JPS6210939B2 - - Google Patents

Info

Publication number
JPS6210939B2
JPS6210939B2 JP56076696A JP7669681A JPS6210939B2 JP S6210939 B2 JPS6210939 B2 JP S6210939B2 JP 56076696 A JP56076696 A JP 56076696A JP 7669681 A JP7669681 A JP 7669681A JP S6210939 B2 JPS6210939 B2 JP S6210939B2
Authority
JP
Japan
Prior art keywords
glass
apatite
crystallized glass
wollastonite
crystals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56076696A
Other languages
Japanese (ja)
Other versions
JPS57191252A (en
Inventor
Hitoshi Tashiro
Tadashi Kokubo
Kanehito Nagashima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoto University NUC
Original Assignee
Kyoto University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto University NUC filed Critical Kyoto University NUC
Priority to JP56076696A priority Critical patent/JPS57191252A/en
Publication of JPS57191252A publication Critical patent/JPS57191252A/en
Publication of JPS6210939B2 publication Critical patent/JPS6210939B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C12/00Powdered glass; Bead compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/097Glass compositions containing silica with 40% to 90% silica, by weight containing phosphorus, niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/0007Compositions for glass with special properties for biologically-compatible glass

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Molecular Biology (AREA)
  • Health & Medical Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Materials For Medical Uses (AREA)
  • Glass Compositions (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は人工骨や人工歯根として有用な結晶化
ガラス及びその製造方法に関するものである。 従来、人工骨や人工歯根の材料としては、コバ
ルトクロム合金、ステンレス鋼、チタン合金など
の耐蝕合金や、ポリメチルメタクリレート、シリ
コーン、高密度ポリエチレンなどの生体内で比較
的安定な高分子材料が用いられてきた。しかし、
これらの材料は、生体組織との親和性が悪いこ
と、及びそれらから溶出した金属イオンやモノマ
ーなどが人体に悪い影響を与える恐れがあること
などの欠点を有している。これに対し、セラミツ
ク材料は一般に生体親和性が良く、それから溶出
した成分が人体に悪い影響を与える恐れも少な
い。しかもアルミナセラミツクスは機械的強度に
おいても優れているので、最近人工骨や人工歯根
の材料として注目されるようになつてきた。しか
し、アルミナセラミツクスは骨と化学結合を作ら
ないので、これを周囲の骨に固定させるために
は、セラミツクスに穴や溝をほり、そこに新生骨
を侵入させる方法をとらねばならず、その結果、
セラミツクスの形状が適切でないと、骨あるい
は、セラミツクスの一部に応力集中が生じ、骨が
吸収されたりセラミツクスが破壊したりする恐れ
がある。 そこで骨と化学結合を作るセラミツク材料が探
索され、そのような材料としてこれまでにNa2O
−CaO−SiO2−P2O5系結晶化ガラスやアパタイ
ト焼結体が知られるようになつた。しかし、これ
らは、機械的強度が低いかもしくは、製造が容易
でない欠点を有している。 本発明は人工骨や人工歯根として生体親和性に
優れ、骨と直接化学結合をつくり、しかも機械強
度においても優れた結晶化ガラスと、それを容易
に製造する方法を提供することを目的とする本発
明の結晶化ガラスは人工骨並びに人工歯根などに
適用することができる。 本発明の人工骨用結晶化ガラスは、少なくとも
90%以上が、MgO1〜7%、CaO42〜53%、
SiO222〜41%、P2O510〜27%からなる組成を有
し、多数のアパタイト及びウオラストナイト微結
晶がガラス中に分散した構造を有することを特徴
としている。 また、本発明の人工骨用結晶化ガラス製造法は
上記組成の200メツシユ以下の粒度のガラス粉末
を成形後、ガラス粉末焼結温度域で加熱し次いで
アパタイト及びウオラストナイト結晶析出温度域
で、加熱処理することを特徴とする。 本発明の人工骨用結晶化ガラスの製造法の実施
例は次の通りである。
The present invention relates to crystallized glass useful as artificial bones and artificial tooth roots, and a method for producing the same. Conventionally, materials used for artificial bones and artificial tooth roots include corrosion-resistant alloys such as cobalt chromium alloys, stainless steel, and titanium alloys, and polymeric materials that are relatively stable in vivo, such as polymethyl methacrylate, silicone, and high-density polyethylene. I've been exposed to it. but,
These materials have drawbacks such as poor affinity with living tissues and the possibility that metal ions, monomers, etc. eluted from them may have a negative effect on the human body. On the other hand, ceramic materials generally have good biocompatibility, and there is little risk that components eluted from them will have a negative effect on the human body. In addition, alumina ceramics has excellent mechanical strength, so it has recently been attracting attention as a material for artificial bones and artificial tooth roots. However, alumina ceramics does not form a chemical bond with bone, so in order to fix it to the surrounding bone, it is necessary to drill holes or grooves in the ceramic and allow new bone to enter there. ,
If the shape of the ceramic is not appropriate, stress concentration will occur in the bone or a portion of the ceramic, which may lead to bone resorption or destruction of the ceramic. Therefore, ceramic materials that create chemical bonds with bones have been searched for, and so far Na 2 O
-CaO-SiO 2 -P 2 O 5- based crystallized glass and apatite sintered bodies have become known. However, these have the disadvantage that they have low mechanical strength or are not easy to manufacture. The purpose of the present invention is to provide crystallized glass that has excellent biocompatibility as an artificial bone or artificial tooth root, forms a direct chemical bond with bone, and has excellent mechanical strength, and a method for easily producing the same. The crystallized glass of the present invention can be applied to artificial bones, artificial tooth roots, and the like. The crystallized glass for artificial bones of the present invention has at least
More than 90% is MgO1~7%, CaO42~53%,
It has a composition of 22 to 41% SiO 2 and 10 to 27% P 2 O 5 , and is characterized by a structure in which a large number of apatite and wollastonite microcrystals are dispersed in the glass. In addition, the method for producing crystallized glass for artificial bone according to the present invention involves molding glass powder with a particle size of 200 mesh or less having the above composition, heating it in a glass powder sintering temperature range, and then heating it in an apatite and wollastonite crystal precipitation temperature range. It is characterized by heat treatment. Examples of the method for producing crystallized glass for artificial bone according to the present invention are as follows.

【表】 別表の例1〜10のガラス組成に相当するバツチ
を酸化物、炭酸塩、水和物あるいは弗化物の原料
を用いて調製し、これらを白金るつぼに入れ電気
炉中で1400〜1500℃で2時間溶融する。次に、こ
れらの融液を鉄板上に流し出して板状ガラスとし
た後粉砕して325メツシユ(目開き44μm)以下
の粒度の粉末とする。これらの粉末を所定の形に
加圧成形した後、電気炉中で室温から1050℃まで
5℃/minの速度で加熱し、1050℃で2時間保持
して焼結、結晶化させ、その後電源を切つた炉内
で自然に冷却させる。 このような方法によつて製造される結晶化ガラ
スは多数のアパタイト(Ca10(PO46O)及びウ
オラストナイト(CaO・SiO2)の微結晶が連続し
たガラス媒体中に析出した緻密な構造を有する。 本発明の人工骨用結晶化ガラスは多量のアパタ
イト及びウオラストナイト結晶を含んでいる。こ
れらの結晶の中アパタイト結晶は結晶化ガラスと
骨の間に化学結合を生じさせるのに重要な役割を
果す。又一方、ウオラストナイト結晶は、結晶化
ガラスの機械的強度を高めるのに重要な役割を果
す。 結晶化ガラスがアパタイト結晶を含んでいない
場合には、結晶化ガラスと骨の間に化学結合が生
じ難い。一方結晶化ガラスがウオライトナイト結
晶を含んでいない場合には、その機械的強度が高
くならない。 本発明の人工骨用結晶化ガラスは、90%以上が
MgO1〜7%、CaO42〜53%、SiO222〜41%、
P2O510〜27%からなる組成を有している。この
限定された組成は、ガラスを作るのに適し、しか
も加熱処理により多量のアパタイト及びウオラス
トナイト両結晶をガラス中に析出させるのに適し
た組成である。 MgOが1%より少ない場合には融液がガラス
になり難く、MgOが7%より多い場合にはガラ
スがアパタイト及びウオラストナイト結晶を少量
しか析出し得ず好ましくない。従つてMgOは1
〜7%に限定した。 CaOが42%より少ない場合には、ガラスがアパ
タイト及びウオラストナイト結晶を少量しか析出
し得ずCaOが53%より多い場合には、融液がガラ
スになり難い。従つて、CaOは42〜53%に限定し
た。 SiO2が22%より少ない場合には、ガラスが少
量のウオラストナイト結晶しか析出し得ずSiO2
が41%より多い場合にはガラスが少量のアパタイ
ト結晶しか析出し得ず好ましくない。従つて、
SiO2は22〜41%に限定される。 P2O5が10%より少ない場合にはガラスが少量
のアパタイト結晶しか析出し得ずP2O5が27%よ
り多い場合にはガラスが少量のウオラストナイト
結晶しか析出し得ず好ましくない。従つてP2O5
は10〜27%に限定した。 結晶化ガラスの組成は10%より少ない量の
Li2O、Na2O、K2O、SrO、B2O3、Al2O3
TiO2、ZrO2、Nb2O5、Ta2O5、CaF2など人体に
有害でない添加成分を含んでも差し支えない。た
だし、これらの添加成分の合計が10%より多い場
合には、ガラスが少量のアパタイト及びウオラス
トナイト結晶しか析出し得ない。従つて、これら
の添加成分の合計は10%より少ない量に、すなわ
ちMgO、CaO、SiO2及びP2O5の合計は90%以上
に限定される。 本発明の人工骨用結晶化ガラスの製造法におい
ては、ガラスをいつたん200メツシユ以下の粒度
の粉末にした後所定の形状に成形する。ガラスが
微粉末であることは、加熱処理により、気孔が少
なく、しかもアパタイトとウオラストナイト結晶
が微粒子で均一に析出した結晶化ガラスを得るた
めに重要な条件である。融液を直接所定の形状の
ガラスに成形し、これを加熱処理した場合には、
ウオラストナイト結晶がガラス表面からのみ析出
し、内部にき裂の生じた機械的強度の低い結晶化
ガラスしか得られない。また200メツシユより大
きい粒度のガラス粉末を用いた場合には、気孔率
が大きく機械的強度が低い結晶化ガラスしか得ら
れない。従つてガラス粉末の粒度は200メツシユ
以下の粒度に限定される。ガラス粉末の調製法及
びその成形体の調製法は任意の方法で差し支えな
い。 本発明の人工骨用結晶化ガラスの製造法におい
ては、ガラス粉末成形体をガラス粉末焼結温度域
で、次いでアパタイト及びウオラストナイト結晶
析出温度域で加熱処理する。前者の加熱処理は気
孔率の小さい機械的強度の大きい結晶化ガラスを
得るために重要であり、後者の加熱処理はガラス
から多量のアパタイト及びウオラストナイト結晶
を析出させるために重要である。 ガラス粉末焼結温度域はガラス粉末成形体を一
定速度で加熱し、その間の熱収縮を測定すること
により求めることができる。熱収縮開始温度から
同終結温度までをガラス粉末焼結温度域とすれば
よい。 またアパタイト及びウオラストナイト結晶析出
温度域は、ガラス粉末を一定速度で加熱し、その
間の示差熱分析を行なうことによつて求めること
ができる。アパタイト及びウオラストナイト結晶
の析出による発熱開始温度から同終結温度まで
を、アパタイト及びウオラストナイト結晶析出温
度域とすればよい。これらの温度域における加熱
処理は、ガラス粉末成形体の温度をこれらの温度
域に一定時間保つて行なつてもよく、またガラス
粉末成形体の温度をこれらの温度域の間一定速度
で上昇させて行なつてもよい。また、これらの温
度域に加えて、他の温度域の加熱処理を行なつて
もよい。例えば上記実施例のように、ガラス粉末
成形体を室温からアパタイト及びウオラストナイ
ト結晶析出温度域よりさらに高い1000℃まで連続
的に一定の速度で加熱しても差し支えない。ただ
し、ガラス中に析出したアパタイト結晶は高温で
消滅し、代つて3CaO・P2O5結晶が析出するの
で、ガラス粉末成形体を3CaO・P2O5の結晶析出
温度域まで加熱してはならない。この3CaO・
P2O5結晶析出温度域もガラス粉末の示差熱分析
曲線上の発熱ピークの位置から求ることができ
る。 本発明の人工骨用結晶化ガラスは、骨の欠損部
に挿入された時、周囲の生体組織に対し為害作用
を示すことがなく周囲の骨ときわめて強固な化学
結合を形成する。例えば別表の例1〜10の組成の
上記実施例の方法で調製した結晶化ガラスを、
家・兎の大腿骨の欠損部に挿入した時、結晶化ガ
ラスは12週間後にも結晶化ガラスの周囲の生体組
織に対し為害作用を示さず、同期間後には周囲の
骨に強く結合していることが確められる。これ
は、本発明の人工骨用結晶化ガラスが多量のアパ
タイト結晶を含むためである。 また、本発明の人工骨用結晶化ガラスは、きわ
めて高い機械的強度を有する。例えば、別表1〜
10の組成の上記具体例の方法で調製した結晶化ガ
ラスは別表下欄に示すように1200〜1400Kg/cm2
高い曲げ強度を示す。この曲げ強度は従来知られ
ている骨と化学結合をつくる人工骨用結晶化ガラ
スの曲げ強度が1000Kg/cm2以下であるのに比べ、
かなり高い。この原因は従来知られている人工骨
用結晶化ガラスがアパタイト結晶だけしか含まな
いのに対し、本発明の人工骨用結晶化ガラスはア
パタイト結晶の他に多数の繊維状のウオラストナ
イト結晶も含むためである。すなわち、本発明の
人工骨用結晶化ガラスにおいては、繊維状のウオ
ラストナイト結晶がアパタイト結晶を分散した結
晶化ガラスを補強する役割を果している。 本発明の人工骨用結晶化ガラスの曲げ強度は、
これまで我が国で報告された骨と化学結合をつく
る人工骨用アパタイト焼結体の曲げ強度が700〜
1200Kg/cm2であることに比べても高い。先に米国
で発表された人工骨用アパタイト焼結体は2000
Kg/cm2以上の曲げ強度を示すと報告されている
が、それらは、製造工程が複雑であるため、大型
の製品では得難い。それに比べ、本発明の人工骨
用結晶化ガラスは機械的性質において優れている
だけでなく、本発明の方法によれば製造工程が簡
単であり大型の製品まできわめて容易に製造し得
る工業上大なる効果がある。
[Table] Prepare batches corresponding to the glass compositions of Examples 1 to 10 in the attached table using oxide, carbonate, hydrate, or fluoride raw materials, and place them in a platinum crucible in an electric furnace for 1400 to 1500 Melt for 2 hours at °C. Next, these melts are poured onto an iron plate to form sheet glass, which is then ground into powder having a particle size of 325 mesh (44 μm opening) or less. After pressure-molding these powders into a predetermined shape, they were heated in an electric furnace from room temperature to 1050°C at a rate of 5°C/min, held at 1050°C for 2 hours to sinter and crystallize, and then turned off the power source. Allow to cool naturally in the furnace. The crystallized glass produced by this method is a dense glass in which numerous microcrystals of apatite (Ca 10 (PO 4 ) 6 O) and wollastonite (CaO SiO 2 ) are precipitated in a continuous glass medium. It has a unique structure. The crystallized glass for artificial bones of the present invention contains a large amount of apatite and wollastonite crystals. Among these crystals, apatite crystals play an important role in creating a chemical bond between crystallized glass and bone. On the other hand, wollastonite crystals play an important role in increasing the mechanical strength of crystallized glass. When crystallized glass does not contain apatite crystals, chemical bonding is difficult to occur between crystallized glass and bone. On the other hand, if the crystallized glass does not contain wollite night crystals, its mechanical strength will not increase. More than 90% of the crystallized glass for artificial bones of the present invention is
MgO1~7%, CaO42~53%, SiO2 22~41%,
It has a composition consisting of 10-27 % P2O5 . This limited composition is suitable for making glass and for precipitating a large amount of both apatite and wollastonite crystals into the glass by heat treatment. If the MgO content is less than 1%, it is difficult for the melt to become glass, and if the MgO content is more than 7%, only a small amount of apatite and wollastonite crystals can be precipitated in the glass, which is not preferable. Therefore, MgO is 1
It was limited to ~7%. When CaO is less than 42%, the glass can precipitate only a small amount of apatite and wollastonite crystals, and when CaO is more than 53%, the melt is difficult to become glass. Therefore, CaO was limited to 42-53%. If SiO 2 is less than 22%, the glass can only precipitate a small amount of wollastonite crystals and SiO 2
If it is more than 41%, only a small amount of apatite crystals can be precipitated in the glass, which is not preferable. Therefore,
SiO2 is limited to 22-41%. If P 2 O 5 is less than 10%, only a small amount of apatite crystals can be precipitated in the glass, and if P 2 O 5 is more than 27%, only a small amount of wollastonite crystals can be precipitated in the glass, which is undesirable. . Therefore P 2 O 5
was limited to 10-27%. The composition of crystallized glass is less than 10%
Li2O , Na2O , K2O , SrO, B2O3 , Al2O3 ,
It may contain additive components that are not harmful to the human body, such as TiO 2 , ZrO 2 , Nb 2 O 5 , Ta 2 O 5 , and CaF 2 . However, if the total amount of these additive components is more than 10%, only a small amount of apatite and wollastonite crystals can be precipitated in the glass. Therefore, the total amount of these additional components is limited to less than 10%, ie, the total amount of MgO, CaO, SiO 2 and P 2 O 5 is limited to 90% or more. In the method for producing crystallized glass for artificial bone according to the present invention, glass is turned into powder with a particle size of 200 mesh or less, and then molded into a predetermined shape. The fact that the glass is a fine powder is an important condition in order to obtain, by heat treatment, a crystallized glass with few pores and in which apatite and wollastonite crystals are uniformly precipitated as fine particles. When the melt is directly formed into glass of a predetermined shape and then heat-treated,
Wollastonite crystals are precipitated only from the glass surface, and only crystallized glass with internal cracks and low mechanical strength can be obtained. Furthermore, when glass powder with a particle size larger than 200 mesh is used, only crystallized glass with high porosity and low mechanical strength can be obtained. Therefore, the particle size of the glass powder is limited to 200 mesh or less. Any method may be used to prepare the glass powder and the molded product thereof. In the method for producing crystallized glass for artificial bones of the present invention, a glass powder compact is heat-treated in a glass powder sintering temperature range and then in an apatite and wollastonite crystal precipitation temperature range. The former heat treatment is important for obtaining crystallized glass with low porosity and high mechanical strength, and the latter heat treatment is important for precipitating a large amount of apatite and wollastonite crystals from the glass. The glass powder sintering temperature range can be determined by heating a glass powder compact at a constant rate and measuring the thermal contraction during the heating. The glass powder sintering temperature range may be from the thermal contraction start temperature to the thermal contraction termination temperature. Further, the apatite and wollastonite crystal precipitation temperature range can be determined by heating glass powder at a constant rate and performing differential thermal analysis during the heating. The apatite and wollastonite crystal precipitation temperature range may be defined as the temperature range from the start temperature of heat generation due to the precipitation of apatite and wollastonite crystals to the temperature at which the heat generation ends. The heat treatment in these temperature ranges may be performed by keeping the temperature of the glass powder compact within these temperature ranges for a certain period of time, or by increasing the temperature of the glass powder compact at a constant rate during these temperature ranges. You may do so. Further, in addition to these temperature ranges, heat treatment may be performed in other temperature ranges. For example, as in the above embodiment, the glass powder compact may be heated continuously at a constant rate from room temperature to 1000° C., which is higher than the apatite and wollastonite crystal precipitation temperature range. However, the apatite crystals precipitated in the glass disappear at high temperatures and 3CaO・P 2 O 5 crystals precipitate in their place, so do not heat the glass powder compact to the temperature range where 3CaO・P 2 O 5 crystals precipitate. It won't happen. This 3CaO・
The P 2 O 5 crystal precipitation temperature range can also be determined from the position of the exothermic peak on the differential thermal analysis curve of the glass powder. When the crystallized glass for artificial bone of the present invention is inserted into a bone defect, it forms an extremely strong chemical bond with the surrounding bone without causing any harmful effects on the surrounding living tissue. For example, the crystallized glass prepared by the method of the above example having the composition of Examples 1 to 10 in the attached table,
When inserted into the defective part of the femur of a rabbit or rabbit, the crystallized glass did not show any harmful effects on the living tissue surrounding the crystallized glass even after 12 weeks, and after the same period it strongly bonded to the surrounding bone. It is confirmed that there is. This is because the crystallized glass for artificial bones of the present invention contains a large amount of apatite crystals. Furthermore, the crystallized glass for artificial bones of the present invention has extremely high mechanical strength. For example, Appendix 1~
As shown in the lower column of the attached table, the crystallized glass prepared by the method of the above specific example having a composition of No. 10 exhibits a high bending strength of 1200 to 1400 Kg/cm 2 . This bending strength is compared to the previously known bending strength of crystallized glass for artificial bone, which creates a chemical bond with bone, which is less than 1000 kg/cm 2 .
Quite expensive. The reason for this is that conventionally known crystallized glass for artificial bones contains only apatite crystals, whereas the crystallized glass for artificial bones of the present invention contains many fibrous wollastonite crystals in addition to apatite crystals. This is to include. That is, in the crystallized glass for artificial bones of the present invention, the fibrous wollastonite crystals play a role of reinforcing the crystallized glass in which apatite crystals are dispersed. The bending strength of the crystallized glass for artificial bone of the present invention is
The bending strength of apatite sintered bodies for artificial bones that create chemical bonds with bone that have been reported in Japan so far is 700~
This is high compared to 1200Kg/cm 2 . The first apatite sintered body for artificial bone announced in the United States was 2000
Although it is reported that they exhibit a bending strength of Kg/cm 2 or more, this is difficult to achieve in large products due to the complicated manufacturing process. In comparison, the crystallized glass for artificial bones of the present invention not only has excellent mechanical properties, but also has a simple manufacturing process according to the method of the present invention, and is an industrial scale that can be manufactured extremely easily up to large products. There is a certain effect.

Claims (1)

【特許請求の範囲】 1 結晶化ガラスは少なくとも90%以上が、
MgO1〜7%、CaO42〜53%、SiO222〜41%、
P2O510〜27%からなり、0〜10%がLi2O、
Na2O、K2O、SrO、B2O3、Al2O3、TiO2
ZrO2、Nb2O5、Ta2O5、CaF2の何れか1種又は
2種以上よりなる組成を有し、多数のアパタイト
及びウオラストナイト微結晶がガラス中に分散し
た構造を有することを特徴とする人工骨用結晶化
ガラス。 2 少なくとも90%以上が、MgO1〜7%、
CaO42〜53%、SiO222〜41%、P2O510〜27%か
らなり、0〜10%がLi2O、Na2O、K2O、SrO、
B2O3、Al2O3、TiO2、ZrO2、Nb2O5、Ta2O5
CaF2の何れか1種又は2種以上からなる組成の
200メツシユ以下の粒度のガラス粉末を成形後、
ガラス粉末焼結温度域で、加熱し次いでアパタイ
ト及びウオラストナイト結晶析出温度域で加熱処
理することを特徴とする人工骨用結晶化ガラスの
製造方法。
[Claims] 1. At least 90% of the crystallized glass is
MgO1~7%, CaO42~53%, SiO2 22~41%,
Consisting of 10-27% P 2 O 5 , 0-10% Li 2 O,
Na2O , K2O , SrO , B2O3 , Al2O3 , TiO2 ,
It has a composition consisting of one or more of ZrO 2 , Nb 2 O 5 , Ta 2 O 5 , and CaF 2 and has a structure in which a large number of apatite and wollastonite microcrystals are dispersed in the glass. A crystallized glass for artificial bones characterized by: 2 At least 90% or more is MgO1-7%,
It consists of CaO42-53%, SiO222-41 %, P2O5 10-27%, and 0-10% is Li2O , Na2O , K2O , SrO,
B2O3 , Al2O3 , TiO2 , ZrO2 , Nb2O5 , Ta2O5 ,
Composition consisting of one or more types of CaF 2
After molding glass powder with a particle size of 200 mesh or less,
1. A method for producing crystallized glass for artificial bones, which comprises heating in a glass powder sintering temperature range and then heat-treating in an apatite and wollastonite crystal precipitation temperature range.
JP56076696A 1981-05-22 1981-05-22 Crystallized glass for artificial bone and its preparation Granted JPS57191252A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56076696A JPS57191252A (en) 1981-05-22 1981-05-22 Crystallized glass for artificial bone and its preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56076696A JPS57191252A (en) 1981-05-22 1981-05-22 Crystallized glass for artificial bone and its preparation

Publications (2)

Publication Number Publication Date
JPS57191252A JPS57191252A (en) 1982-11-25
JPS6210939B2 true JPS6210939B2 (en) 1987-03-09

Family

ID=13612644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56076696A Granted JPS57191252A (en) 1981-05-22 1981-05-22 Crystallized glass for artificial bone and its preparation

Country Status (1)

Country Link
JP (1) JPS57191252A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998017236A1 (en) * 1996-10-23 1998-04-30 Sunstar Inc. Oral preparations containing biologically active crystallized glass
EP2896411A1 (en) 2006-06-29 2015-07-22 Orthovita, Inc. Bioactive bone graft substitute

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3305572A1 (en) * 1983-02-18 1984-08-23 Ernst Leitz Wetzlar Gmbh, 6330 Wetzlar BIOACTIVE IMPLANT MATERIAL
JPS6069007A (en) * 1983-09-26 1985-04-19 Kyocera Corp Artificial corona dentis and its preparation
JPS60116362A (en) * 1983-11-29 1985-06-22 日本電気硝子株式会社 Artificial composite bone and artificial tooth root
US4560666A (en) * 1983-12-20 1985-12-24 Hoya Corporation High strength glass-ceramic containing apatite and alkaline earth metal silicate crystals and process for producing the same
JPS6172638A (en) * 1984-09-14 1986-04-14 Kyushu Refract Co Ltd Production of calcium phosphate-type crystallized glass
JPS61205637A (en) * 1985-03-06 1986-09-11 Nippon Electric Glass Co Ltd Crystallized glass and production thereof
JPS61234866A (en) * 1985-03-25 1986-10-20 日本電気硝子株式会社 Glass beads for living body
JPS61226054A (en) * 1985-03-29 1986-10-07 日本電気硝子株式会社 Artificial bone and dental root
US4652534A (en) * 1985-04-30 1987-03-24 Hoya Corporation High-strength glass ceramic containing apatite crystals and a large quantity of wollastonite crystals and process for producing same
JPS6272540A (en) * 1985-09-26 1987-04-03 Nippon Electric Glass Co Ltd Alkaliless crystallized glass for organism and its production
JPS62231668A (en) * 1986-04-01 1987-10-12 ホ−ヤ株式会社 Inorganic bio-material and its production
JPS6311545A (en) * 1986-06-30 1988-01-19 Kyocera Corp Calcium phosphate crystallized glass body
PT105617A (en) * 2011-04-05 2012-10-08 Univ Aveiro COMPOSITION OF BIOACTIVE GLASS, ITS USE AND RESPECTIVE METHOD OF OBTAINING
CN103449725B (en) * 2013-08-23 2016-03-30 四川大学 A kind of biological activated glass ceramic material and preparation method thereof and the application in oral care implement
KR101724592B1 (en) * 2014-11-28 2017-04-11 주식회사 바이오알파 High strength crystallized glass ceramics comprising Wallastonite, hydroxyapatite and Akermanite

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998017236A1 (en) * 1996-10-23 1998-04-30 Sunstar Inc. Oral preparations containing biologically active crystallized glass
EP2896411A1 (en) 2006-06-29 2015-07-22 Orthovita, Inc. Bioactive bone graft substitute

Also Published As

Publication number Publication date
JPS57191252A (en) 1982-11-25

Similar Documents

Publication Publication Date Title
US4652534A (en) High-strength glass ceramic containing apatite crystals and a large quantity of wollastonite crystals and process for producing same
US4643982A (en) High-strength glass-ceramic containing anorthite crystals and process for producing the same
JPS6272540A (en) Alkaliless crystallized glass for organism and its production
JPS6210939B2 (en)
JPS63270061A (en) Surface modification of inorganic bio-compatible material
JPS60166247A (en) Phosphate glass ceramic material
JPS61205637A (en) Crystallized glass and production thereof
JPS63176335A (en) Crystallized glass and production thereof
JPH0555150B2 (en)
JPS62128947A (en) Cao-al2o3-p2o5 crystallized glass
JPS60137853A (en) High-strength crystallized glass containing apatite crystal and its production
JPS61236632A (en) Crystallized glass for organism
JPS6350344A (en) Glass ceramic composition
JPH01115360A (en) Inorganic living body material and preparation thereof
JPS61197446A (en) High-strength crystallized glass containing apatite crystal, tricalcium beta-phosphate, and diopside crystal and production thereof
JPS60131849A (en) High-strength glass containing large quantity of apatite crystal and its manufacture
JPH0154290B2 (en)
JPH0191865A (en) Inorganic biomaterial and its manufacture
JPH0247419B2 (en)
CA1266868A (en) No alkali containing biocompatible glass ceramic with apatite, wollastonite and diopside crystals mixed
JPH0249262B2 (en)
JPS60131835A (en) Manufacture of calcium phosphate cast body
JPS6321237A (en) Al2o3-containing cao-p2o5-b2o3-base crystallized glass
JPH0249261B2 (en)
JPS61226053A (en) Production of living body material