange amount Δill increases, and correspondingly, the power consumption Δ12 of the compressor decreases compared to the power consumption Δi21 when the conventional evaporator 31 is used.

即ち、Δil/Δ12〉Δ111/Δt21となり、本
実施例の蒸発器11を使用した冷凍サイクルにおいて、
その成績係数の向上していることがわかる。
That is, Δil/Δ12>Δ111/Δt21, and in the refrigeration cycle using the evaporator 11 of this embodiment,
It can be seen that the coefficient of performance has improved.

[第3実施例コ 次に、複数の短絡路を設けた場合の第3実施例を第5図
〜第10図に従って説明する。
[Third Embodiment] Next, a third embodiment in which a plurality of short circuit paths are provided will be described with reference to FIGS. 5 to 10.

第5図はこの実施例における積層型蒸発器21の部分破
断平面図であって、その全体外形は第14図に示す従来
例の蒸発器31と略同じである。
FIG. 5 is a partially cutaway plan view of the stacked evaporator 21 in this embodiment, and its overall external shape is approximately the same as the conventional evaporator 31 shown in FIG. 14.

但しこの実施例の蒸発器21では、その入口ポート22
と出口ポート23の位置が前記従来例の蒸発器31の位
置と逆になっている。又、この蒸発器21は周知の冷凍
サイクルの構成要素の一つであり、図示しない周知の膨
張弁及び圧縮機に接続されている。
However, in the evaporator 21 of this embodiment, its inlet port 22
The position of the outlet port 23 is opposite to the position of the evaporator 31 in the conventional example. Further, this evaporator 21 is one of the components of a well-known refrigeration cycle, and is connected to a well-known expansion valve and a compressor (not shown).

第5.6図に示すように、蒸発器21は側方へ突設され
て膨張弁に接続される入口ポート22と、同じく側方へ
突設されて圧縮機に接続される出口ポート23と、入口
ポート22から出口ポート23までの間で所定の延長距
離をもって配設され冷媒を流通させる冷媒蒸発路として
のタンク部24及び偏平管25と、その偏平管25の周
囲に形成されて空気との熱交換を促進するための伝熱フ
ィンとしてのコルゲートフィン26とを備えている。
As shown in Figure 5.6, the evaporator 21 has an inlet port 22 that protrudes laterally and is connected to an expansion valve, and an outlet port 23 that also protrudes laterally and is connected to the compressor. , a tank portion 24 and a flat tube 25, which are arranged with a predetermined extension distance between the inlet port 22 and the outlet port 23 and serve as a refrigerant evaporation path through which the refrigerant flows, and a flat tube 25 formed around the flat tube 25 to communicate with air. The corrugated fins 26 are provided as heat transfer fins for promoting heat exchange.

そして、タンク部24には気液2相状態の冷媒が流通す
る。
A gas-liquid two-phase refrigerant flows through the tank portion 24 .

上記の構成は従来例の蒸発器31と略同様のものである
。そして、入口ポート22から導入された冷媒は、第5
図に実線及び破線で示す経路をたどった後、出口ポート
23から導出される。
The above configuration is approximately the same as the evaporator 31 of the conventional example. The refrigerant introduced from the inlet port 22 is then
After following the path shown by solid and broken lines in the figure, it is led out from the outlet port 23.

この実施例では、第5図に示すように入口ポート22と
出口ポート23との間を境にした右半分側の隣接するタ
ンク部24間に、入口ポート22側から流入するガス冷
媒を出口ポート23側へ短絡させるための複数の短絡路
27が形成されている。即ち、前記右半分側の隣接する
タンク部24間において、全ての偏平管5に対応して短
絡路27が形成されている。そして、この複数の短絡路
27の点で従来例の蒸発器31と構成が異なっている。
In this embodiment, as shown in FIG. 5, gas refrigerant flowing from the inlet port 22 side is transferred between adjacent tank parts 24 on the right half side of the boundary between the inlet port 22 and the outlet port 23. A plurality of short-circuit paths 27 are formed for short-circuiting to the 23 side. That is, between the adjacent tank parts 24 on the right half side, short circuit paths 27 are formed corresponding to all the flat tubes 5. The structure differs from the conventional evaporator 31 in terms of the plurality of short-circuit paths 27.

第6〜8図に示すように、各短絡路27は隣接するタン
ク部24間の上部に形成され、気液2相状態の冷媒のう
ち、比重の小さいガス冷媒のみを通過させるようになっ
ている。
As shown in FIGS. 6 to 8, each short circuit path 27 is formed in the upper part between adjacent tank parts 24, and allows only gas refrigerant with a small specific gravity to pass among refrigerants in a two-phase gas-liquid state. There is.

従って、入口ポート22から導入される気液2相状態の
冷媒は、第6図に示すようにタンク部24を通過する際
に、その比重の違いにより液冷媒はタンク部24の下側
を、ガス冷媒はタンク部24の上側を流れることになる
。そして、前記気液2相状態の冷媒のうち、液冷媒は偏
平管25を流れる際にコルゲートフィン26にて熱交換
作用に基いて気化される。一方、気液2相状態の冷媒の
うち、ガス冷媒は、矢印Cで示すように複数の短絡路2
7を介して上流側のタンク部24から下流側のタンク部
24へ流入して出口ポート23へ導かれ、同ポート23
より導出される。
Therefore, when the gas-liquid two-phase refrigerant introduced from the inlet port 22 passes through the tank section 24 as shown in FIG. The gas refrigerant will flow above the tank section 24. Of the refrigerant in the gas-liquid two-phase state, the liquid refrigerant is vaporized by the corrugated fins 26 based on the heat exchange effect when flowing through the flat tube 25. On the other hand, among refrigerants in a gas-liquid two-phase state, gas refrigerants have a plurality of short circuits 2 as shown by arrow C.
7, it flows from the upstream tank section 24 to the downstream tank section 24, is guided to the outlet port 23, and the port 23
It is derived from

この結果、熱交換作用に直接寄与することのないガス冷
媒は、速やかに出口ポート23から排除され、ガス冷媒
による圧力損失を低減することができ、液冷媒の気化を
効率良く行うことができる。
As a result, the gas refrigerant that does not directly contribute to the heat exchange action is quickly removed from the outlet port 23, the pressure loss due to the gas refrigerant can be reduced, and the liquid refrigerant can be vaporized efficiently.

よって、蒸発器における冷房能力を向上することができ
る。
Therefore, the cooling capacity of the evaporator can be improved.

第9図は本実施例の蒸発器21と従来例の蒸発器31と
の放熱性能の違いを示した図である。この図からも明ら
かなように、従来例の蒸発器31では、その入口側から
出口側までの冷媒通路長さにおいて、放熱性能は入口側
から緩やかに低下し、入口側から略2/3程度の通路長
さ位置において急激に最小へと低下している。一方、本
実施例の蒸発器21では、その入口側から出口側までの
全冷媒通路長さにおいて、放熱性能は最大に維持されて
いる。即ち、この実施例の蒸発器21では、ガス冷媒に
よる圧力損失が確実に抑えられていることがわかる。
FIG. 9 is a diagram showing the difference in heat radiation performance between the evaporator 21 of this embodiment and the evaporator 31 of the conventional example. As is clear from this figure, in the conventional evaporator 31, in the length of the refrigerant passage from the inlet side to the outlet side, the heat dissipation performance gradually decreases from the inlet side, and is about 2/3 from the inlet side. It drops sharply to a minimum at the path length position of . On the other hand, in the evaporator 21 of this embodiment, the heat dissipation performance is maintained at the maximum over the entire refrigerant path length from the inlet side to the outlet side. That is, it can be seen that in the evaporator 21 of this example, the pressure loss due to the gas refrigerant is reliably suppressed.

又、第1θ図は本実施例における複数の短絡路27を設
けた蒸発器21と、第1又は第2の実施例における一つ
の短絡路8,19を設けた蒸発器1.11との放熱性能
の違いを示した図である。
Further, Fig. 1θ shows the heat dissipation between the evaporator 21 provided with a plurality of short circuit paths 27 in this embodiment and the evaporator 1.11 provided with one short circuit path 8, 19 in the first or second embodiment. It is a figure showing the difference in performance.

この図からも明らかなように、本実施例の蒸発器21、
第1又は第2の実施例の蒸発器1,11では、それぞれ
短絡路8,19.27の冷媒流量を大きくするにつれで
あるピークをもって放熱性能が増大している。そして、
これら放熱性能のピークは、本実施例の蒸発器21のも
のが大きく、その冷媒流量も大きくなっている。
As is clear from this figure, the evaporator 21 of this embodiment,
In the evaporators 1 and 11 of the first and second embodiments, the heat dissipation performance increases with a certain peak as the refrigerant flow rate in the short circuit paths 8 and 19.27 is increased, respectively. and,
These heat dissipation performance peaks are large in the evaporator 21 of this embodiment, and the refrigerant flow rate is also large.

これは、本実施例の蒸発器21において、複数の短絡路
27を設けていることによるものである。
This is because a plurality of short circuit paths 27 are provided in the evaporator 21 of this embodiment.

即ち、冷媒流量を大きくしても、それら冷媒流量が各短
絡路27にて分担されるため、各短絡路27に液冷媒が
混入するのを防止できるためである。
That is, even if the refrigerant flow rate is increased, the refrigerant flow rate is shared by each short circuit path 27, so that it is possible to prevent liquid refrigerant from entering each short circuit path 27.

そして、本実施例の蒸発器21におけるこのような高い
放熱性能の効果は、従来例の蒸発器31に気液分離器を
設けた場合と路間等のものである。
The effect of such high heat dissipation performance in the evaporator 21 of this embodiment is the same as in the case where a gas-liquid separator is provided in the evaporator 31 of the conventional example and between the paths.

上記のように各実施例では、従来例の蒸発器31等と略
同様の構成をなす蒸発器1,11.21において、ガス
冷媒による圧力損失を低減させることができて冷房能力
を向上することができる。
As described above, in each embodiment, the pressure loss due to the gas refrigerant can be reduced in the evaporators 1, 11, 21, which have substantially the same configuration as the evaporator 31, etc. of the conventional example, and the cooling capacity can be improved. Can be done.

しかも、そのために冷媒蒸発路を構成するタンク部4、
偏平管5、上部タンク12、下部タンク13及び管路部
14の流路面積を全く増大させることなく、且つガス冷
媒を除去するための気液分離器等の特別な部材を設ける
ことな〈実施することができる。従って、コルゲートフ
ィン6等の伝熱フィンへの熱伝還を有効にできると共に
蒸発器111.21自体が大型化することを防止するこ
とができ、気液分離器等の特別な部材骨のコスト高騰及
びスペース拡大を抑えることができる。
Moreover, for this purpose, a tank section 4 that constitutes a refrigerant evaporation path,
This method does not require any increase in the flow area of the flat tube 5, upper tank 12, lower tank 13, and pipe section 14, and does not require the provision of special members such as a gas-liquid separator for removing the gas refrigerant. can do. Therefore, heat transfer to the heat transfer fins such as the corrugated fins 6 can be made effective, and the evaporator 111.21 itself can be prevented from increasing in size, and the cost of special components such as the gas-liquid separator can be reduced. Price hikes and space expansion can be suppressed.

尚、この発明は前記各実施例に限定されるものではなく
、発明の趣旨を逸脱しない範囲において構成の一部を適
宜に変更して次のように実施することもできる。
The present invention is not limited to the above-mentioned embodiments, and may be implemented as follows by appropriately changing a part of the structure without departing from the spirit of the invention.

(1)前記第1実施例では、第1,2図に示すように隣
接する入口ポート2と出口ポート3とを区画する仕切壁
7の上部に、入口ポート2側から流人するガス冷媒を出
口ポート3側へ短絡させるための短絡路8を形成したが
、その他の位置に設けてもよい。例えば、第5.6図に
示すように、入口ポート2から離れた位置において、隣
接するタンク部4間に短絡路8を設けてもよい。
(1) In the first embodiment, as shown in FIGS. 1 and 2, the gas refrigerant flowing from the inlet port 2 side is placed on the upper part of the partition wall 7 that partitions the adjacent inlet port 2 and outlet port 3. Although the short-circuit path 8 for short-circuiting to the outlet port 3 side is formed, it may be provided at other positions. For example, as shown in FIG. 5.6, a short circuit path 8 may be provided between adjacent tank sections 4 at a position remote from the inlet port 2.

(2)前記第2実施例では、第3図に示すように、仕切
壁15に短絡路19をもうけたが、その他の位置に設け
てもよい。例えば、仕切壁16の上部に設けてもよい。
(2) In the second embodiment, as shown in FIG. 3, the short circuit path 19 is provided in the partition wall 15, but it may be provided in another position. For example, it may be provided on the upper part of the partition wall 16.

(3)前記各実施例では、積層型型の蒸発器1゜11に
具体化したが、これ以外の型の蒸発器に具体化してもよ
い。
(3) In each of the above embodiments, the evaporator 1.11 is a stacked type, but other types of evaporators may be used.

(4)前記第3実施例では、第5図に示すように入口ポ
ート22と出口ポート23との間を境にした右半分側の
隣接するタンク部24間において、全ての偏平管5に対
応して短絡路27を形成したが、各偏平管5のうち一つ
おき毎に短絡路27を形成してもよい。
(4) In the third embodiment, as shown in FIG. 5, all the flat pipes 5 are supported between the adjacent tank parts 24 on the right half side with the boundary between the inlet port 22 and the outlet port 23. Although the short-circuit paths 27 are formed in this embodiment, the short-circuit paths 27 may be formed in every other flat tube 5.

(5)前記第3実施例では、蒸発器21の上部側に設け
られた隣接するタンク部24間に短絡路27を設けたが
、第13図に示すように蒸発器21の上部側に偏平管2
5を、下部側にタンク部24を設けた場合には、タンク
部24内の上部位置(偏平管25に近い位置)に短絡路
27を設ければよい。
(5) In the third embodiment, the short circuit path 27 was provided between the adjacent tank sections 24 provided on the upper side of the evaporator 21, but as shown in FIG. tube 2
5, when the tank portion 24 is provided on the lower side, the short circuit path 27 may be provided at an upper position within the tank portion 24 (a position close to the flat tube 25).

[発明の効果] 以上詳述したようにこの発明によれば、大型化を招来さ
せることなく且つ特別な部材を設けることな(、ガス冷
媒による圧力損失を低減することができ、冷房能力を向
上することができるという優れた効果を発揮する。
[Effects of the Invention] As detailed above, according to the present invention, it is possible to reduce the pressure loss due to the gas refrigerant, and improve the cooling capacity without increasing the size and without providing special members. It has the excellent effect of being able to

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明を具体化した第1実施例を示す積層型
蒸発器の部分破断平面図、第2図は第1図のx −x 
′fa断面図である。第3図はこの発明を具体化した第
2実施例を示す積層型蒸発器の概略構成を説明する斜視
図である。第4図は第1及び第2の実施例の蒸発器を使
用して行った実験結果に基くモリエル線図である。第5
図はこの発明を具体化した第3実施例を示す積層型蒸発
器の部分破断平面図、第6図は第5図のD−D線断面図
、第7図は第6図のE−E線断面図、第8図は第6図の
F −F wA断面図、第9図は第3実施例の蒸発器と
従来例の蒸発器との放熱性能の違いを示す図、第10図
は第3実施例における蒸発器と、第1又は第2の実施例
における蒸発器との放熱性能の違いを示す図である。第
11図はこの発明を具体化した別の実施例を示す積層型
蒸発器の部分破断平面図、第12図は第5図のY−Y線
断面図、第13図は同じく別の実施例を示す積層型蒸発
器の部分破断図である。第14図は従来例を示す蒸発器
の斜視図、第15図はその概略構成を説明する斜視図、
第16図は蒸発器の縦断面図である。 図中、2,17.22は入口ポート、3,18゜23は
出口ポート、4,24はタンク部、5.25は偏平管、
12は上部タンク、13は下部タンク、14は管路部(
4,5,12〜14,24゜25は冷媒蒸発路を構成し
ている)、6.26は伝熱フィンとしてのコルゲートフ
ィン、8,19゜27は短絡路である。 第8図 12(上部タンク) 短絡路の冷媒流量 第7 図 jI8図 第9図 (入口)。 冷媒通路長さ 一出口)
FIG. 1 is a partially cutaway plan view of a stacked evaporator showing a first embodiment embodying the present invention, and FIG. 2 is an x-x diagram of FIG.
'fa sectional view. FIG. 3 is a perspective view illustrating the schematic structure of a stacked evaporator according to a second embodiment of the present invention. FIG. 4 is a Mollier diagram based on the results of experiments conducted using the evaporators of the first and second embodiments. Fifth
The figure is a partially cutaway plan view of a stacked evaporator showing a third embodiment of the present invention, FIG. 6 is a sectional view taken along line D-D in FIG. 5, and FIG. 7 is a cross-sectional view taken along line E-E in FIG. 8 is a cross-sectional view along F-F wA in FIG. 6, FIG. 9 is a diagram showing the difference in heat dissipation performance between the evaporator of the third embodiment and the conventional evaporator, and FIG. It is a figure which shows the difference in the heat radiation performance of the evaporator in 3rd Example, and the evaporator in 1st or 2nd Example. FIG. 11 is a partially cutaway plan view of a stacked evaporator showing another embodiment embodying the present invention, FIG. 12 is a sectional view taken along the Y-Y line in FIG. 5, and FIG. 13 is another embodiment. FIG. 2 is a partially cutaway view of a stacked evaporator. FIG. 14 is a perspective view of an evaporator showing a conventional example, and FIG. 15 is a perspective view illustrating its schematic configuration.
FIG. 16 is a longitudinal sectional view of the evaporator. In the figure, 2, 17, 22 are inlet ports, 3, 18°, 23 are outlet ports, 4, 24 are tank parts, 5, 25 are flat pipes,
12 is an upper tank, 13 is a lower tank, 14 is a pipe section (
4, 5, 12 to 14, 24°25 constitute a refrigerant evaporation path), 6.26 is a corrugated fin as a heat transfer fin, and 8, 19°27 is a short circuit path. Fig. 8 12 (upper tank) Refrigerant flow rate in short circuit 7 Fig. jI 8 Fig. 9 (inlet). Refrigerant passage length (1 outlet)

Claims (1)

【特許請求の範囲】 1 入口ポートから出口ポートまでの間で所定の延長距
離をもって配設されると共に周囲に伝熱フィンを有する
冷媒蒸発路を備えた蒸発器において、 前記冷媒蒸発路の一部に、入口ポート側から流入するガ
ス冷媒を出口ポート側へ短絡させるための短絡路を設け
たことを特徴とする蒸発器。
[Scope of Claims] 1. In an evaporator equipped with a refrigerant evaporation path disposed with a predetermined extended distance from an inlet port to an outlet port and having heat transfer fins around the evaporator, a part of the refrigerant evaporation path An evaporator characterized in that a short-circuit path is provided for short-circuiting gas refrigerant flowing from the inlet port side to the outlet port side.
JP20153088A 1988-05-24 1988-08-11 Evaporator Pending JPH0250059A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20153088A JPH0250059A (en) 1988-05-24 1988-08-11 Evaporator

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP63-126291 1988-05-24
JP12629188 1988-05-24
JP20153088A JPH0250059A (en) 1988-05-24 1988-08-11 Evaporator

Publications (1)

Publication Number Publication Date
JPH0250059A true JPH0250059A (en) 1990-02-20

Family

ID=26462510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20153088A Pending JPH0250059A (en) 1988-05-24 1988-08-11 Evaporator

Country Status (1)

Country Link
JP (1) JPH0250059A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1106952A3 (en) * 1995-02-27 2001-07-25 Mitsubishi Denki Kabushiki Kaisha Heat exchanger, refrigeration system, air conditioner, and method and apparatus for fabricating heat exchanger
US6321834B1 (en) * 1999-10-01 2001-11-27 Showa Denko K.K. Laminate-type heat exchanger
JP2003294338A (en) * 2002-03-29 2003-10-15 Japan Climate Systems Corp Heat exchanger
JP2004518101A (en) * 2000-12-28 2004-06-17 昭和電工株式会社 Stacked heat exchanger

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55110863A (en) * 1979-02-21 1980-08-26 Hitachi Ltd Multitubular evaporator
JPS61191837A (en) * 1985-02-20 1986-08-26 日産自動車株式会社 Evaporator structure of chilling unit for automobile
JPS61191834A (en) * 1985-02-20 1986-08-26 日産自動車株式会社 Evaporator structure of chilling unit for automobile

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55110863A (en) * 1979-02-21 1980-08-26 Hitachi Ltd Multitubular evaporator
JPS61191837A (en) * 1985-02-20 1986-08-26 日産自動車株式会社 Evaporator structure of chilling unit for automobile
JPS61191834A (en) * 1985-02-20 1986-08-26 日産自動車株式会社 Evaporator structure of chilling unit for automobile

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1106952A3 (en) * 1995-02-27 2001-07-25 Mitsubishi Denki Kabushiki Kaisha Heat exchanger, refrigeration system, air conditioner, and method and apparatus for fabricating heat exchanger
US6321834B1 (en) * 1999-10-01 2001-11-27 Showa Denko K.K. Laminate-type heat exchanger
AU766415B2 (en) * 1999-10-01 2003-10-16 Showa Denko Kabushiki Kaisha Laminate-type heat exchanger
JP2004518101A (en) * 2000-12-28 2004-06-17 昭和電工株式会社 Stacked heat exchanger
JP2007248047A (en) * 2000-12-28 2007-09-27 Showa Denko Kk Layered heat exchanger
JP2003294338A (en) * 2002-03-29 2003-10-15 Japan Climate Systems Corp Heat exchanger

Similar Documents

Publication Publication Date Title
US6536231B2 (en) Tube and shell heat exchanger for multiple circuit refrigerant system
JP3041603B2 (en) Multistage gas / liquid separation type condenser
KR100216052B1 (en) Evaporator
US8550153B2 (en) Heat exchanger and method of operating the same
US5099913A (en) Tubular plate pass for heat exchanger with high volume gas expansion side
JP3056151B2 (en) Heat exchanger
KR101951050B1 (en) Evaporator, and method of conditioning air
DE60116922D1 (en) capacitor
JP2002130866A (en) Condenser for air conditioning
JP2001336896A (en) Heat exchanger and refrigerating cycle system
JPH03140764A (en) Heat exchanger
JPH0250059A (en) Evaporator
KR20040075717A (en) Heat exchanger
JP2004190956A (en) Condenser
JP2002350002A (en) Condenser
JPH06194001A (en) Refrigerant evaporator
KR101133966B1 (en) Water-Cooling Condenser
JPH0539969A (en) Condenser for refrigerant
JP2000180076A (en) Water/refrigerant heat exchanger
KR100805424B1 (en) Condenser having double refrigerant pass and refrigerating plant used the condenser
JPH05203285A (en) Heat exchanger
JPH04174296A (en) Condenser
KR200168000Y1 (en) Evaporator for room airconditioner
JPH06129732A (en) Refrigerant condenser
KR20030072494A (en) Receiver drier - integrated condenser