JPH0247419B2 - - Google Patents

Info

Publication number
JPH0247419B2
JPH0247419B2 JP59260037A JP26003784A JPH0247419B2 JP H0247419 B2 JPH0247419 B2 JP H0247419B2 JP 59260037 A JP59260037 A JP 59260037A JP 26003784 A JP26003784 A JP 26003784A JP H0247419 B2 JPH0247419 B2 JP H0247419B2
Authority
JP
Japan
Prior art keywords
crystals
glass
cao
mgo
crystallized glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59260037A
Other languages
Japanese (ja)
Other versions
JPS61141641A (en
Inventor
Toshihiro Kasuga
Kenji Nakagawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP59260037A priority Critical patent/JPS61141641A/en
Priority to US06/804,517 priority patent/US4643982A/en
Publication of JPS61141641A publication Critical patent/JPS61141641A/en
Publication of JPH0247419B2 publication Critical patent/JPH0247419B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Dental Preparations (AREA)
  • Glass Compositions (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] この発明は人工歯根及び人工骨などのインプラ
ント材料として有用な高強度結晶化ガラスに関す
るものであつて、さらに詳しくはβ−リン酸三カ
ルシウム結晶とアノーサイト結晶を含有する高強
度結晶化ガラスとその製造法に係る。 [従来の技術] 生体材料用結晶化ガラスとしては、例えば
MgO含量が7重量%以下のMgO−CaO−SiO2
P2O5系ガラスを微粉砕し、その粉末を成形後焼
結させ、さらに熱処理によつてアパタイト結晶
[Ca10(PO46O]とウオラストナイト結晶
[CaO・SiO2]を析出させた結晶化ガラスが知ら
れている。また、MgO含量が8重量%以上の
MgO−CaO−SiO2−P2O5系ガラスから得られる
結晶化ガラスとしては、上と同様な方法でアパタ
イト結晶とジオプサイド[CaO・MgO・2SiO2]、
フオルステライト[2CaO・SiO2]、オケルマナ
イト[2CaO・MgO・2SiO2]などの各アルカリ
土類ケイ酸塩結晶を析出させたものが知られてい
る。これらの結晶化ガラスはアパタイト結晶を含
有している点で共通し、これが結晶化ガラスに生
体親和性を与えている。 一方、リン酸三カルシウム結晶は生体内で吸収
され、骨形成を誘導する成分であることが知られ
ており、この焼結体をポリメチルメタクリレート
の表面に配列させたものは人工歯根として、また
リン酸三カルシウム結晶の多孔質焼結体は骨置換
材として使用されている。 [発明が解決しようとする問題点] リン酸三カルシウム結晶は上記の如く生体内に
吸収されて骨形成を誘導するという特性を有して
いる反面、その特性故に、この結晶の焼結体をイ
ンプラント材料として実際に使用する場合には、
生体内への吸収速度と骨形成速度を勘案してその
形状などを設計しなければならない面倒がある。 この発明は結晶化ガラスの機械的速度に寄与す
るアノーサイト結晶[CaO・Al2O3・2SiO2]を、
リン酸三カルシウム結晶と共存させることによ
り、リン酸三カルシウム結晶が生体内に吸収され
ても、結晶化ガラスの外形を実質的に不変に保持
することができ、従つてインプラント材料の設計
に際しても、リン酸三カルシウム結晶の吸収速度
と骨形成速度の兼合いを考慮する必要のない結晶
化ガラスとその製造法を提供せんとするものであ
る。 [問題点を解決するための手段] この発明の結晶化ガラスは、重量百分率で
MgOを8〜26%、CaOを18〜43%、SiO2を25〜
40%、P2O5を10〜25%、Al2O3を10〜25%、Li2O
を0〜10%、Na2Oを0〜10%、K2Oを0〜10
%、B2O3を0〜10%、TiO2を0〜10%、ZrO2
0〜10%、SrOを0〜10%、Nb2O5を0〜10%、
Ta2O5を0〜10%の各範囲で含有し、前記の
MgO,CaO,SiO2、P2O5及びAl2O3の含量合計
が90%以上である組成を有し、ジオプサイド、フ
オルステライト及びオケルマナイトの各結晶の1
種又は2種以上と、β−リン酸三カルシウム結晶
[β−Ca3(PO42]及びアノーサイト結晶を含有
していることを特徴とする。 そして、このような結晶化ガラスは、重量百分
率でMgOを8〜26%、CaOを18〜43%、SiO2
25〜40%、P2O5を10〜25%、Al2O3を10〜25%、
Li2Oを0〜10%、Na2Oを0〜10%、K2Oを0〜
10%、B2O3を0〜10%、TiO2を0〜10%、ZrO2
を0〜10%、SrOを0〜10%、Nb2O5を0〜10
%、Ta2O5を0〜10%の各範囲で含有し、前記の
MgO,CaO,SiO2,P2O5及びAl2O3の含量合計
が90%以上である組成を有する200メツシユ以下
のガラス粉末を成形し、これをガラス粉末の焼結
温度域で熱処理し、次いでβ−リン酸三カルシウ
ム結晶及びアノーサイト結晶の生成温度域で熱処
理することによつて製造することができる。この
場合、前記両結晶の生成温度域での熱処理によつ
て、本発明の結晶化ガラスにはジオプサイド結
晶、フオルステライト結晶及びオケルマナイト結
晶の1種又は2種以上が析出する。 本発明に係る結晶化ガラスの組成に関する量的
限定理由は次の通りである。 MgOが8%以下ではガラス粉末の焼結温度域
と結晶生成温度が接近し、焼結により気孔が消失
する以前に結晶化が起つて緻密な組織の結晶化ガ
ラスを得ることができない。またMgOが26%以
上ではβ−リン酸三カルシウム結晶の生成量が少
なくなつて好ましくない。従つて、MgOの含量
は8〜26%に限定される。CaOが18%以下ではβ
−リン酸三カルシウム結晶の生成量が少なくな
り、43%以上ではガラスの失透傾向が著しくなる
ので、CaOの含量は18〜43%に限定される。
SiO2が25%以下ではガラスが失透しやすく、ア
ルミニウム、カルシウム及びマグネシウムのケイ
酸塩結晶の生成量も低下するので、結晶化ガラス
に高強度を付与できない。また40%以上ではガラ
スが相分離するようになり、均質のガラスを得る
ことができない。よつて、SiO2の含量は25〜40
%に限定される。P2O5が10%以下ではβ−リン
酸三カルシウム結晶の前駆物たるアパタイト結晶
の生成量が少なく、25%以上ではガラスが相分離
を起すので、P2O5の含量は10〜25%に限定され
る。Al2O3が10%以下ではアノーサイト結晶を生
成させることが難しい関係で、結晶化ガラスに所
期の強度を具備させることができず、25%以上で
はβ−リン酸三カルシウム結晶の生成量が減少す
る。従つてAl2O3の含量は10〜25%に限定され
る。 上記した必須5成分に加えて、本発明の結晶化
ガラスは人体に有害でないLi2O,Na2O,K2O,
SrO,B2O3、TiO2、Nb2O5、Ta2O5及びZrO2
1種又は2種以上を10%以内の範囲で含有するこ
とができる。しかし、これら任意成分の含量合計
がガラス組成の10%を越えると、β−リン酸三カ
ルシウム結晶及びアルカリ土類ケイ酸塩結晶の生
成量が低下するので、MgO,CaO,SiO2、P2O5
及びAl2O3の必須5成分の含量合計は90%以上で
なければならない。 本発明に係る結晶化ガラスを製造するにあたつ
ては、上に規定した組成範囲の親ガラスを、一旦
200メツシユ以下の粒度に粉砕後、得られたガラ
ス粉末を所望の形状に成形し、しかる後その成形
体を焼結させてからこれに結晶化処理を施すこと
が肝要である。ちなみに、上記の親ガラスを粉砕
することなく溶融状態から直接所望の形状に成形
し、これを熱処理した場合にはアノーサイト、ジ
オプサイド、オケルマナイト、フオルステライト
などの各アルカリ土類ケイ酸塩結晶がガラス表面
から析出し、内部にキレツが生じるため、強度の
大きい結晶化ガラスを得ることができない。ま
た、親ガラスを粉砕しても、その粒度が200メツ
シユ以上であると、結晶化ガラス中に気孔が残存
しやすく、この場合にも機械的強度の大きい結晶
化ガラスを得ることができない。つまり、気孔が
少なく、β−リン酸三カルシウム結晶とアノーサ
イト、ジオプサイド、フオルステライト、オケル
マナイト等のケイ酸塩結晶の微粒子が均一に析出
した高強度結晶化ガラスを得るためには、粒度
200メツシユ以下の微細な親ガラス粉末を用いる
ことが重要である。 本発明の方法によれば、粒度200メツシユ以下
の親ガラス粉末は、任意の公知手段で所望の形状
に成形され、しかる後その成形体は前記ガラス粉
末の焼結温度域で熱処理され、次いでβ−リン酸
三カルシウム結晶及びアノーサイト結晶の生成温
度域で熱処理される。ガラス粉末の焼結温度域で
の熱処理は、気孔のない機械的強度が大きい結晶
化ガラスを得るのに重要であつて、この焼結温度
域はガラス粉末の成形体を一定の昇温速度で加熱
し、成形体の焼結に起因する熱収縮を測定するこ
とによつて求めることができる。熱収縮の開始温
度から終了温度までが焼結温度域である。 β−リン酸三カルシウム結晶の生成温度域で熱
処理することは、骨形成の誘導作用を有するβ−
リン酸三カルシウム結晶を多量に生成させるため
に重要である。また、アノーサイト結晶の生成温
度域で熱処理することは、アノーサイト、ジオプ
サイド、オケルマナイト、フオルステライトなど
のケイ酸塩結晶を多量に析出させ、結晶化ガラス
の機械的強度を増大させるうえで重要である。こ
れら各結晶の生成温度域は、ガラス粉末の示差熱
分析により求められる。示差熱分析曲線に於ける
発熱ピークの温度で熱処理したガラス粉末のX線
回折データを解析することにより、それぞれの発
熱ピークに対応する析出結晶を同定し、その発熱
開始温度から発熱終了温度までをそれぞれの結晶
の生成温度域とする。一般に各結晶の生成温度域
は1000〜1100℃の範囲にある。 [実施例] 酸化物、炭酸塩、リン酸塩、水和物などを原料
に用いて、次表に示す組成に相当するガラスのバ
ツチを調合し、これを白金ルツボに入れて1400〜
1550℃で30〜60分間溶融した。次いで溶融状態の
ガラスを水中に投入して急冷し、乾燥後ポツトミ
ルに入れて300メツシユ以下の粒度に粉砕した。
このガラス粉末に結合剤として5wt%のパラフイ
ンを加え、金型に入れて500Kg/cm2の圧力で加圧
成形した。 得られた成形体を電気炉に収め、室温から1000
〜1100℃の範囲の一定温度まで一定の昇温速度3
℃/分で加熱し、その一定温度で2時間保持して
成形体の焼結と結晶化を行なつた。しかる後、炉
内で室温まで冷却し、結晶化ガラスを得た。 こうして製造された各結晶化ガラスの破面を
SEMで観察したところ、いずれも気孔の少ない
緻密な組織であつた。また、これら結晶化ガラス
を粉砕し、X線回折により析出結晶を同定した。
その結果をガラス組成と共に次表に示す。なお、
一部の結晶化ガラスについては、300番のダイヤ
モンド砥石で直径約5mmの丸棒に加工し、その曲
げ強度を測定した。この結果も次表に併記した。 表から明らかな通り、本発明の結晶化ガラスは
1700〜2300Kg/cm2という高い値の曲げ強度を有し
ている。
[Industrial Application Field] This invention relates to a high-strength crystallized glass useful as an implant material for artificial tooth roots and artificial bones, and more specifically, it relates to a high-strength crystallized glass containing β-tricalcium phosphate crystals and anorthite crystals. Concerning high-strength crystallized glass and its manufacturing method. [Prior art] Examples of crystallized glass for biological materials include
MgO−CaO−SiO 2 − with MgO content of 7% by weight or less
P 2 O 5 glass is finely pulverized, the powder is molded and sintered, and then heat treated to precipitate apatite crystals [Ca 10 (PO 4 ) 6 O] and wollastonite crystals [CaO・SiO 2 ]. Crystallized glass is known. In addition, the MgO content is 8% by weight or more.
As crystallized glass obtained from MgO−CaO−SiO 2 −P 2 O 5 series glass, apatite crystals and diopside [CaO・MgO・2SiO 2 ],
Precipitated alkaline earth silicate crystals such as forsterite [2CaO·SiO 2 ] and okermanite [2CaO·MgO·2SiO 2 ] are known. These crystallized glasses have in common that they contain apatite crystals, which gives them biocompatibility. On the other hand, it is known that tricalcium phosphate crystals are absorbed in vivo and are a component that induces bone formation, and this sintered body arranged on the surface of polymethyl methacrylate can be used as an artificial tooth root. Porous sintered bodies of tricalcium phosphate crystals are used as bone replacement materials. [Problems to be Solved by the Invention] As mentioned above, tricalcium phosphate crystals have the property of being absorbed into the body and inducing bone formation. When actually used as an implant material,
There is a problem in that its shape must be designed taking into consideration the rate of absorption into the body and the rate of bone formation. This invention utilizes anorthite crystals [CaO・Al 2 O 3・2SiO 2 ] that contribute to the mechanical speed of crystallized glass.
By coexisting with tricalcium phosphate crystals, the external shape of the crystallized glass can be maintained virtually unchanged even if the tricalcium phosphate crystals are absorbed into the living body, and this can also be used when designing implant materials. The object of the present invention is to provide crystallized glass and a method for producing the same that does not require consideration of the balance between absorption rate and bone formation rate of tricalcium phosphate crystals. [Means for solving the problem] The crystallized glass of the present invention has a weight percentage of
MgO 8~26%, CaO 18~43%, SiO2 25~
40% , P2O5 10-25%, Al2O3 10-25 %, Li2O
0-10%, Na 2 O 0-10%, K 2 O 0-10
%, B2O3 0-10 %, TiO2 0-10%, ZrO2 0-10%, SrO 0-10%, Nb2O5 0-10 %,
Contains Ta 2 O 5 in the range of 0 to 10%, and the above
It has a composition in which the total content of MgO, CaO, SiO 2 , P 2 O 5 and Al 2 O 3 is 90% or more, and 1 of each crystal of diopside, forsterite and okermanite.
It is characterized by containing a seed or two or more kinds, β-tricalcium phosphate crystal [β-Ca 3 (PO 4 ) 2 ] and anorthite crystal. And, such crystallized glass contains 8-26% MgO, 18-43% CaO, and SiO2 in weight percentage.
25-40% , P2O5 10-25%, Al2O3 10-25 %,
Li 2 O 0-10%, Na 2 O 0-10%, K 2 O 0-10%
10% , B2O3 0-10%, TiO2 0-10%, ZrO2
0-10%, SrO 0-10%, Nb 2 O 5 0-10
%, Ta 2 O 5 in the range of 0 to 10%, and the above-mentioned
A glass powder of 200 mesh or less with a composition in which the total content of MgO, CaO, SiO 2 , P 2 O 5 and Al 2 O 3 is 90% or more is molded and then heat treated in the sintering temperature range of glass powder. , and then heat-treated in a temperature range that produces β-tricalcium phosphate crystals and anorthite crystals. In this case, one or more of diopside crystals, forsterite crystals, and okermanite crystals are precipitated in the crystallized glass of the present invention by heat treatment in the above-mentioned formation temperature range of both crystals. The reason for the quantitative limitation regarding the composition of the crystallized glass according to the present invention is as follows. When the MgO content is less than 8%, the sintering temperature range of the glass powder and the crystal formation temperature become close to each other, and crystallization occurs before the pores disappear due to sintering, making it impossible to obtain crystallized glass with a dense structure. Furthermore, if the MgO content is 26% or more, the amount of β-tricalcium phosphate crystals formed is undesirable. Therefore, the MgO content is limited to 8-26%. β when CaO is below 18%
- The content of CaO is limited to 18 to 43% because the amount of tricalcium phosphate crystals produced is small and the tendency of the glass to devitrify becomes significant above 43%.
If SiO 2 is less than 25%, the glass tends to devitrify, and the amount of silicate crystals of aluminum, calcium, and magnesium produced also decreases, making it impossible to impart high strength to the crystallized glass. Moreover, if it exceeds 40%, the glass will undergo phase separation, making it impossible to obtain homogeneous glass. Therefore, the content of SiO 2 is 25-40
limited to %. If the P 2 O 5 content is less than 10%, the amount of apatite crystals that are the precursor of β-tricalcium phosphate crystals will be small, and if it is more than 25%, the glass will undergo phase separation, so the P 2 O 5 content should be 10 to 25%. limited to %. If Al 2 O 3 is less than 10%, it is difficult to form anorthite crystals, and the desired strength cannot be achieved in crystallized glass, and if Al 2 O 3 is more than 25%, β-tricalcium phosphate crystals are formed. quantity decreases. Therefore, the content of Al 2 O 3 is limited to 10-25%. In addition to the above-mentioned five essential components, the crystallized glass of the present invention contains Li 2 O, Na 2 O, K 2 O, which are not harmful to the human body.
One or more of SrO, B 2 O 3 , TiO 2 , Nb 2 O 5 , Ta 2 O 5 and ZrO 2 can be contained within 10%. However, if the total content of these optional components exceeds 10% of the glass composition, the amount of β-tricalcium phosphate crystals and alkaline earth silicate crystals will decrease, so MgO, CaO, SiO 2 , P 2 O 5
The total content of the five essential components of Al 2 O 3 must be 90% or more. In producing the crystallized glass according to the present invention, the parent glass in the composition range specified above is
After pulverization to a particle size of 200 mesh or less, it is important to mold the resulting glass powder into a desired shape, then sinter the molded body and then subject it to a crystallization treatment. By the way, if the above-mentioned parent glass is directly molded into the desired shape from the molten state without being crushed and then heat-treated, various alkaline earth silicate crystals such as anorthite, diopside, okermanite, and forsterite can be formed into glass. Since it precipitates from the surface and cracks occur inside, it is not possible to obtain crystallized glass with high strength. Further, even if the parent glass is crushed, if the particle size is 200 mesh or more, pores tend to remain in the crystallized glass, and in this case also, it is impossible to obtain a crystallized glass with high mechanical strength. In other words, in order to obtain a high-strength crystallized glass with few pores and uniformly precipitated fine particles of β-tricalcium phosphate crystals and silicate crystals such as anorthite, diopside, forsterite, and okermanite, the particle size must be
It is important to use fine parent glass powder of 200 mesh or less. According to the method of the present invention, parent glass powder with a particle size of 200 mesh or less is molded into a desired shape by any known means, and then the molded body is heat treated in the sintering temperature range of the glass powder, and then β - Heat treated in the temperature range for forming tricalcium phosphate crystals and anorthite crystals. Heat treatment in the sintering temperature range of glass powder is important to obtain crystallized glass with no pores and high mechanical strength. It can be determined by heating and measuring the thermal contraction caused by sintering of the compact. The sintering temperature range is from the start temperature to the end temperature of thermal contraction. Heat treatment in the formation temperature range of β-tricalcium phosphate crystals can induce β-tricalcium phosphate, which has the effect of inducing bone formation.
This is important for producing large amounts of tricalcium phosphate crystals. In addition, heat treatment in the anorthite crystal formation temperature range is important for precipitating a large amount of silicate crystals such as anorthite, diopside, okermanite, and forsterite, and increasing the mechanical strength of crystallized glass. be. The formation temperature range of each of these crystals is determined by differential thermal analysis of glass powder. By analyzing the X-ray diffraction data of glass powder heat-treated at the temperature of the exothermic peak in the differential thermal analysis curve, we can identify the precipitated crystals corresponding to each exothermic peak, and calculate the temperature from the exothermic start temperature to the exothermic end temperature. This is the temperature range in which each crystal forms. Generally, the temperature range for the formation of each crystal is in the range of 1000 to 1100°C. [Example] Using oxides, carbonates, phosphates, hydrates, etc. as raw materials, a batch of glass corresponding to the composition shown in the following table was prepared, and this was placed in a platinum crucible for 1400~
Melt at 1550°C for 30-60 minutes. Next, the molten glass was put into water to be rapidly cooled, and after drying, it was put into a pot mill and ground to a particle size of 300 mesh or less.
5 wt % paraffin was added as a binder to this glass powder, and the mixture was placed in a mold and pressure-molded at a pressure of 500 kg/cm 2 . The obtained molded body was placed in an electric furnace and heated from room temperature to 1000°C.
Constant heating rate up to a constant temperature in the range of ~1100℃3
The molded body was heated at a rate of .degree. C./min and held at that constant temperature for 2 hours to sinter and crystallize the molded body. Thereafter, it was cooled to room temperature in a furnace to obtain crystallized glass. The fracture surface of each crystallized glass produced in this way is
When observed with SEM, all had dense structures with few pores. Furthermore, these crystallized glasses were crushed and precipitated crystals were identified by X-ray diffraction.
The results are shown in the table below along with the glass composition. In addition,
Some of the crystallized glass was processed into a round bar with a diameter of approximately 5 mm using a No. 300 diamond grindstone, and its bending strength was measured. The results are also listed in the table below. As is clear from the table, the crystallized glass of the present invention is
It has a high bending strength of 1700-2300Kg/ cm2 .

【表】【table】

【表】【table】

【表】 [発明の効果] 本発明の結晶化ガラスは骨形成を誘導するβ−
リン酸三カルシウム結晶を多量に含み、しかも
1700〜2300Kg/cm2という非常に高い曲げ強度を有
しているので、人工骨用及び人工歯根用生体材料
として極めて有用である。
[Table] [Effects of the invention] The crystallized glass of the present invention has β-
Contains a large amount of tricalcium phosphate crystals, and
Since it has a very high bending strength of 1700 to 2300 Kg/cm 2 , it is extremely useful as a biomaterial for artificial bones and artificial tooth roots.

Claims (1)

【特許請求の範囲】 1 重量百分率でMgOを8〜26%、CaOを18〜
43%、SiO2を25〜40%、P2O5を10〜25%、Al2O3
を10〜25%、Li2Oを0〜10%、Na2Oを0〜10
%、K2Oを0〜10%、B2O3を0〜10%、TiO2
0〜10%、ZrO2を0〜10%、SrOを0〜10%、
Nb2O5を0〜10%、Ta2O5を0〜10%の各範囲で
含有し、前記のMgO,CaO,SiO2,P2O5,及び
Al2O3の含量合計が90%以上である組成を有し、
ジオプサイド、フオルステライト及びオケルマナ
イトの各結晶の1種又は2種以上と、β−リン酸
三カルシウム結晶及びアノーサイト結晶を含有し
ていることを特徴とする高強度結晶化ガラス。 2 重量百分率でMgOを8〜26%、CaOを18〜
43%、SiO2を25〜40%、P2O5を10〜25%、Al2O3
を10〜25%、Li2Oを0〜10%、Na2Oを0〜10
%、K2Oを0〜10%、B2O3を0〜10%、TiO2
0〜10%、ZrO2を0〜10%、SrOを0〜10%、
Nb2O5を0〜10%、Ta2O5を0〜10%の各範囲で
含有し、前記のMgO,CaO,SiO2、P2O5及び
Al2O3の含量合計が90%以上である組成を有する
200メツシユ以下のガラス粉末を成形し、これを
ガラス粉末の焼結温度域で熱処理し、次いでβ−
リン酸三カルシウム結晶及びアノーサイト結晶の
生成温度域で熱処理することを特徴とする高強度
結晶化ガラスの製造法。
[Claims] 1. MgO in weight percentage of 8 to 26% and CaO in weight percentage of 18 to 26%.
43%, 25-40% SiO2 , 10-25 % P2O5 , Al2O3
10-25%, Li 2 O 0-10%, Na 2 O 0-10
%, K2O 0-10%, B2O3 0-10 %, TiO2 0-10%, ZrO2 0-10%, SrO 0-10%,
Contains Nb 2 O 5 in a range of 0 to 10%, Ta 2 O 5 in a range of 0 to 10%, and contains the above-mentioned MgO, CaO, SiO 2 , P 2 O 5 , and
It has a composition in which the total content of Al 2 O 3 is 90% or more,
A high-strength crystallized glass characterized by containing one or more of diopside, forsterite, and okermanite crystals, β-tricalcium phosphate crystals, and anorthite crystals. 2 MgO 8-26%, CaO 18-26% by weight
43%, 25-40% SiO2 , 10-25 % P2O5 , Al2O3
10-25%, Li 2 O 0-10%, Na 2 O 0-10
%, K2O 0-10%, B2O3 0-10 %, TiO2 0-10%, ZrO2 0-10%, SrO 0-10%,
Contains Nb 2 O 5 in a range of 0 to 10%, Ta 2 O 5 in a range of 0 to 10%, and contains the above-mentioned MgO, CaO, SiO 2 , P 2 O 5 and
Has a composition in which the total content of Al 2 O 3 is 90% or more
Glass powder of 200 mesh or less is formed, heat-treated in the sintering temperature range of glass powder, and then β-
A method for producing high-strength crystallized glass, characterized by heat treatment in a temperature range for forming tricalcium phosphate crystals and anorthite crystals.
JP59260037A 1984-12-05 1984-12-11 High-strength crystallized glass containing both beta-tricalcium phosphate crystal and anorthite crystal and production thereof Granted JPS61141641A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP59260037A JPS61141641A (en) 1984-12-11 1984-12-11 High-strength crystallized glass containing both beta-tricalcium phosphate crystal and anorthite crystal and production thereof
US06/804,517 US4643982A (en) 1984-12-05 1985-12-04 High-strength glass-ceramic containing anorthite crystals and process for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59260037A JPS61141641A (en) 1984-12-11 1984-12-11 High-strength crystallized glass containing both beta-tricalcium phosphate crystal and anorthite crystal and production thereof

Publications (2)

Publication Number Publication Date
JPS61141641A JPS61141641A (en) 1986-06-28
JPH0247419B2 true JPH0247419B2 (en) 1990-10-19

Family

ID=17342420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59260037A Granted JPS61141641A (en) 1984-12-05 1984-12-11 High-strength crystallized glass containing both beta-tricalcium phosphate crystal and anorthite crystal and production thereof

Country Status (1)

Country Link
JP (1) JPS61141641A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63162545A (en) * 1986-12-26 1988-07-06 Central Glass Co Ltd Translucent crystalline glass

Also Published As

Publication number Publication date
JPS61141641A (en) 1986-06-28

Similar Documents

Publication Publication Date Title
US4643982A (en) High-strength glass-ceramic containing anorthite crystals and process for producing the same
US4652534A (en) High-strength glass ceramic containing apatite crystals and a large quantity of wollastonite crystals and process for producing same
US4560666A (en) High strength glass-ceramic containing apatite and alkaline earth metal silicate crystals and process for producing the same
US4783429A (en) No alkali containing biocompatible glass ceramic with apatite, wollastonite and diopside crystals mixed
US5336642A (en) Canasite-apatite glass-ceramics
JPS63270061A (en) Surface modification of inorganic bio-compatible material
JPS60166247A (en) Phosphate glass ceramic material
WO2019202333A1 (en) Glass powder composition, method for forming a glass-ceramic material and glass-ceramic material obtained therefrom
JP4477377B2 (en) Bioactive rennite glass ceramic
JPS6210939B2 (en)
JPS61205637A (en) Crystallized glass and production thereof
JPH0555150B2 (en)
KR920000150B1 (en) Crystalized glass for human body and preparation method
JPH0247419B2 (en)
JPH0249260B2 (en)
Hamzawy et al. Characterization and bioactivity in high cristobalite-nepheline-apatite glass and glass ceramics
KR940003461B1 (en) Method for glass ceramic withused living body material
JPH0153211B2 (en)
JPH0465024B2 (en)
JPH0247417B2 (en)
JPH0249262B2 (en)
JPH0247418B2 (en)
JPH01115360A (en) Inorganic living body material and preparation thereof
JPH0191865A (en) Inorganic biomaterial and its manufacture
JPH0249261B2 (en)