JPH0249261B2 - - Google Patents

Info

Publication number
JPH0249261B2
JPH0249261B2 JP60090886A JP9088685A JPH0249261B2 JP H0249261 B2 JPH0249261 B2 JP H0249261B2 JP 60090886 A JP60090886 A JP 60090886A JP 9088685 A JP9088685 A JP 9088685A JP H0249261 B2 JPH0249261 B2 JP H0249261B2
Authority
JP
Japan
Prior art keywords
glass
cao
crystallized glass
sio
crystals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60090886A
Other languages
Japanese (ja)
Other versions
JPS61251532A (en
Inventor
Toshihiro Kasuga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP60090886A priority Critical patent/JPS61251532A/en
Priority to US06/857,369 priority patent/US4652534A/en
Publication of JPS61251532A publication Critical patent/JPS61251532A/en
Publication of JPH0249261B2 publication Critical patent/JPH0249261B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/0036Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and a divalent metal oxide as main constituents
    • C03C10/0045Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and a divalent metal oxide as main constituents containing SiO2, Al2O3 and MgO as main constituents

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials For Medical Uses (AREA)
  • Dental Preparations (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Glass Compositions (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] この発明は人工歯根及び人工骨などのインプラ
ント材料として有用な高強度結晶化ガラスに関す
るものであつて、さらに詳しくは、アパタイト結
晶と、多量のウオラストナイト結晶を含有してい
ることを特徴とする高強度結晶化ガラスとその製
造法に係る。 [従来の技術] 骨と化学結合をつくる(バイオアクテイブ)セ
ラミツクスとしては、アパタイト焼結体やNa2O
−K2O−MgO−CaO−SiO2−P2O5結晶化ガラス
が知られている。またMgO−CaO−P2O5−SiO2
系ガラスを200メツシユ以下に粉砕し、そのガラ
ス粉末を成型後、ガラス粉末の結晶温度域で熱処
理し、次いでアパタイト結晶[Ca10(PO46(O0.5
F)2]及びウオラストナイト結晶[CaSiO3]の
生成温度域で熱処理して製造される結晶化ガラス
も知られている。この結晶化ガラスでは、アパタ
イト結晶が生体親和性に寄与し、ウオラストナイ
ト結晶が機械的強度に寄与する。従つて、機械的
強度を上げるためには、ウオラストナイト結晶の
含有率を高めることが望ましい。 ところで、これらのセラミツクスの曲げ強度
は、アパタイト焼結体で1000〜1400Kg/cm2
Na2O−K2O−MgO−CaO−SiO2−P2O5結晶化
ガラスで1000〜1500Kg/cm2、MgO−CaO−P2O5
−SiO2系結晶化ガラスで1200〜1400Kg/cm2程度
である。これに対して、ウオラストナイト結晶を
多量に析出させたCaO−P2O5−SiO2系結晶化ガ
ラスは1700〜2000Kg/cm2という高い曲げ強度を有
している。しかし、この値は人工歯根又は人工骨
としては必ずしも充分に満足できる程のものでは
ない。 本発明の目的は優れた生体親和性を備え、しか
も従来品よりもさらに高強度である結晶化ガラス
とその製造法を提供することにある。 [問題点を解決するための手段] この発明の結晶化ガラスは、重量百分率で、 45≦CaO≦56、1≦P2O5<10、 30≦SiO2≦50 0.5≦MgO+Y2O3≦5 0≦F2≦5、0≦Na2O≦5 0≦K2O≦5、0≦Li2O≦5 0≦Al2O3≦5、0≦TiO2≦5 0≦ZrO2≦5、0≦SrO≦5 0≦Nb2O5≦5、0≦Ta2O5≦5 の範囲で上記成分を含有し、CaO、P2O5及び
SiO2の含有量合計が90%以上である組成を有し、
アパタイト結晶と多量のウオラストナイト結晶を
含有することを特徴とするものであつて、この結
晶化ガラスにはβ−リン酸三カルシウム[β−
Ca3(PO42]の共存が許される。 そして、上記の如き本発明の結晶化ガラスは、
重量百分率で 45≦CaO≦56、1≦P2O5<10、 30≦SiO2≦50 0.5≦MgO+Y2O3≦5 0≦F2≦5、0≦Na2O≦5 0≦K2O≦5、0≦Li2O≦5 0≦Al2O3≦5、0≦TiO2≦5 0≦ZrO2≦5、0≦SrO≦5 0≦Nb2O5≦5、0≦Ta2O5≦5 の範囲で上記成分を含有し、CaO、P2O5及び
SiO2の含有量合計が90%以上である組成を有す
る200メツシユ以下のガラス粉末を成型し、これ
をガラス粉末の焼結温度域で熱処理し、次いでア
パタイト結晶及びウオラストナイト結晶の生成温
度域で熱処理することによつて製造することがで
きる。 次に本発明に係る結晶化ガラスの組成に関し、
その量的限定理由を述べる。 CaOが45%未満では、ガラス粉末の焼結性が極
端に悪くなるため、高強度な結晶化ガラスを得る
ことができない。またCaOが56%を越えるとガラ
スの失透傾向が著しくなる。従つてCaOの含量は
45〜56%に限定される。P2O5が1%未満では、
ガラスの失透傾向が著しく、10%以上ではウオラ
ストナイトの析出量が少なくなるので、P2O5
含量は1%以上10%未満に限定される。SiO2
30%未満ではガラス粉末の焼結性が悪くなり、か
つウオラストナイトの析出量も少なくなる。また
SiO2が50%を越えるとガラスが失透しやすくな
る。従つて、SiO2の含量は30〜50%に限定され
る。 上記した3成分に加えて、MgO、Y2O3の1種
又は2種を0.5〜5%の範囲で含まれなければな
らない。これらが0.5%未満では、結晶化ガラス
中にパラ・ウオラストナイトが析出する。ちなみ
に、パラ・ウオラストナイトは加熱処理過程で急
速に結晶が大きくなる傾向があるため、結晶化ガ
ラスの強度を低下させる原因となる。つまり、
MgOあるいはY2O3はパラ・ウオラストナイトの
析出を抑制する働きをする。しかし、5%を越え
ると、アパタイト結晶及びウオラストナイト結晶
の生成量が低下するので、MgOあるいはY2O3
0.5〜5%に限定される。 さらに、上記した必須成分に加えて本発明の結
晶化ガラスは、人体に有害でないF2、Na2O、
K2O、Li2O、Al2O3、TiO2、ZrO2、SrO、
Nb2O5、Ta2O5の1種又は2種以上を5%以内の
範囲で含有することができる。これらの任意成分
の合計が5%より多いときには、アパタイト結晶
及びウオラストナイト結晶の生成量が低下してし
まう場合があるので、好ましくは5%以下とする
のがよい。 本発明に係る結晶化ガラスを製造するにあたつ
ては、上に限定した組成範囲の母ガラスを一旦
200メツシユ以下の粒度に粉砕後、得られたガラ
ス粉末を所望の形状に成型し、しかる後その成型
体を焼結させてからこれに結晶化処理を施すこと
が肝要である。融液を直接所定の形状のガラスに
成型し、これを加熱処理した場合には、ウオラス
トナイト結晶がガラス表面からのみ析出し、内部
に亀裂が生じた機械的強度の低い結晶化ガラスし
か得られない。また、母ガラスを粉砕しても、そ
の粒度が200メツシユ以上であると、結晶化ガラ
ス中に気孔が残存しやすく、この場合にも機械的
強度の大きい結晶化ガラスを得ることができな
い。つまり、気孔が少なく、結晶が均一に分布し
た高強度結晶化ガラスを得るためには、粒度200
メツシユ以下の微細な母ガラス粉末を用いること
が重要である。 本発明の方法によれば、粒度200メツシユ以下
の母ガラス粉末は任意の公知手段で所望の形状に
成型され、しかる後その成型体は前記ガラス粉末
の焼結温度域で熱処理され、次いでアパタイト結
晶及びウオラストナイト結晶が析出する温度域で
熱処理される。前者の熱処理は気孔率の小さい機
械的強度の大きい結晶化ガラスを得るために重要
であり、後者の熱処理はガラスからアパタイト結
晶及び多量のウオラストナイト結晶を析出(生
成)させるために重要である。 ガラス粉末の焼結温度域は、ガラス粉末成型体
を一定速度で加熱し、その間の熱収縮を測定する
ことにより求めることができる。熱収縮の開始温
度から終了温度までが焼結温度域である。 また、アパタイト結晶及びウオラストナイト結
晶の析出温度域は、ガラス粉末の示差熱分析によ
り求められる。示差熱分析曲線に於ける発熱ピー
クの温度で熱処理したガラス粉末のX線回折デー
タを解析することにより、それぞれの発熱ピーク
に対応する析出結晶を同定し、その発熱温度か
ら、発熱終了温度までをそれぞれの結晶の析出温
度域とする。 [実施例] 酸化物、炭酸塩、リン酸塩、水和物、フツ化物
などを原料に用いて、次表に示す組成に相当する
ガラスのバツチを調合し、これを白金ルツボに入
れて1450〜1550℃で1時間溶融した。次いで融液
を水中に投入して急冷し、乾燥後、ポツトミルに
入れて300メツシユ以下の粒度に粉砕した。この
ガラス粉末に結合剤として5wt%のパラフインを
加え、金型に入れて約1000Kg/cm2の圧力を加えて
成型した。 得られた成型体を電気炉に入れ、室温から一定
の昇温速度3℃/分で加熱し、それぞれ表に示し
た温度で2時間保持して成型体の焼結と結晶化を
行なつた。この後、炉内で室温まで冷却し、結晶
化ガラスを得た。 こうして製造された各結晶化ガラスの破面を
SEMで観察したところ、いずれも気孔の少ない
緻密な組織であつた。また、これら結晶化ガラス
を粉砕し、粉末X線回折により析出結晶相を同定
した。さらに、結晶化ガラスを300番のダイヤモ
ンド砥石で直径4〜5mmの丸棒に加工し、3点曲
げ試験を行なつた。ガラス組成、熱処理温度、析
出結晶相及び強度試験の結果を次表に示す。 表から明らかなように、本発明の結晶化ガラス
は2000〜2300Kg/cm2という高い値の曲げ強度を有
している。 [発明の効果] 以上説明したように、本発明の結晶化ガラスは
2000〜2300Kg/cm2という高い値の曲げ強度を有す
る。 又、本発明の結晶化ガラスの製造方法によれば
2000〜2300Kg/cm2という高い値の曲げ強度を有す
る結晶化ガラスが得られる。
[Field of Industrial Application] The present invention relates to high-strength crystallized glass useful as an implant material for artificial tooth roots and artificial bones, and more specifically, it relates to a high-strength crystallized glass containing apatite crystals and a large amount of wollastonite crystals. The present invention relates to a high-strength crystallized glass and a method for producing the same. [Conventional technology] Apatite sintered bodies and Na 2 O ceramics that create chemical bonds with bones (bioactive)
-K2O -MgO-CaO- SiO2 - P2O5 crystallized glass is known. Also, MgO−CaO−P 2 O 5 −SiO 2
The system glass is crushed to 200 mesh or less, the glass powder is molded, and then heat treated in the crystallization temperature range of glass powder, and then apatite crystal [Ca 10 (PO 4 ) 6 (O 0.5 ,
F) 2 ] and wollastonite crystals [CaSiO 3 ] are also known. In this crystallized glass, apatite crystals contribute to biocompatibility, and wollastonite crystals contribute to mechanical strength. Therefore, in order to increase mechanical strength, it is desirable to increase the content of wollastonite crystals. By the way, the bending strength of these ceramics is 1000 to 1400 Kg/cm 2 for apatite sintered body,
Na 2 O−K 2 O−MgO−CaO−SiO 2 −P 2 O 5 1000 to 1500 Kg/cm 2 for crystallized glass, MgO−CaO−P 2 O 5
-It is about 1200 to 1400 Kg/cm 2 for SiO 2 -based crystallized glass. On the other hand, CaO-P 2 O 5 -SiO 2 -based crystallized glass in which a large amount of wollastonite crystals are precipitated has a high bending strength of 1700 to 2000 Kg/cm 2 . However, this value is not necessarily sufficiently satisfactory for an artificial tooth root or artificial bone. An object of the present invention is to provide a crystallized glass having excellent biocompatibility and higher strength than conventional products, and a method for producing the same. [Means for Solving the Problems] The crystallized glass of the present invention has, in weight percentage, 45≦CaO≦56, 1≦P 2 O 5 <10, 30≦SiO 2 ≦50 0.5≦MgO+Y 2 O 3 ≦ 5 0≦F 2 ≦5, 0≦Na 2 O≦5 0≦K 2 O≦5, 0≦Li 2 O≦5 0≦Al 2 O 3 ≦5, 0≦TiO 2 ≦5 0≦ZrO 2 ≦ 5, contains the above components in the range of 0≦SrO≦5, 0≦Nb 2 O 5 ≦5, 0≦Ta 2 O 5 ≦5, and contains CaO, P 2 O 5 and
It has a composition in which the total content of SiO 2 is 90% or more,
It is characterized by containing apatite crystals and a large amount of wollastonite crystals, and this crystallized glass contains β-tricalcium phosphate [β-
Ca 3 (PO 4 ) 2 ] is allowed to coexist. The crystallized glass of the present invention as described above is
Weight percentage: 45≦CaO≦56, 1≦P 2 O 5 <10, 30≦SiO 2 ≦50 0.5≦MgO+Y 2 O 3 ≦5 0≦F 2 ≦5, 0≦Na 2 O≦5 0≦K 2 O≦5, 0≦Li 2 O≦5 0≦Al 2 O 3 ≦5, 0≦TiO 2 ≦5 0≦ZrO 2 ≦5, 0≦SrO≦5 0≦Nb 2 O 5 ≦5, 0≦Ta Contains the above components in the range of 2 O 5 ≦5, CaO, P 2 O 5 and
A glass powder of 200 mesh or less having a composition with a total SiO 2 content of 90% or more is molded, heat treated in the sintering temperature range of glass powder, and then heated in the temperature range for apatite crystal and wollastonite crystal formation. It can be manufactured by heat treatment. Next, regarding the composition of the crystallized glass according to the present invention,
The reason for this quantitative limitation will be explained. If CaO is less than 45%, the sinterability of the glass powder becomes extremely poor, making it impossible to obtain high-strength crystallized glass. Moreover, when CaO exceeds 56%, the tendency of glass to devitrify becomes remarkable. Therefore, the content of CaO is
Limited to 45-56%. When P 2 O 5 is less than 1%,
The content of P 2 O 5 is limited to 1% or more and less than 10% since the tendency of glass to devitrify is significant and if it exceeds 10%, the amount of wollastonite precipitated decreases. SiO2 is
If it is less than 30%, the sinterability of the glass powder will be poor and the amount of wollastonite precipitated will also be reduced. Also
When SiO 2 exceeds 50%, the glass tends to devitrify. Therefore, the content of SiO2 is limited to 30-50%. In addition to the above three components, one or both of MgO and Y 2 O 3 must be included in the range of 0.5 to 5%. If these are less than 0.5%, para-wollastonite will precipitate in the crystallized glass. Incidentally, para-wollastonite tends to rapidly increase its crystal size during the heat treatment process, which causes a decrease in the strength of crystallized glass. In other words,
MgO or Y 2 O 3 functions to suppress the precipitation of para-wollastonite. However, if it exceeds 5%, the amount of apatite crystals and wollastonite crystals will decrease, so MgO or Y 2 O 3
Limited to 0.5-5%. Furthermore, in addition to the above-mentioned essential components, the crystallized glass of the present invention contains F 2 , Na 2 O,
K2O , Li2O , Al2O3 , TiO2 , ZrO2 , SrO ,
One or more of Nb 2 O 5 and Ta 2 O 5 may be contained within 5%. If the total amount of these optional components is more than 5%, the amount of apatite crystals and wollastonite crystals produced may decrease, so it is preferably 5% or less. In producing the crystallized glass according to the present invention, a mother glass having the composition range limited above is first prepared.
After pulverization to a particle size of 200 mesh or less, it is important to mold the obtained glass powder into a desired shape, then sinter the molded body, and then subject it to a crystallization treatment. If the melt is directly molded into glass in a predetermined shape and then heat-treated, wollastonite crystals will precipitate only from the glass surface, resulting in only crystallized glass with low mechanical strength and cracks inside. I can't. Furthermore, even if the mother glass is crushed, if the particle size is 200 mesh or more, pores tend to remain in the crystallized glass, and in this case, it is also impossible to obtain a crystallized glass with high mechanical strength. In other words, in order to obtain high-strength crystallized glass with few pores and uniform crystal distribution, it is necessary to
It is important to use a mother glass powder as fine as mesh or smaller. According to the method of the present invention, a mother glass powder with a particle size of 200 mesh or less is molded into a desired shape by any known means, and then the molded body is heat-treated in the sintering temperature range of the glass powder, and then apatite crystals are formed. and heat treatment in a temperature range where wollastonite crystals precipitate. The former heat treatment is important for obtaining crystallized glass with low porosity and high mechanical strength, and the latter heat treatment is important for precipitating (generating) apatite crystals and a large amount of wollastonite crystals from the glass. . The sintering temperature range of the glass powder can be determined by heating the glass powder molded body at a constant rate and measuring the thermal contraction during the heating. The sintering temperature range is from the start temperature to the end temperature of thermal contraction. Further, the precipitation temperature range of apatite crystals and wollastonite crystals is determined by differential thermal analysis of glass powder. By analyzing the X-ray diffraction data of glass powder heat-treated at the temperature of the exothermic peak in the differential thermal analysis curve, we can identify the precipitated crystals corresponding to each exothermic peak, and calculate the temperature from the exothermic temperature to the end temperature of the exothermic peak. The precipitation temperature range for each crystal. [Example] Using oxides, carbonates, phosphates, hydrates, fluorides, etc. as raw materials, a batch of glass corresponding to the composition shown in the following table was prepared, and this was placed in a platinum crucible and heated to 1450 ml. Melt at ~1550°C for 1 hour. Next, the melt was poured into water to be rapidly cooled, dried, and then ground in a pot mill to a particle size of 300 mesh or less. 5 wt % of paraffin was added as a binder to this glass powder, and the mixture was placed in a mold and molded under a pressure of about 1000 kg/cm 2 . The obtained molded body was placed in an electric furnace, heated from room temperature at a constant temperature increase rate of 3°C/min, and held at each temperature shown in the table for 2 hours to sinter and crystallize the molded body. . Thereafter, it was cooled to room temperature in a furnace to obtain crystallized glass. The fracture surface of each crystallized glass produced in this way is
When observed with SEM, all had dense structures with few pores. Furthermore, these crystallized glasses were crushed and the precipitated crystal phase was identified by powder X-ray diffraction. Furthermore, the crystallized glass was processed into a round bar with a diameter of 4 to 5 mm using a No. 300 diamond grindstone, and a three-point bending test was conducted. The glass composition, heat treatment temperature, precipitated crystal phase, and strength test results are shown in the table below. As is clear from the table, the crystallized glass of the present invention has a high bending strength of 2000 to 2300 Kg/cm 2 . [Effect of the invention] As explained above, the crystallized glass of the present invention has
It has a high bending strength of 2000-2300Kg/ cm2 . Furthermore, according to the method for producing crystallized glass of the present invention,
Crystallized glass having a high bending strength of 2000 to 2300 Kg/cm 2 is obtained.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 重量百分率で、 45≦CaO≦56、1≦P2O5<10、 30≦SiO2≦50 0.5≦MgO+Y2O3≦5 0≦F2≦5、0≦Na2O≦5 0≦K2O≦5、0≦Li2O≦5 0≦Al2O3≦5、0≦TiO2≦5 0≦ZrO2≦5、0≦SrO≦5 0≦Nb2O5≦5、0≦Ta2O5≦5 の範囲で上記成分を含有し、CaO、P2O5及び
SiO2の含有量合計が90%以上である組成を有し、
アパタイト結晶と多量のウオラストナイト結晶を
含有していることを特徴とする高強度結晶化ガラ
ス。 2 重量百分率で、 45≦CaO≦56、1≦P2O5<10、 30≦SiO2≦50 0.5≦MgO+Y2O3≦5 0≦F2≦5、0≦Na2O≦5 0≦K2O≦5、0≦Li2O≦5 0≦Al2O3≦5、0≦TiO2≦5 0≦ZrO2≦5、0≦SrO≦5 0≦Nb2O5≦5、0≦Ta2O5≦5 の範囲で上記成分を含有し、CaO、P2O5及び
SiO2の含有量合計が90%以上である組成を有す
る200メツシユ以下のガラス粉末を成型し、これ
をガラス粉末の焼結温度域で熱処理し、次いでア
パタイト結晶及びウオラストナイト結晶の生成温
度域で熱処理することを特徴とする高強度結晶化
ガラスの製造方法。 3 前記の結晶生成温度域が850〜1200℃の範囲
にある特許請求の範囲第2項記載の方法。
[Claims] 1 Weight percentage: 45≦CaO≦56, 1≦P 2 O 5 <10, 30≦SiO 2 ≦50 0.5≦MgO+Y 2 O 3 ≦5 0≦F 2 ≦5, 0≦Na 2 O≦5 0≦K 2 O≦5, 0≦Li 2 O≦5 0≦Al 2 O 3 ≦5, 0≦TiO 2 ≦5 0≦ZrO 2 ≦5, 0≦SrO≦5 0≦Nb 2 Contains the above components in the range of O 5 ≦5, 0≦Ta 2 O 5 ≦5, CaO, P 2 O 5 and
It has a composition in which the total content of SiO 2 is 90% or more,
A high-strength crystallized glass characterized by containing apatite crystals and a large amount of wollastonite crystals. 2 In weight percentage, 45≦CaO≦56, 1≦P 2 O 5 <10, 30≦SiO 2 ≦50 0.5≦MgO+Y 2 O 3 ≦5 0≦F 2 ≦5, 0≦Na 2 O≦5 0≦ K 2 O≦5, 0≦Li 2 O≦5 0≦Al 2 O 3 ≦5, 0≦TiO 2 ≦5 0≦ZrO 2 ≦5, 0≦SrO≦5 0≦Nb 2 O 5 ≦5, 0 Contains the above components in the range of ≦Ta 2 O 5 ≦5, and contains CaO, P 2 O 5 and
A glass powder of 200 mesh or less having a composition with a total SiO 2 content of 90% or more is molded, heat treated in the sintering temperature range of glass powder, and then heated in the temperature range for apatite crystal and wollastonite crystal formation. A method for producing high-strength crystallized glass, characterized by heat treatment. 3. The method according to claim 2, wherein the crystal formation temperature range is from 850 to 1200°C.
JP60090886A 1985-04-30 1985-04-30 High-strength crystallized glass containing apatite and large amount of wollastonite and production thereof Granted JPS61251532A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP60090886A JPS61251532A (en) 1985-04-30 1985-04-30 High-strength crystallized glass containing apatite and large amount of wollastonite and production thereof
US06/857,369 US4652534A (en) 1985-04-30 1986-04-30 High-strength glass ceramic containing apatite crystals and a large quantity of wollastonite crystals and process for producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60090886A JPS61251532A (en) 1985-04-30 1985-04-30 High-strength crystallized glass containing apatite and large amount of wollastonite and production thereof

Publications (2)

Publication Number Publication Date
JPS61251532A JPS61251532A (en) 1986-11-08
JPH0249261B2 true JPH0249261B2 (en) 1990-10-29

Family

ID=14010911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60090886A Granted JPS61251532A (en) 1985-04-30 1985-04-30 High-strength crystallized glass containing apatite and large amount of wollastonite and production thereof

Country Status (1)

Country Link
JP (1) JPS61251532A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005110708A (en) * 2003-10-02 2005-04-28 Rikogaku Shinkokai Bone repair material, covered bone repair material and manufacturing method therefor

Also Published As

Publication number Publication date
JPS61251532A (en) 1986-11-08

Similar Documents

Publication Publication Date Title
US4652534A (en) High-strength glass ceramic containing apatite crystals and a large quantity of wollastonite crystals and process for producing same
US4643982A (en) High-strength glass-ceramic containing anorthite crystals and process for producing the same
JPS63270061A (en) Surface modification of inorganic bio-compatible material
JPS6210939B2 (en)
JPH0436107B2 (en)
JPH0555150B2 (en)
JPH0249262B2 (en)
KR920000150B1 (en) Crystalized glass for human body and preparation method
JPH0249261B2 (en)
JPH0465024B2 (en)
KR940003461B1 (en) Method for glass ceramic withused living body material
JPH0153211B2 (en)
JPH01115360A (en) Inorganic living body material and preparation thereof
JPS6382670A (en) Inorganic vital material
JPH0247417B2 (en)
JPH0247419B2 (en)
JPH0247418B2 (en)
JPH0191865A (en) Inorganic biomaterial and its manufacture
JPS6323144B2 (en)
JPS63318950A (en) Preparation of crystallized glass for living body
JPH01115361A (en) Inorganic living body material and preparation thereof
JPS6321237A (en) Al2o3-containing cao-p2o5-b2o3-base crystallized glass
JPH0337137A (en) Production of inorganic biomaterial
JPS6096543A (en) Production of crystallized calcium phosphate glass
JPS6172653A (en) Calcium phosphate-based crystalline glass for application to living body