JPH024986B2 - - Google Patents

Info

Publication number
JPH024986B2
JPH024986B2 JP57074511A JP7451182A JPH024986B2 JP H024986 B2 JPH024986 B2 JP H024986B2 JP 57074511 A JP57074511 A JP 57074511A JP 7451182 A JP7451182 A JP 7451182A JP H024986 B2 JPH024986 B2 JP H024986B2
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
battery
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57074511A
Other languages
Japanese (ja)
Other versions
JPS58192268A (en
Inventor
Yoji Sakurai
Hideaki Ootsuka
Akihiko Yamaji
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP57074511A priority Critical patent/JPS58192268A/en
Publication of JPS58192268A publication Critical patent/JPS58192268A/en
Publication of JPH024986B2 publication Critical patent/JPH024986B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Description

【発明の詳細な説明】 本発明は小型にして充放電容量の大きい電池、
詳細にはリチウムを負極活物質とし、Cu2
(MxV1-x2O7(M:Mo、Crの6価金属の一種以
上特に前記のxが0.3以下の物質)を正極活物質
として用いる充放電も可能な電池に関するもので
ある。
[Detailed Description of the Invention] The present invention provides a battery that is small in size and has a large charge/discharge capacity;
In detail, lithium is used as the negative electrode active material and Cu 2
The present invention relates to a battery that can be charged and discharged using (MxV 1-x ) 2 O 7 (M: one or more of hexavalent metals such as Mo and Cr, particularly a material in which x is 0.3 or less) as a positive electrode active material.

従来からリチウムを負極活物質として用いる高
エネルギー密度電池に関する提案は多くなされて
おり、例えば、正極活物質として黒鉛及び弗繁の
インターカーレーシヨン化合物、負極活物質とし
てリチム金属をそれぞれ使用した電池が知られて
いる。(米国特許第3514337号明細書参照)。
Many proposals have been made for high-energy density batteries that use lithium as the negative electrode active material. For example, batteries that use graphite and fluorocarbon intercalation compounds as the positive electrode active material and lithium metal as the negative electrode active material are known. It is being (See US Pat. No. 3,514,337).

又、弗化黒鉛を正極活物質に用いたリチウム電
池(松下電器製)及び二酸化マンガンを正極活物
質としたリチウム電池(三洋電機製)がすでに市
販されている。しかし、これらの電池は一次電池
であり、充電できない欠点があつた。
In addition, lithium batteries using fluorinated graphite as a positive electrode active material (manufactured by Matsushita Electric) and lithium batteries using manganese dioxide as a positive electrode active material (manufactured by Sanyo Electric) are already on the market. However, these batteries were primary batteries and had the disadvantage that they could not be recharged.

リチウムを負極活物質として用いる二次電池に
ついては、正極活物質としてチタン、ジルコニウ
ム、ハフニウム、ニオビウム、タンタル、バナジ
ウムの硫化物、セレン化物、テルル化物を用いた
電池(米国特許第4009052号明細書参照)及び酸
化クロム、セレン化ニオビウム等を用いた電池
(ジヤーナル オブ エレクトロケミカルソサエ
テイー124巻7号968頁及び第325頁1977年)等が
提案されているが、これらの電池はその電池特性
及び経済性から必ずしも十分であるとはいえなか
つた。
Regarding secondary batteries that use lithium as a negative electrode active material, batteries that use titanium, zirconium, hafnium, niobium, tantalum, vanadium sulfide, selenide, or telluride as positive electrode active materials (see U.S. Pat. No. 4009052) ) and batteries using chromium oxide, niobium selenide, etc. (Journal of Electrochemical Society, Vol. 124, No. 7, pp. 968 and 325, 1977), but these batteries have poor battery characteristics and It could not necessarily be said that it was sufficient from an economic point of view.

また金属パナデートを正極活物質に用いたLi電
池については米国特許第3681143に開示されてい
るが、この特許においては、銅バナデートとして
Cu3(VO42の構造を有するもののみが実施例とし
て示されており、また充電特性については何らの
記載もない。充電可能なCu2V2O7については既に
我々が提案している。
In addition, a Li battery using metal panadate as the positive electrode active material is disclosed in US Patent No. 3681143, but in this patent, copper vanadate is used as the positive electrode active material.
Only those having the structure of Cu 3 (VO 4 ) 2 are shown as examples, and there is no description of charging characteristics. We have already proposed rechargeable Cu 2 V 2 O 7 .

Cu2V2O7は正極活物質として使用する場合、ア
セチレンブラツク、黒鉛等の導電剤を混合し、正
極合剤中の電子電導を良好にする必要がある。し
かし、活物質として作用しない導電剤を添加する
事は、正極の単位体積当たりのエネルギー充填量
を低下させる事になり、電池の高エネルギー密度
化と相反するものである。従つて、充填容量の増
大を図るには、要求される電池性能を維持できる
範囲内において導電剤の混合比率を下げる必要が
ある。この目的のためには正極活物質の導電性を
向上させる事が重要なポイントとなる。
When Cu 2 V 2 O 7 is used as a positive electrode active material, it is necessary to mix it with a conductive agent such as acetylene black or graphite to improve electronic conductivity in the positive electrode mixture. However, adding a conductive agent that does not act as an active material lowers the amount of energy packed per unit volume of the positive electrode, which is contradictory to increasing the energy density of the battery. Therefore, in order to increase the filling capacity, it is necessary to lower the mixing ratio of the conductive agent within a range that can maintain the required battery performance. For this purpose, it is important to improve the conductivity of the positive electrode active material.

本発明は前記現状を改良するために提案された
もので、その目的は小型にして優れた特性を有す
るリチウム電池を提供することにある。本発明の
前記目的を達成する電池は、正極活物質は活物質
粒子の導電性が高く電池の放電電圧及び正極活物
質の利用率が高いCu2(MxV1-x2O7(M:Mo、
Crの6価金属の一種以上)であり、負極活物質
としてはリチウムであり、電解質は正極活物質及
びリチウムに対して化学的に安定であり、かつリ
チウムイオンが正極活物質と電気化学反応をする
ための移動を行う物質であることを特徴とするも
のである。
The present invention was proposed to improve the current situation, and its purpose is to provide a lithium battery that is compact and has excellent characteristics. In a battery that achieves the above object of the present invention, the positive electrode active material is Cu 2 (MxV 1-x ) 2 O 7 (M: Mo,
Cr (one or more hexavalent metals), the negative electrode active material is lithium, the electrolyte is chemically stable with respect to the positive electrode active material and lithium, and the lithium ions do not undergo an electrochemical reaction with the positive electrode active material. It is characterized by being a substance that moves in order to

本発明によるリチウム電池によれば、小型で優
れた特性を有するリチウム電池を提供しうると言
う利点がある。
The lithium battery according to the present invention has the advantage of providing a lithium battery that is small and has excellent characteristics.

本発明を更に詳しく説明すると、本発明による
リチウム電池に用いられる正極活物質は、前述の
ように、一般式(1): Cu2(MxV1-x2O7 ……(1) を有するものである。
To explain the present invention in more detail, the positive electrode active material used in the lithium battery according to the present invention has the general formula (1): Cu 2 (MxV 1-x ) 2 O 7 ...(1) as described above. It is something.

式中、Mは6価金属Mo、Crのいずれか一種又
は二種以上のものを示す。
In the formula, M represents one or more of the hexavalent metals Mo and Cr.

xは0<x≦0.3の範囲の実数を示す。xが0.3
を超えると固溶限界を越え、混合状態になり、電
池電圧が降下すると共にサイクル寿命が低下する
おそれがあるからである。
x represents a real number in the range of 0<x≦0.3. x is 0.3
This is because if it exceeds the solid solubility limit, the solid solution limit will be exceeded, resulting in a mixed state, which may lower the battery voltage and shorten the cycle life.

本発明における正極活物質としてのCu2
(MxV1-x2O7を用いて正極を形成する場合、正極
はCu2(MxV1-x2O7粉末又はこれとポリテトラフ
ルオロエチレンのごとき結合剤粉末との混合物を
ニツケル、ステンレス等の支持体上に膜状に圧着
成形する。あるいは、Cu2(MxV1-x2O7粉末に導
電性を付与するためアセチレンブラツクのような
導電体粉末を混合し、さらにポリテトラフルオロ
エチレンのごとき結合剤粉末を場合によつては加
え、この混合物を金属容器に入れ、或いは前記混
合物をニツケル・ステンレス等の支持体上に圧着
成形する等の手段によつて形成される。
Cu 2 as positive electrode active material in the present invention
(When forming a positive electrode using MxV 1-x2 O 7 , the positive electrode is made of Cu 2 (MxV 1-x ) 2 O 7 powder or a mixture of this and a binder powder such as polytetrafluoroethylene, etc., using nickel, stainless steel, etc. Alternatively, Cu 2 (MxV 1-x ) 2 O 7 powder is mixed with a conductive powder such as acetylene black to give it conductivity, and then polytetrafluoroethylene is added. A binder powder such as the following is optionally added, and the mixture is placed in a metal container, or the mixture is formed by compression molding on a support such as nickel or stainless steel.

負極活物質であるリチウムは一般のリチウム電
池のそれと同様にシート状として、又はそのシー
トをニツケル、ステンレス等の導電体網に圧着し
て負極として形成される。
Lithium, which is the negative electrode active material, is formed into a sheet like that of a general lithium battery, or the sheet is pressed onto a conductor network such as nickel or stainless steel to form the negative electrode.

電解質としては、プロピレンカーボネート、2
−メチルテトラヒドロフラン、ジオキソレン、テ
トラヒドロフラン、1・2−ジメトキシエタン、
エチレンカーボネート、γ−ブチロラクトン、ジ
メチルスルホキシド、アセトニトリル、ホルムア
ミド、ジメチルホルムアミド、ニトロメタン等の
非プロトン性有機溶媒とLiClO4、LiAlCl4
LiBF4、LiCl、LiPF6、LiAsF6等のリチウム塩と
の組合せ又はLi+を伝導体とする固体電解質或い
は溶融塩など、一般にリチウムを負極活物質とし
て用いた電池で使用される既知の電解質を用いる
ことができる。
As an electrolyte, propylene carbonate, 2
-Methyltetrahydrofuran, dioxolene, tetrahydrofuran, 1,2-dimethoxyethane,
Aprotic organic solvents such as ethylene carbonate, γ-butyrolactone, dimethyl sulfoxide, acetonitrile, formamide, dimethylformamide, nitromethane and LiClO 4 , LiAlCl 4 ,
Combinations with lithium salts such as LiBF 4 , LiCl, LiPF 6 , LiAsF 6 , solid electrolytes or molten salts using Li + as a conductor, and other known electrolytes generally used in batteries using lithium as the negative electrode active material. Can be used.

又、電池構成上、必要ならば、多孔質のポリプ
ロピレン等より成る薄膜を使用してもよい。
Furthermore, if necessary due to the battery structure, a thin film made of porous polypropylene or the like may be used.

Cu2(MxV1-x2O7を作製するには、CuO、
V2O5及びMO3(MoO3、CrO3等)をモル比で2:
1−x:2xの割合で混合し、空気中で620℃24時
間加熱して合成した。
To make Cu 2 (MxV 1-x ) 2 O 7 , CuO,
V 2 O 5 and MO 3 (MoO 3 , CrO 3 etc.) in a molar ratio of 2:
They were mixed at a ratio of 1-x:2x and heated in air at 620°C for 24 hours to synthesize.

次に本発明を実施例について説明するが、本発
明はこれらによりなんら限定されるものではな
い。なお、実施例において電池の作製及び測定は
アルゴン雰囲気下で行つた。
Next, the present invention will be described with reference to Examples, but the present invention is not limited to these in any way. In addition, in the examples, battery preparation and measurements were performed under an argon atmosphere.

実施例 1 第1図は、本発明による電池の一具体例である
ボタン型電池の特性測定用電池セルの断面概略図
であり、1はニツケルメツキを施した黄銅製容
器、2はリチウム負極、3は多孔質ポリプロピレ
ン製隔膜、4はステンレス製正極容器、5は正極
合剤、6a,6bはテフロン製容器、7はニツケ
ルリ−ド線を示す。
Example 1 FIG. 1 is a schematic cross-sectional view of a battery cell for measuring the characteristics of a button-type battery, which is a specific example of the battery according to the present invention, in which 1 is a nickel-plated brass container, 2 is a lithium negative electrode, and 3 4 is a porous polypropylene diaphragm, 4 is a stainless steel positive electrode container, 5 is a positive electrode mixture, 6a and 6b are Teflon containers, and 7 is a nickel lead wire.

容器1の凹室内に加圧成形して径20mm厚さ1mm
とした正極合剤5を圧着した容器4を入れ、その
上に隔膜3を載せ、容器6a,6bでしめつけて
リチウム負極2を載置した。リチウム極は径19mm
の円板形である。電解液には、蒸留後モレキユラ
ーシーブスで脱水したLiClO4とプロピレンカー
ボネート1モル/溶液を用いた。電解液は隔膜
3及び正極合剤5に含浸させて使用した。正極活
物質としてのCu2(Mo0.2V0.82O7を、CuO、
MoO3及びV2O5をモル比で2:0.4:0.8の割合で
混合し、空気中で620℃24時間加熱して合成した。
このCu2(Mo0.2V0.82O7とケツチユンブラツクEC
及びポリテトラフルオロエチレンを重量比で80:
27:3の割合で擂潰機によつて混合し、正極混合
物を作製した。この正極混合物0.4gを正極容器
4にスポツト溶接したチタン網に圧着し、径20mm
厚さ1mmの正極合剤5を作製した。この様にして
作製した電池を1mAで定電流放電を行つたとこ
ろ、第2図Aの様な放電曲線となつた。電池の電
圧が2Vに低下する迄の正極活物質の放電容量密
度は330Ah/Kgエネルギー密度は861Wh/Kgであ
り、電圧が1Vに低下する迄の放電容量密度は
520Ah/Kgエネルギー密度は1150Wh/Kgであつ
た。また比較のための従来電池として、同様の熱
処理を施したMoを含有しないCu2V2O7を正極活
物質とした以外は前記と同様にして電池を作製
し、1mA定電流放電試験を行つたところ、第2
図Bの様な放電曲線となつた。電池の電圧が2V
に低下する迄の正極活物質の放電容量密度は
301Ah/Kgエネルギー密度は749Wh/Kgであり、
電圧が1Vに低下する迄の放電容量密度は
473Ah/Kgエネルギー密度は1005Wh/Kgであつ
た。この様に本発明の電池Aは放電電圧の平担性
及び放電容量のいずれにおいても優れた特性を示
している。
Pressure molded into the concave chamber of container 1 to form a diameter of 20 mm and a thickness of 1 mm.
A container 4 in which a positive electrode mixture 5 was crimped was put therein, a diaphragm 3 was placed thereon, the containers 6a and 6b were tightened, and a lithium negative electrode 2 was placed thereon. The lithium electrode has a diameter of 19mm.
It is disc-shaped. As the electrolytic solution, LiClO 4 which had been distilled and then dehydrated with molecular sieves and propylene carbonate (1 mol/solution) were used. The electrolytic solution was used by impregnating the diaphragm 3 and the positive electrode mixture 5. Cu 2 (Mo 0.2 V 0.8 ) 2 O 7 as a positive electrode active material, CuO,
MoO 3 and V 2 O 5 were mixed at a molar ratio of 2:0.4:0.8 and synthesized by heating at 620° C. for 24 hours in air.
This Cu 2 (Mo 0.2 V 0.8 ) 2 O 7 and Ketuchi Yun Black EC
and polytetrafluoroethylene in a weight ratio of 80:
A positive electrode mixture was prepared by mixing with a pulverizer at a ratio of 27:3. 0.4 g of this positive electrode mixture was crimped onto a titanium mesh spot welded to the positive electrode container 4, and the diameter was 20 mm.
A positive electrode mixture 5 having a thickness of 1 mm was prepared. When the battery thus prepared was subjected to constant current discharge at 1 mA, a discharge curve as shown in FIG. 2A was obtained. The discharge capacity density of the positive electrode active material until the battery voltage drops to 2V is 330Ah/Kg, and the energy density is 861Wh/Kg, and the discharge capacity density until the voltage drops to 1V is
520Ah/Kg energy density was 1150Wh/Kg. In addition, as a conventional battery for comparison, a battery was fabricated in the same manner as above except that Mo-free Cu 2 V 2 O 7 , which had been subjected to the same heat treatment, was used as the positive electrode active material, and a 1 mA constant current discharge test was conducted. Finally, the second
The discharge curve was as shown in Figure B. Battery voltage is 2V
The discharge capacity density of the positive electrode active material until it decreases to
301Ah/Kg energy density is 749Wh/Kg,
The discharge capacity density until the voltage drops to 1V is
The energy density was 473Ah/Kg and 1005Wh/Kg. As described above, the battery A of the present invention exhibits excellent characteristics in both discharge voltage flatness and discharge capacity.

又、前記と同一の放電条件におけるMoの置換
量(x)と1V終止での放電容量密度との関係を
第3図に示す。図より明らかな様に、Mo置換量
の増加につれて放電容量が増大している。
Further, FIG. 3 shows the relationship between the Mo substitution amount (x) and the discharge capacity density at 1V under the same discharge conditions as above. As is clear from the figure, the discharge capacity increases as the amount of Mo substitution increases.

実施例 2 実施例1と同様にして作製したCu2(Mo0.2V0.8
2O7を正極活物質とする電池を用いて、1mAの
定電流で充放電を行つた。充放電サイクルは放電
30時間、休止1時間、充電30時間、休止1時間で
あり、これは約20%の充放電深さに相当する。
Example 2 Cu 2 (Mo 0.2 V 0.8 ) produced in the same manner as Example 1
A battery using 2 O 7 as a positive electrode active material was charged and discharged at a constant current of 1 mA. Charge/discharge cycle is discharge
30 hours, 1 hour rest, 30 hours charging, 1 hour rest, which corresponds to about 20% charge/discharge depth.

第4図は充放電試験の結果を示す図である。即
ち、この曲線は、次に休止期間、ついて充電状
態、次に休止期間を示す。曲線A,B,C,Dは
夫々第1回、第2回、第10回、第20回の放電及び
充電を示す。
FIG. 4 is a diagram showing the results of a charge/discharge test. That is, the curve then shows a rest period, then a charging state, then a rest period. Curves A, B, C, and D represent the 1st, 2nd, 10th, and 20th discharge and charge, respectively.

第10回目の放電最終電圧(曲線C)は2.40V、
第20回目の放電最終電圧(曲線D)2.32Vと良好
な充放電特性を示した。
The final voltage of the 10th discharge (curve C) is 2.40V,
The final voltage of the 20th discharge (curve D) was 2.32V, showing good charge-discharge characteristics.

実施例 3 正極活物質としてのCu2(Cr0.2V0.82O7をCuO、
CrO3、V2O5をモル比で2:0.4:0.8の割合で混
合し、空気中で620℃、24時間加熱して合成した。
このCu2(Cr0.2V0.82O7を正極活物質とした以外は
実施例1と同様にして電池を作製した。この様に
して作製した電池を1mAで定電流放電を行つた
ところ、第5図のような放電曲線となつた。電池
の電圧が2Vに低下する迄の正極活物質の放電容
量密度は316Ah/Kgエネルギー密度は810Wh/Kg
であり、電圧が1Vに低下する迄の放電容量密度
は490Ah/Kgエネルギー密度は1080Wh/Kgであ
つた。この様に本発明の電池は従来の電池と比較
して放電電圧の平担性及び放電容量のいずれにお
いても優れた特性を示している。又、Crの置換
量と放電容量密度との関係は第3図と同様な傾向
を示し、Cr置換量の増加につれて放電容量密度
が増大した。更に充放電も可能であつた。
Example 3 CuO as a positive electrode active material,
CrO 3 and V 2 O 5 were mixed in a molar ratio of 2:0.4:0.8, and the mixture was synthesized by heating in air at 620° C. for 24 hours.
A battery was produced in the same manner as in Example 1 except that this Cu 2 (Cr 0.2 V 0.8 ) 2 O 7 was used as the positive electrode active material. When the battery thus prepared was subjected to constant current discharge at 1 mA, a discharge curve as shown in FIG. 5 was obtained. The discharge capacity density of the positive electrode active material until the battery voltage drops to 2V is 316Ah/Kg, and the energy density is 810Wh/Kg.
The discharge capacity density until the voltage decreased to 1V was 490Ah/Kg, and the energy density was 1080Wh/Kg. As described above, the battery of the present invention exhibits superior characteristics in both discharge voltage flatness and discharge capacity compared to conventional batteries. Further, the relationship between the amount of Cr substitution and the discharge capacity density showed the same tendency as shown in FIG. 3, and the discharge capacity density increased as the amount of Cr substitution increased. Furthermore, charging and discharging was also possible.

以上説明した様に、本発明の電池は充放電容量
の大きい小型高エネルギー密度の電池として種々
の分野に使用できるという利点を有する。
As explained above, the battery of the present invention has the advantage that it can be used in various fields as a small, high energy density battery with a large charge/discharge capacity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例であるボタン型電池
の特性評価用電池セル断面概略図、第2図は本発
明の実施例における電池の放電時間と電圧の関係
を示した図、第3図は本発明の実施例における電
池のMoの置換量と放電容量密度との関係を示し
た図、第4図は本発明の実施例における電池の充
放電繰り返し数と充放電時の電圧変化を示した
図、第5図は本発明の実施例における電池の放電
時間と電圧の関係を示した図である。 1……容器、2……リチウム負極、3……隔
膜、4……正極容器、5……正極合剤、6a,6
b……テフロン製容器、7……リード線。
FIG. 1 is a schematic cross-sectional view of a battery cell for characteristic evaluation of a button-type battery according to an embodiment of the present invention, FIG. 2 is a diagram showing the relationship between discharge time and voltage of a battery in an embodiment of the present invention, and FIG. The figure shows the relationship between the amount of Mo replacement and the discharge capacity density of the battery in the example of the present invention, and Figure 4 shows the number of charging and discharging cycles of the battery and the voltage change during charging and discharging in the example of the present invention. The diagram shown in FIG. 5 is a diagram showing the relationship between battery discharge time and voltage in an embodiment of the present invention. 1... Container, 2... Lithium negative electrode, 3... Diaphragm, 4... Positive electrode container, 5... Positive electrode mixture, 6a, 6
b...Teflon container, 7...Lead wire.

Claims (1)

【特許請求の範囲】[Claims] 1 正極活物質はCu2(MxV1-x2O7の組成(Mは
Mo、Crからなる群より選択された一種以上を示
し、xは0<x≦0.3の実数を示す)を有する化
合物であり、負極活物質はリチウムであり、電解
質物質は正極活物質及びリチウムに対して化学的
に安定であり、かつリチウムイオンが正極活物質
と電気化学反応をするための移動を行ない得る物
質であることを特徴とする充放電も可能であるリ
チウム電池。
1 The positive electrode active material has a composition of Cu 2 (MxV 1-x ) 2 O 7 (M is
Mo, Cr, x represents a real number of 0<x≦0.3), the negative electrode active material is lithium, and the electrolyte material is a positive electrode active material and lithium. On the other hand, a lithium battery that is chemically stable and capable of being charged and discharged is characterized by being a material that allows lithium ions to move to undergo an electrochemical reaction with a positive electrode active material.
JP57074511A 1982-05-06 1982-05-06 Lithium battery Granted JPS58192268A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57074511A JPS58192268A (en) 1982-05-06 1982-05-06 Lithium battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57074511A JPS58192268A (en) 1982-05-06 1982-05-06 Lithium battery

Publications (2)

Publication Number Publication Date
JPS58192268A JPS58192268A (en) 1983-11-09
JPH024986B2 true JPH024986B2 (en) 1990-01-31

Family

ID=13549420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57074511A Granted JPS58192268A (en) 1982-05-06 1982-05-06 Lithium battery

Country Status (1)

Country Link
JP (1) JPS58192268A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4833050A (en) * 1987-11-25 1989-05-23 Duracell Inc. Electrochemical cells

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5512675A (en) * 1978-07-12 1980-01-29 Sanyo Electric Co Ltd Nonaqueous electrolyte cell

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5512675A (en) * 1978-07-12 1980-01-29 Sanyo Electric Co Ltd Nonaqueous electrolyte cell

Also Published As

Publication number Publication date
JPS58192268A (en) 1983-11-09

Similar Documents

Publication Publication Date Title
US4980250A (en) Secondary battery
JP4794893B2 (en) Non-aqueous electrolyte secondary battery
CN114503329A (en) Solid electrolyte material and battery using the same
JPH07201316A (en) Nonaqueous electrolyte secondary battery
JPH05325985A (en) Nonaqueous electrolyte battery
EP0810681B1 (en) Nonaqueous electrolyte secondary battery
JPH0364989B2 (en)
JPH08138649A (en) Non-aqueous secondary battery
JPH08306390A (en) Nonaqueous electrolyte secondary battery
JPS6362869B2 (en)
JPH0415584B2 (en)
JP3086510B2 (en) Non-aqueous electrolyte lithium battery
JPS6311748B2 (en)
JPH04289662A (en) Manufacture of nonaqueous electrolyte secondary battery and its positive electrode active material
JPH024986B2 (en)
JPH05325961A (en) Lithium battery
JP3273569B2 (en) Lithium battery
JPH07201315A (en) Nonaqueous electrolyte secondary battery
JPS647461B2 (en)
JPH0424828B2 (en)
JP2611265B2 (en) Non-aqueous electrolyte secondary battery
JPH0350385B2 (en)
JPH04206365A (en) Nonaqueous solvent secondary battery
JPS6315703B2 (en)
US20240204241A1 (en) Solid electrolyte material and battery using the same