JPH0249212B2 - - Google Patents

Info

Publication number
JPH0249212B2
JPH0249212B2 JP56070238A JP7023881A JPH0249212B2 JP H0249212 B2 JPH0249212 B2 JP H0249212B2 JP 56070238 A JP56070238 A JP 56070238A JP 7023881 A JP7023881 A JP 7023881A JP H0249212 B2 JPH0249212 B2 JP H0249212B2
Authority
JP
Japan
Prior art keywords
aromatic polyamide
polymer
groups
present
aromatic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56070238A
Other languages
Japanese (ja)
Other versions
JPS57192436A (en
Inventor
Yasuhiko Segawa
Susumu Norota
Tsutomu Kiryama
Shingo Emi
Tadashi Imoto
Tetsuo Yamauchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP56070238A priority Critical patent/JPS57192436A/en
Priority to EP81303726A priority patent/EP0047091B1/en
Priority to DE8181303726T priority patent/DE3163504D1/en
Priority to DE8383200570T priority patent/DE3176590D1/en
Priority to EP83200570A priority patent/EP0089732B1/en
Priority to US06/293,269 priority patent/US4399084A/en
Publication of JPS57192436A publication Critical patent/JPS57192436A/en
Publication of JPH0249212B2 publication Critical patent/JPH0249212B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Artificial Filaments (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Description

【発明の詳細な説明】 本発明は耐熱性を有する芳香族ポリアミドの成
形物の新規で経済的に有利な製造法に関するもの
であり、より詳細には従来溶融成形が困難と考え
られていた芳香族ポリアミドの溶融成形手段に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a new and economically advantageous method for producing heat-resistant aromatic polyamide moldings, and more specifically relates to aromatic polyamide moldings, which were conventionally considered difficult to melt mold. The present invention relates to a means for melt-molding polyamides.

芳香族ポリアミドは広く提案されている耐熱難
燃性の高分子であり、特にポリメタフエニレンイ
ソフタルアミドは例えばNomex 〔デユポン社
(株)〕、Conex 〔帝人(株)製〕の名称で繊維として
大量に市販されている。この繊維は、従来の有機
繊維と比較して遜色ない可撓性を有し、しかも限
界酸素指数(LoI)が27,融点が400〜410℃、分
解開始点が約400℃という難燃性、耐熱性を有し
ており防火服、バツグフイルター、絶縁材として
有用である。またポリパラフエニレンテレフタル
アミドは、Kevlar 〔デユポン社(株)〕の名称で
繊維として市販されて居り、この繊維は前記ポリ
メタフエニレンイソフタルアミド繊維並の難燃
性、耐熱性を有し、しかも高強度高ヤング率を呈
し、複合材、ロープなどに有用である。これら2
種の芳香族ポリアミドを中心に、種々の改質(共
重合、ブレンド等)がなされ、それれの目的に最
適な組成が研究されてきた。
Aromatic polyamides are heat-resistant and flame-retardant polymers that have been widely proposed, especially polymetaphenylene isophthalamide, such as Nomex [DuPont Co., Ltd.
Ltd.] and Conex [manufactured by Teijin Ltd.] in large quantities as fibers. This fiber has a flexibility comparable to that of conventional organic fibers, and is flame retardant with a limiting oxygen index (LoI) of 27, a melting point of 400-410℃, and a decomposition point of approximately 400℃. It has heat resistance and is useful as fireproof clothing, bag filters, and insulation materials. Furthermore, polyparaphenylene terephthalamide is commercially available as a fiber under the name Kevlar (DuPont Co., Ltd.), and this fiber has flame retardancy and heat resistance comparable to the above-mentioned polymethaphenylene isophthalamide fiber. Moreover, it exhibits high strength and high Young's modulus, making it useful for composite materials, ropes, etc. These 2
Various modifications (copolymerization, blending, etc.) have been performed mainly on aromatic polyamides, and the optimal composition for each purpose has been studied.

一般に芳香族ポリアミドは融点が高く、分解開
始温度と近接している為、従来の溶融紡糸装置を
使用して溶融押出しをすることは不可能である。
その為、該ポリマーを溶剤に溶解し、湿式あるい
は乾式紡糸するのが常であり、その溶剤としては
ジメチルホルムアミド、ジメチルアセトアミド、
N―メチルピロリドンン等の非プロトン性極性溶
媒単独又はそれらと塩化リチウム、塩化カルシウ
ム等の周期律表族又は族の金属のハロゲン化
塩との混合溶液、硫酸、クロル硫酸、フツ化水素
酸、3フツ化酢酸等を用いることが知られてい
る。工業的に使用する為にはこれら溶剤を回収或
いは中和処理する設備が必要であり、該ポリマー
の単位重量当りに使用される溶剤の量は通常ポリ
マー重量の3〜20倍であるので、紡糸設備本体に
対して非常に大きな回収設備または処理設備を要
する。しかも回収出来ない溶剤のコストはそのま
ま繊維のコストに上乗せされる。
Generally, aromatic polyamides have a high melting point, which is close to the decomposition initiation temperature, so it is impossible to melt-extrude them using conventional melt-spinning equipment.
Therefore, it is customary to dissolve the polymer in a solvent and perform wet or dry spinning, and the solvents used include dimethylformamide, dimethylacetamide,
Aprotic polar solvents such as N-methylpyrrolidone alone or a mixed solution of them and a halide salt of a metal of a periodic table group or group such as lithium chloride, calcium chloride, sulfuric acid, chlorosulfuric acid, hydrofluoric acid, It is known to use trifluoroacetic acid and the like. For industrial use, equipment to recover or neutralize these solvents is required, and the amount of solvent used per unit weight of the polymer is usually 3 to 20 times the weight of the polymer, so spinning Requires collection or processing equipment that is extremely large compared to the equipment itself. Moreover, the cost of solvents that cannot be recovered is directly added to the cost of fibers.

かような理由から、もしもそのポリマーを溶融
成形可能に出来るなら、溶液成形(湿式、乾式)
よりも溶融成形法を採用する方が有利であること
は自明の理である。これは、該ポリマーの重合を
溶液中で行なう場合にもあてはまる。まず該ポリ
マーと溶液を分離(沈殿)して溶融成形する方
が、溶液成形するよりも格段とプロセスが簡単に
なるからである。
For these reasons, if the polymer can be melt molded, solution molding (wet or dry) can be used.
It is obvious that it is more advantageous to employ the melt molding method. This also applies if the polymerization of the polymer is carried out in solution. This is because first separating (precipitating) the polymer from a solution and then melt-molding it is a much simpler process than solution-molding.

従来、溶液成形法により所謂、ダイレクト・フ
アブリケーシヨンをすることは工程が大変長くな
り、生産管理をするのが煩難となりすぎるので特
定の例を除いては実用化されていない。もしもそ
のポリマーの溶融成形が可能となれば、極めて単
純な工程によりダイレクト・フアブリケーシヨン
を行なうことが出来るようになる。前述したよう
な非常に優れた物性を有する芳香族ポリアミドを
ダイレクト・フアブリケーシヨンにより例えば不
織布化出来ればその工業的効果は大きいものであ
る。
Conventionally, so-called direct fabrication using a solution molding method has not been put to practical use except in specific cases because the process is very long and production control is too troublesome. If the polymer could be melt-molded, direct fabrication would be possible using an extremely simple process. If an aromatic polyamide having extremely excellent physical properties as described above could be made into a nonwoven fabric by direct fabrication, for example, it would have a great industrial effect.

また、溶液成形法の場合、目的とする成形品が
厚くなると溶剤を完全に抽出することが非常に困
難となるが、溶融成形法によれば厚味のある成形
品も容易に製造し得る。
In addition, in the case of solution molding, it is very difficult to completely extract the solvent when the desired molded product becomes thick, but thick molded products can be easily produced using melt molding.

本発明者等は芳香族ポリアミドの溶融成形につ
いて鋭意研究した結果本発明に到達した。
The present inventors have arrived at the present invention as a result of intensive research on melt molding of aromatic polyamide.

すなわち、本発明は下記式 及び [但し式中、(1)及び(2)はこれらが存在する場合に
はこれらは実質的に当モル量で存在し、基R,
R′及びR″は同一もしくは異なる2価の基を示し、
R,R′及びR″の合計の少なくとも70モル%は芳
香族基である。] からなる群より選択された少なくとも一種の反復
単位から実質的になる固体の芳香族ポリアミド
を、加熱溶融せしめ該芳香族ポリアミドが実質的
に成形物形成能を失なわない時間内に吐出口を通
して押出し、冷却固化しながら成形することを特
徴とする芳香族ポリアミド成形物の製造法であ
り、また前記固体の芳香族ポリアミドを多数の細
隙を有する伝熱可能な平面体に供給し、該平面体
において芳香族ポリアミドを加熱溶融し、芳香族
ポリアミドが実質的に成形物形成能を失なわない
時間内に吐出口を通して押出し、冷却固化しなが
ら成形することを特徴とする芳香族ポリアミド成
形物の製造法である。
That is, the present invention is based on the following formula as well as [In the formula, (1) and (2), if present, are present in substantially equimolar amounts, and the groups R,
R′ and R″ represent the same or different divalent groups,
At least 70 mole percent of the sum of R, R', and R'' are aromatic groups.] A solid aromatic polyamide consisting essentially of at least one repeating unit selected from the group consisting of A method for producing an aromatic polyamide molded product, characterized in that the aromatic polyamide is extruded through a discharge port within a time period during which the aromatic polyamide does not substantially lose its ability to form a molded product, and is molded while being cooled and solidified; The aromatic polyamide is supplied to a heat-transferable planar body having a large number of slits, the aromatic polyamide is heated and melted in the planar body, and the aromatic polyamide is discharged within a time that does not substantially lose the ability to form a molded article. This is a method for producing an aromatic polyamide molded article, which is characterized by extruding through an outlet and molding while cooling and solidifying.

本発明方法において対象とする芳香族ポリアミ
ドは下記式 及び [但し式中、(1)及び(2)はこれらが存在する場合に
はこれらは実質的に当モル量で存在し、基R,
R′及びR″は同一もしくは異なる2価の基を示し、
R,R′及びR″の合計の少なくとも70モル%は芳
香族基である。] からなる群より選択された少なくとも一種の反復
単位から実質的になる重合体であり、一般に芳香
族ポリアミドまたは全芳香族ポリアミドを呼称さ
れているものである。
The aromatic polyamide targeted in the method of the present invention has the following formula: as well as [In the formula, (1) and (2), if present, are present in substantially equimolar amounts, and the groups R,
R′ and R″ represent the same or different divalent groups,
At least 70 mole percent of the sum of R, R' and R'' are aromatic groups.] Polymers consisting essentially of at least one repeating unit selected from the group consisting of It is called aromatic polyamide.

前記式中R,R′,R″は、同一もしくは異なる
2価の基であつてそれらの合計が少なくとも70モ
ル%、好ましくは少なくとも80モル%は芳香族基
である。かゝる芳香族基の例としては、パラフエ
ニレン基、メタフエニレン基、1.5―ナフチレン
基、2,6―ナフチレン基、3,3′―,4,4′―
または3,4′―ジフエニレン基、3,3′―,4,
4′―または3,4′―ジフエニルエーテル基などが
挙げられる。芳香族ポリアミドの具体例として
は、ポリパラフエニレンイソフタルアミド、ポリ
メタフエニレンイソフタルアミド、ポリメタフエ
ニレンテレフタルアミド、ポリ―1.5―ナフチレ
ンイソフタルアミド、ポリ―3,4′―ジフエニレ
ンテレフタルアミドあるいはこれらの共重合体等
があげられる。
In the above formula, R, R', R'' are the same or different divalent groups, and the total of them is at least 70 mol%, preferably at least 80 mol%, is an aromatic group.Such an aromatic group Examples include paraphenylene group, metaphenylene group, 1.5-naphthylene group, 2,6-naphthylene group, 3,3'-, 4,4'-
or 3,4'-diphenylene group, 3,3'-,4,
Examples include 4'- or 3,4'-diphenyl ether group. Specific examples of aromatic polyamides include polyparaphenylene isophthalamide, polymetaphenylene isophthalamide, polymetaphenylene terephthalamide, poly-1.5-naphthylene isophthalamide, and poly-3,4'-diphenylene terephthalamide. Examples include amides and copolymers thereof.

これら重合体は通常テトラヒドロフラン/水、
メチルエチルケトン/水等の系中での界面重合
法、ジメチルホルムアミド、ジメチルアセタミ
ド、N―メチルピロリドン等の非プロトン性極性
溶媒の系中での溶液重合法等により調製される。
該重合体はこれらの重合溶媒中に一般に微粉末状
で存在している。その分離方法としては通常、洗
浄により溶媒を抽出除去する方法が好ましく、洗
浄液に含まれる溶媒は蒸留、冷凍分離あるいはこ
れらと抽出を組合せた方法で回収される。該重合
体の微粉末の大きさ、形状は界面重合法により調
製される場合はその際の温度、剪断速度、重合体
の凝固速度等に影響され、溶液重合法により調製
される場合は、溶液重合法で調製された該重合体
溶液に抽出用洗浄液を添加する時の温度、剪断速
度、重合体の凝固速度等に影響される。取扱いの
容易な重合体微粉の平均径は1μ〜1000μである。
These polymers are usually tetrahydrofuran/water,
It is prepared by an interfacial polymerization method in a system such as methyl ethyl ketone/water, or a solution polymerization method in a system using an aprotic polar solvent such as dimethylformamide, dimethylacetamide, or N-methylpyrrolidone.
The polymer is generally present in the form of a fine powder in these polymerization solvents. As the separation method, it is usually preferable to extract and remove the solvent by washing, and the solvent contained in the washing liquid is recovered by distillation, freeze separation, or a combination of these and extraction. The size and shape of the fine powder of the polymer are influenced by the temperature, shear rate, coagulation rate of the polymer, etc. when prepared by interfacial polymerization, and when prepared by solution polymerization, the size and shape of the fine powder of the polymer are It is influenced by the temperature, shear rate, coagulation rate of the polymer, etc. when adding the extraction washing liquid to the polymer solution prepared by the polymerization method. The average diameter of easily handled polymer fine powder is 1μ to 1000μ.

本発明に於ては該重合体微粉末をそのまま使用
してもよいし、適当な形状に圧縮加工して使用し
てもよい。
In the present invention, the fine polymer powder may be used as it is, or may be compressed into an appropriate shape.

本発明に使用されれる重合体は一時的ではある
が溶融するものである。融点は該重合体を示差熱
分析(DTA)、差動熱量分析(DSC)、フローテ
スター等の手段で熱分析することにより測定でき
る。該重合体は融点と分解開始点が近接してお
り、DTA,DSCに於ては両者がオーバーラツプ
して観察されるのが通常であり、融点を明確に決
定する為には不活性気体中で測定し、分解開始点
をより高温に移動して測定するのがのぞましい。
分解開始点よりも高温になると該重合体の主鎖の
切断が進行すると同時に、普通の場合主鎖間の架
橋も伴なう複雑な反応が起きるが、これらの反応
はいずれも成形物形成能を失なわせる方向のもの
であり、成形する間に進行する量が小さければ小
さいほど好ましいものである。
The polymer used in the present invention melts, albeit temporarily. The melting point can be measured by thermally analyzing the polymer using a means such as differential thermal analysis (DTA), differential calorimetry (DSC), or a flow tester. The melting point and decomposition start point of this polymer are close to each other, and it is common for the two to be observed to overlap in DTA and DSC, so in order to clearly determine the melting point, it is necessary to It is preferable to move the starting point of decomposition to a higher temperature and then perform the measurement.
When the temperature rises above the starting point of decomposition, the main chain of the polymer is cleaved, and at the same time, a complex reaction that usually involves crosslinking between the main chains occurs, but all of these reactions impair the ability to form molded objects. The smaller the amount that progresses during molding, the more preferable it is.

本発明にいう成形物形成能とは以下の(1)〜(3)の
要件をすべて満足している場合の性能をいう。
The ability to form a molded product as used in the present invention refers to performance when all of the following requirements (1) to (3) are satisfied.

(1) 本発明にいう吐出口より吐出可能であるこ
と。(該重合体粘度が、吐出口を通過するのに
必要な粘度まで低下し得ること) (2) 該重合体が吐出方向に添つて連続して吐出口
より吐出可能であること。
(1) It must be possible to discharge from the discharge port referred to in the present invention. (The viscosity of the polymer can be reduced to a viscosity necessary for passing through the discharge port.) (2) The polymer can be continuously discharged from the discharge port along the discharge direction.

(3) 吐出され該重合体の連続体を冷却した後の機
械的強度が実用の範囲内にあること。
(3) The mechanical strength of the discharged polymer continuum after cooling is within a practical range.

以上(1)〜(3)の要件の具体的な物性値の範囲は目
的とする成形品の種類により異なつているが、繊
維の場合、(1)にいう粘度が10万ポアズ以下であ
り、(3)の機械的強度は0.5g/de以上の伸張り強
度がのぞましい。フイルムの場合は、5g/mm2
上の伸張り強度及び引裂き強度を有するのがのぞ
ましい。厚さ1mm以上の板状体の場合は5Kg/cm2
(JIS K6911)以上の曲げ強度を有するのが好ま
しい。このようにそれぞれの成形品の種類によ
り、該重合体の成形物形成能は異なつてくるが、
簡単な実験により容易にその範囲を決定すること
ができる。
The range of specific physical property values for the requirements (1) to (3) above varies depending on the type of molded product, but in the case of fibers, the viscosity referred to in (1) is 100,000 poise or less, The mechanical strength of (3) is preferably a tensile strength of 0.5 g/de or more. In the case of a film, it is desirable to have a tensile strength and tear strength of 5 g/mm 2 or more. 5Kg/cm 2 for plate-like objects with a thickness of 1mm or more
It is preferable to have a bending strength equal to or higher than (JIS K6911). In this way, the ability of the polymer to form a molded article varies depending on the type of molded article.
The range can be easily determined by simple experiments.

重合溶媒より分離された該固体重合体は、微粉
のままあるいは微粉を圧縮加工したロツド等の形
状で平面体へ供給され、好ましくは平面体からの
伝熱により加熱され、溶融される。
The solid polymer separated from the polymerization solvent is supplied to a flat body as a fine powder or in the form of a rod or the like obtained by compressing the fine powder, and is preferably heated and melted by heat transfer from the flat body.

該平面体として特に好ましいものは、下記平面
体態様に示されるような多数の細隙を有する平面
体である。その平面体に電流を通じて加熱する方
法(通電加熱法)、高周波電解を印加し誘導加熱
法で加熱する方法、高周波電解を印加し誘電加熱
法で加熱する方法、下記第7平面体態様のように
細管の中に熱媒体を流して加熱する方法(熱流体
加熱法)等が有利に採用される。
Particularly preferred as the planar body is a planar body having a large number of slits as shown in the embodiments of the planar body below. A method of heating the planar body by passing an electric current through it (current heating method), a method of applying high frequency electrolysis and heating by induction heating method, a method of applying high frequency electrolysis and heating by dielectric heating method, as in the seventh planar body embodiment below. A method of heating by flowing a heat medium into a thin tube (thermal fluid heating method) is advantageously employed.

第1平面体態様 例えば0.5mm孔径のオリフイスを1mmのピツチ
間隔で等間隔に穿設した紡糸口金型加熱体。さら
に吐出側表面および/またはその反体面に断面V
字状(巾約0.7mm、深さ約0.7mm)の溝をオリフイ
スの配列に対して約45゜及び約135゜の角度となる
ように交叉させて穿設すると加熱効率が向上する
と共に該重合体溶融液のオリフイスへの流入も容
易となる。
First Planar Body Embodiment A spinneret mold heating body in which orifices with a hole diameter of 0.5 mm are equally spaced at a pitch of 1 mm. Furthermore, a cross section V is formed on the discharge side surface and/or the opposite surface thereof.
Drilling grooves in the shape of a letter (width approx. 0.7 mm, depth approx. 0.7 mm) at angles of approx. 45° and approx. 135° with respect to the orifice arrangement improves heating efficiency and reduces the weight. It also becomes easier for the combined melt to flow into the orifice.

第2平面体態様 例えば直径約0.21mmのステンレス・スチールワ
イヤーで作られた空隙率約31%、1cm2当りの細隙
数約590の平織り金網。
Second planar embodiment For example, a plain woven wire mesh made of stainless steel wire with a diameter of about 0.21 mm and a porosity of about 31% and a number of pores per cm 2 of about 590.

第3平面体態様 例えば直径約0.38mmのステンレス・スチールワ
イヤーで作られた空隙率約46%、1cm2当りの細隙
数約96の平織り金網に対して、その細隙の1つお
きに千鳥状に先細りのピンを、約2mmの高さに突
出させたもの(該ピンは該重合体の固体の供給側
の反対側に位置する)。
Third Planar Body Embodiment For example, for a plain-woven wire mesh made of stainless steel wire with a diameter of about 0.38 mm and a porosity of about 46% and a number of slits of about 96 per 1 cm2, every other slit is staggered. a tapered pin protruding to a height of approximately 2 mm (situated on the opposite side of the polymer solid feed side).

第4平面体態様 多数の微小の金層球が密に充填、配列され、焼
結固定された多孔板状体。
Fourth Planar Body Embodiment A porous plate-like body in which a large number of minute gold spheres are densely packed and arranged and fixed by sintering.

第5平面体態様 例えば直径約0.2mm、空隙率約30%の平織り金
網を多数縦に密に配列、積層したもの。(金網の
積層面と平行な方向に該重合体溶融液を流す。) 第6平面体態様 多数の金層プレートを一定の微小間隔をおいて
縦方向に積層したもの。(該多数のプレートの面
と平行に重合体溶融液を流す。) 第7平面体態様 例えば細管を織組織状に織り、該細管の末端の
片側を入口、反対側を出口として、熱媒体を細管
中に流せるようにしたもの(以下熱流体加熱法と
呼ぶ)。
Fifth Planar Body Embodiment For example, a large number of plain woven wire meshes having a diameter of about 0.2 mm and a porosity of about 30% are vertically and densely arranged and laminated. (The polymer melt is flowed in a direction parallel to the laminated surface of the wire mesh.) Sixth Planar Embodiment A large number of gold layer plates are laminated in the vertical direction at regular minute intervals. (The polymer melt is flowed parallel to the surfaces of the many plates.) Seventh Planar Body Embodiment For example, thin tubes are woven into a weave structure, and one end of the thin tube is used as an inlet and the other side as an outlet, and the heating medium is A method that allows it to flow into a thin tube (hereinafter referred to as the thermal fluid heating method).

通電加熱法及び誘導加熱法に使用可能な材料と
しては白金,金,銀,銅,チタン,パナジウム,
タングステン,イリジウム,モリプデン,パラジ
ウム,鉄,ニツケル,クローム,コバルト,鉛,
亜鉛,ビスマス,スズ,アルミニウム等の金属単
体、ステンレススチール,ニクロム,タンタル、
しんちゆう,りん青銅,ジユラルミン等の合金、
黒鉛,シリコーン,ゲルマニウム,セレン,酸化
スズ,酸化インジウム,酸化鉄,酸化ニツケル等
の主として半導体の性質を呈する無機化合物、ポ
リアセチレン,ポリフエニレン等の半導体の性質
を呈する有機化合物等、10-7〜109Ωcm程度の比
抵抗を有する物質を上記態様の平面体に形成した
たものが有利に使用される。
Materials that can be used in the current heating method and induction heating method include platinum, gold, silver, copper, titanium, panadium,
Tungsten, iridium, molybdenum, palladium, iron, nickel, chrome, cobalt, lead,
Metals such as zinc, bismuth, tin, aluminum, stainless steel, nichrome, tantalum,
Alloys such as silver, phosphor bronze, and duralumin,
Inorganic compounds that primarily exhibit semiconductor properties such as graphite, silicone, germanium, selenium, tin oxide, indium oxide, iron oxide, and nickel oxide; organic compounds that exhibit semiconductor properties such as polyacetylene and polyphenylene; 10 -7 to 10 9 A planar body of the above embodiment made of a material having a specific resistance of approximately Ωcm is advantageously used.

上記態様で説明した平面体はいずれも導電性で
あり本発明の目的にかなつたものである。その
他、ガラス球ビーズ表面を銀でコーテイングして
加圧接触せしめ導電性とした構造、アルミナ、ジ
ルコニア等のセラミツクフアイバーにアルミニウ
ム等の金属を蒸着せしめ、加圧成形し導電性口金
構造、多孔質セラミツク板を黒鉛粒子分散体に浸
漬し沈着せしめた導電性平面板構造等が挙げら
れ、その他可能な構造体を種々改良し、実施する
ことが出来る。
All of the planar bodies described in the above embodiments are conductive and meet the purpose of the present invention. Other examples include a structure in which the surface of a glass sphere bead is coated with silver and brought into contact with pressure to make it conductive; a metal such as aluminum is evaporated onto a ceramic fiber such as alumina or zirconia, and a conductive cap structure is formed by pressure molding; a porous ceramic structure; Examples include a conductive flat plate structure in which a plate is immersed and deposited in a graphite particle dispersion, and other possible structures can be modified and implemented.

かくの如くして得られた導電性平面板は通電加
熱法の場合通常0.1〜数百V/cmの電界、0.1〜数
百Aの電流を印加され0.1〜数千W/cm2のワツト
密度で使用されるが、これらの値は使用目的に応
じて変化し得るものであり、平面板材料の選定及
び平面板構造を設計することにより所望の性能の
ものを得ることが出来る。
In the case of current heating, the conductive flat plate thus obtained is usually applied with an electric field of 0.1 to several hundred V/cm and a current of 0.1 to several hundred A, resulting in a watt density of 0.1 to several thousand W/ cm2. However, these values can vary depending on the purpose of use, and the desired performance can be obtained by selecting the material of the flat plate and designing the flat plate structure.

通電加熱法の導電性平面板は押出し機に取付け
られるが、導電性平面板に所望の電流が流れるよ
うに取付けるべきである。導電性平面板と押出し
機を絶縁してもよいし、押出し機と導電性平面板
を導通せしめて押出し機に流れる電流と導電性平
面板に流れる電流を好適に配分して目的の性能を
得ることも可能である。
The conductive flat plate for the current heating method is attached to the extruder, and should be installed so that the desired current flows through the conductive flat plate. The conductive flat plate and the extruder may be insulated, or the extruder and the conductive flat plate may be electrically connected to appropriately distribute the current flowing to the extruder and the current flowing to the conductive flat plate to achieve the desired performance. It is also possible.

導電性平面板と押出し機を絶縁する場合の絶縁
材は、平面板をどの温度まで昇温するかによつて
きまつている。200℃以下で使用する場合はシリ
コーン樹脂、フエノール樹脂等で充分であり、
300℃以下で使用する場合はフツ素樹脂、芳香族
ポリイミド、芳香族ポリアミド、ポリフエニレン
サルフアイド、ポリアリレート等を使用すること
が出来、1000℃付近までは一般のセラミツク板と
シリカ、アルミナ、ジルコニア等の無機接着剤の
組合せ等が使用出来る。
The insulating material used to insulate the conductive flat plate from the extruder depends on the temperature to which the flat plate is heated. When used at temperatures below 200℃, silicone resin, phenolic resin, etc. are sufficient.
When used at temperatures below 300℃, fluororesin, aromatic polyimide, aromatic polyamide, polyphenylene sulfide, polyarylate, etc. can be used; up to around 1000℃, general ceramic plates, silica, alumina, etc. can be used. A combination of inorganic adhesives such as zirconia can be used.

一方、上記の如き導電性平面板表面を誘導加熱
法で加熱する場合、一般には平面板表面とほぼ平
行にコイルが配置され、平面板表面に対しほぼ垂
直な磁界が印加され、平面板表面上にうず電流が
生成され、ジユール熱が生成する。加熱周波数を
高周波に選べば、表皮効果のためうず電流の浸透
が浅くなり、表面のみの局部加熱が行なえる。成
形する重合体の熱特性の装置の材料と形状に従
い、コイルの配置、磁界の強さ、周波数を適当に
組み合せて最適状態を得ることが出来る。
On the other hand, when heating the surface of a conductive flat plate as described above using the induction heating method, a coil is generally placed approximately parallel to the flat plate surface, and a magnetic field approximately perpendicular to the flat plate surface is applied. Eddy currents are generated and Joule heat is generated. If the heating frequency is selected to be high, the penetration of eddy current becomes shallow due to the skin effect, and local heating of only the surface can be performed. Depending on the thermal properties of the polymer to be molded, the material and shape of the device, the optimum conditions can be obtained by appropriately combining the arrangement of the coils, the strength and frequency of the magnetic field.

誘電加熱法に使用可能な平面板の表面材料は一
般に誘電体損失を生じる物質であり、印加する電
界の周波数、成形する重合体の性質にもよるが、
極性基を有するセラミツクスなどがある。
The surface material of the flat plate that can be used in the dielectric heating method is generally a substance that causes dielectric loss, and it depends on the frequency of the applied electric field and the nature of the polymer to be molded.
Examples include ceramics with polar groups.

このような誘電性平面体表面を誘電加熱法で加
熱する時には通常、該平面体表面と平行または垂
直に電極が配置される。平面体表面に対し平行ま
たは垂直な交番電界が印加され、誘電体損失を生
じて発熱する。
When heating the surface of such a dielectric planar body using a dielectric heating method, electrodes are usually arranged parallel or perpendicular to the surface of the planar body. An alternating electric field parallel or perpendicular to the plane surface is applied, causing dielectric loss and generating heat.

熱流体加熱法に使用される細管は好ましくは熱
伝導度の高いものであり、アルミニウム、ステン
レス銅、鉄、銅、真鋳、シリカ、ニツケル、イン
コネル、タングステン、タンタル、モリブデン、
レニウム、チタン、ニオブ等の材料が使用され
る。熱媒体は使用温度、細管に適合するものが選
ばれるが、例えば水、アンモニア、メタノール、
アセトン、フレオン11、フレオン21、フレオン
113、C6F6、n―ブタン、n―ペンタン、n―ヘ
プタン、ベンゼン、トルエン、ダウサムA、ダウ
サムB、DC200、DC209、パラクロロエチレン、
硫化ヂメチル、モンサントCP―9、ピリジン、
モンサントCP―34、リチウム、ナトリウム、カ
リウム、セシウム、水銀、鉛、インヂウム、錫等
が流体又は気体で使用される。
The thin tubes used in the thermal fluid heating method are preferably of high thermal conductivity, such as aluminum, stainless copper, iron, copper, brass, silica, nickel, Inconel, tungsten, tantalum, molybdenum,
Materials such as rhenium, titanium, and niobium are used. The heat medium is selected to be compatible with the operating temperature and the thin tube, such as water, ammonia, methanol,
Acetone, Freon 11, Freon 21, Freon
113, C6F6 , n-butane, n-pentane, n-heptane, benzene, toluene, Dowsome A, Dowsome B, DC200, DC209, parachloroethylene,
Dimethyl sulfide, Monsanto CP-9, pyridine,
Monsanto CP-34, lithium, sodium, potassium, cesium, mercury, lead, indium, tin, etc. are used in fluid or gas form.

該固体重合体を該平面体に供給する装置として
は、粉体の場合はスクリユーやプランジヤー、ロ
ツドの場合はプランジヤーを使用することが出来
る。該固体重合体は該平面体にある程度(〜550
Kg/cm2)の圧力で押しつけて供給するのが好まし
い。そのことにより伝熱が効率的となるのに加え
て溶融が加圧下で起きて、所謂る加圧脱泡の効果
がもたらせる。該溶融体を吐出口より連続して吐
出する為には脱泡が必要である。しかしこの脱泡
に必要なゾーンの長さは、はるかに短かくてもよ
い。下記実施例1に示すような繊維を製造する場
合、圧力30Kg/cm2、脱泡に必要なゾーンの長さは
5mmであつた。この固体重合体を平面体に供給す
る装置内の雰囲気は窒素ガスなどの不活性ガスで
置換しておいた方がより好ましい。
As a device for supplying the solid polymer to the planar body, a screw or a plunger can be used in the case of a powder, and a plunger can be used in the case of a rod. The solid polymer has a certain extent (~550
It is preferable to press and supply with a pressure of 1 kg/cm 2 ). This not only makes heat transfer more efficient, but also causes melting to occur under pressure, resulting in the so-called pressurized defoaming effect. Defoaming is required in order to continuously discharge the melt from the discharge port. However, the length of the zone required for this defoaming may be much shorter. When producing fibers as shown in Example 1 below, the pressure was 30 kg/cm 2 and the length of the zone required for defoaming was 5 mm. It is more preferable that the atmosphere in the apparatus for supplying the solid polymer to the planar body be replaced with an inert gas such as nitrogen gas.

前記態様にも例示したが該平面体の細隙の幅
は、その材質と重合体間の伝熱効率にも依存す
る、好ましくは50μ〜1.5mm、好ましくは100μ〜1
mmの範囲である。あまりに狭い細隙では高粘度の
重合体は通過し難く、広すぎる細隙は重合体の加
熱不足と加熱むらを生じ好ましくない。
As exemplified in the above embodiment, the width of the slit in the planar body depends on the material and the heat transfer efficiency between the polymers, and is preferably 50μ to 1.5mm, preferably 100μ to 1mm.
It is in the range of mm. If the slit is too narrow, it will be difficult for a high viscosity polymer to pass through, and if the slit is too wide, the polymer will not be heated properly or unevenly, which is undesirable.

該重合体は前述した成形物形成能を失ならない
時間内に該平面体の該細隙群を通過する必要があ
る。該細隙群を通過する時間が長すぎると、成形
物形成能が失なわれ、短かすぎると該重合体を適
正な温度まで加熱出来ないので最適な通過時間範
囲が存在する。この範囲は該重合体の組成と該平
面体の温度等に依存するのでいちがいには指定出
来ないが、該重合体がポリメタフエニレンイソフ
タルアミドで、該平面体が第2平面体態様と同じ
金網であり空だきをした時の温度が600℃の場合、
0.5秒〜15秒である。
It is necessary for the polymer to pass through the slits of the planar body within a period of time without losing the ability to form a molded article. If the time for passing through the slits is too long, the ability to form a molded article will be lost, and if the time is too short, the polymer cannot be heated to an appropriate temperature, so there is an optimum range of passing time. This range cannot be specified because it depends on the composition of the polymer and the temperature of the planar body, etc., but if the polymer is polymetaphenylene isophthalamide and the planar body is the same wire mesh as the second planar body embodiment. If the temperature when air-roasted is 600℃,
It is 0.5 seconds to 15 seconds.

該重合体溶融体はさらに成形物形成能を失なわ
ない時間内に吐出口も通過せねばならない。該吐
出口は該平面体自身でもよいし、該平面体に別の
吐出口を取り付けてもよい。繊維を製造する場合
は該平面体自身を吐出口とすることが出来る。
The polymer melt must also pass through the discharge port within a period of time without losing its ability to form moldings. The discharge port may be the planar body itself, or another discharge port may be attached to the planar body. When manufacturing fibers, the planar body itself can be used as a discharge port.

該吐出口より押し出された重合体は、冷却気体
あるいは冷却液体等により固化される。連続成形
物を製造する場合、固化と同時に巻取つてもよ
い。
The polymer extruded from the discharge port is solidified by cooling gas or cooling liquid. When producing a continuous molded product, it may be rolled up simultaneously with solidification.

以下実施例により本発明を具体例で説明する
が、これらは本発明の範囲を限定するものではな
い。
EXAMPLES The present invention will be explained below using specific examples, but these are not intended to limit the scope of the present invention.

実施例 1 テトラヒドロフラン/水中で重合して得たN―
メチルピロリドン中で測定した固有粘度(I.V.;
inherent viscosity)が1.2であるポリメタフエニ
レンイソフタルアミドの平均粒子径が500μの重
合体粉末を図1の如きプランジヤー径が1cmのプ
ランジヤー型押出し機に充填し、約15分間340℃
のバレル2に放置して、平面板5として30メツシ
ユの平織金網を直径約1cm露出して使用し、約
2W/cm2の電流を流しながら約50Kg/cm2の圧力を
ランジヤー1で加えつつ該重合体を該平面板の細
隙間で溶融流動せしめ吐出し、同時に約1m/秒
の速度の冷却風を冷却風吹付口8より該平面板の
吐出側にむかつて吹きつけ、該吐出物を0.3m/
分で引き取つて繊維径が約200mμの繊維からな
る繊維束を得た。この繊維束の強度、伸度はそれ
ぞれ1.0g/de、50%であつた。ついでこの繊維
束を100℃の沸騰水中で約2倍延伸し、引き続き
310℃の熱板上で約1.5倍延伸して得た糸の強度、
伸度はそれぞれ2.5g/de、12%であつた。
Example 1 N- obtained by polymerization in tetrahydrofuran/water
Intrinsic viscosity (IV; determined in methylpyrrolidone)
A polymer powder of polymetaphenylene isophthalamide with an average particle size of 500μ and having an inherent viscosity of 1.2 was charged into a plunger-type extruder with a plunger diameter of 1cm as shown in Figure 1, and heated at 340°C for about 15 minutes.
A 30-mesh plain-woven wire mesh is used as the flat plate 5 with a diameter of approximately 1 cm exposed, and approximately
While applying a pressure of about 50 kg/cm 2 with the langeer 1 while applying a current of 2 W/cm 2 , the polymer was melted and flowed through the narrow gap of the flat plate and discharged, and at the same time cooling air at a speed of about 1 m/sec was applied. Cooling air is blown from the blowing port 8 toward the discharge side of the flat plate, and the discharged material is 0.3 m/
A fiber bundle consisting of fibers with a fiber diameter of about 200 mμ was obtained by pulling the fibers in minutes. The strength and elongation of this fiber bundle were 1.0 g/de and 50%, respectively. Next, this fiber bundle was stretched approximately twice in boiling water at 100°C, and then
The strength of the yarn obtained by stretching it approximately 1.5 times on a hot plate at 310℃,
The elongation was 2.5 g/de and 12%, respectively.

実施例 2 実施例1と同様の方法で得たI.V.が1.6であるポ
リメタフエニレンテレフタルアミドの平均粒子径
が650μの重合体粉末をプランジヤーを2基そな
えた連続式押し出し機(特公昭48―19887公報図
2と同様な装置)に連続供給し、実施例1と同様
の平面板を3W/cm2の条件で加熱して、連続して
繊維径が約250mμの繊維からなる繊維束を得た。
得られた繊維は可撓性と強伸度に優れたものであ
つた。
Example 2 A polymer powder of polymetaphenylene terephthalamide with an average particle diameter of 650 μ and an IV of 1.6 obtained in the same manner as in Example 1 was processed using a continuous extruder equipped with two plungers (Special Publication Publication 1973- 19887 Publication Figure 2) and heated the same flat plate as in Example 1 under the condition of 3 W/cm 2 to continuously obtain a fiber bundle consisting of fibers with a fiber diameter of approximately 250 mμ. Ta.
The obtained fibers had excellent flexibility, strength and elongation.

実施例 3 N―メチルピロリドン中で溶液重合したI.V.が
2.0であるポリ3,4′―ジフエニルエーテルテレ
フタルアミドの溶液から、水を沈殿剤として、プ
ロペラで撹拌しつつ平均粒子径が330mμである
重合体粒子を得た。ついで該重合体粒子を300℃
で圧縮成形し平均径5mm、長さ5mmの円筒型ペレ
ツトを得た。該ペレツトをプランジヤー式押出し
機のシリンダーに充填し330℃に予備加熱した後、
プランジヤーにより約60Kg/cm2に加圧しつつ約
1.5W/cm2の電流を流してある本文の第1平面体
態様の平面体に供給し、融解しつつ該平面体の細
隙を通して押出し、冷却風の吹付を行ない繊維に
分繊せしめ巻き取つた後400℃で延伸した。得ら
れた糸の強度、伸度、ヤング率はそれぞれ7g/
de,20%,200g/deであつた。
Example 3 IV solution polymerized in N-methylpyrrolidone
Polymer particles having an average particle diameter of 330 mμ were obtained from a solution of poly 3,4'-diphenyl ether terephthalamide having an average particle diameter of 2.0 using water as a precipitant and stirring with a propeller. The polymer particles were then heated to 300°C.
Compression molding was performed to obtain cylindrical pellets with an average diameter of 5 mm and a length of 5 mm. After filling the pellets into the cylinder of a plunger extruder and preheating to 330°C,
Approximately 60Kg/cm 2 is applied using a plunger.
A current of 1.5 W/cm 2 is applied to the flat body of the first flat body embodiment described in the main text, and while melting, it is extruded through the slits of the flat body, and cooling air is blown to separate the fibers and wind them up. After stretching, it was stretched at 400°C. The strength, elongation, and Young's modulus of the obtained yarn were each 7 g/
de, 20%, 200g/de.

実施例 4 使用する重合体粉末の平面板への供給断面をス
リツト状にする為、片側(A)の断面が10mmφ、反対
側(B)の断面が幅1mm×長さ9mmのスリツトである
連続してなめらかに管路が狭化された長さ10mmの
粉体供給用管路を実施例1のプランジヤー型押し
出し機の下部に(A)側が連結するようにとりつけ、
(B)側に実施例1と同様の30メツシユの平織金網を
とりつけ、さらにその下部に、幅1mm×長さ9mm
×深さ3mmのスリツトを、上記粉体供給用管路の
スリツトの向きと合致するようにとりつけて、実
施例1と同様にポリメタフエニレンイソフタルア
ミドを押し出し、冷却してフイルムを得た。得ら
れたフイルムを縦、横にそれぞれ約1.5倍延伸し
たものは実用性のある物性を有していた。
Example 4 In order to supply the polymer powder used to the plane plate in a slit-like cross-section, the cross-section on one side (A) was 10 mmφ, and the cross-section on the other side (B) was a continuous slit with a width of 1 mm and a length of 9 mm. Attach a 10 mm long powder supply conduit with a smoothly narrowed conduit to the bottom of the plunger type extruder of Example 1 so that the (A) side is connected.
Attach a 30-mesh plain weave wire mesh similar to that in Example 1 to the (B) side, and add a 1 mm width x 9 mm length to the bottom of the wire mesh.
A slit with a depth of 3 mm was attached so as to match the direction of the slit in the powder supply conduit, and polymetaphenylene isophthalamide was extruded in the same manner as in Example 1 and cooled to obtain a film. The obtained film, which was stretched by about 1.5 times both lengthwise and widthwise, had practical properties.

【図面の簡単な説明】[Brief explanation of the drawing]

添付図面は本発明の装置の1例を示すものであ
り、プランジヤーで加圧して繊維を製造する装置
である。 1はプランジヤー、2はバレル、3は重合体固
体粉末、4は補助ヒーター、5は多数の細隙を有
する平面板、6は止め金、7は絶縁剤、8は冷却
風吹出口、9は電源である。
The attached drawings show one example of the apparatus of the present invention, which is an apparatus for producing fibers by applying pressure with a plunger. 1 is a plunger, 2 is a barrel, 3 is a solid polymer powder, 4 is an auxiliary heater, 5 is a flat plate with many slits, 6 is a stopper, 7 is an insulator, 8 is a cooling air outlet, 9 is a power source It is.

Claims (1)

【特許請求の範囲】 1 下記式 及び [但し式中、(1)及び(2)はこれらが存在する場合に
はこれらは実質的に当モル量で存在し、基R、
R′及びR″は同一もしくは異なる2価の基を示し、
R、R′及びR″の合計の少なくとも70モル%は芳
香族基である。] からなる群より選択された少なくとも一種の反復
単位から実質的になる固体の芳香族ポリアミド
を、瞬間的に加熱溶融せしめ該芳香族ポリアミド
が実質的に成形物形成能を失なわない時間内に吐
出口を通して押出し、冷却固化しながら成形する
ことを特徴とする芳香族ポリアミド成形物の製造
法。 2 下記式 及び [但し式中、(1)及び(2)はこれらが存在する場合に
はこれらは実質的に当モル量で存在し、基R、
R′及びR″は同一もしくは異なる2価の基を示し、
R、R′及びR″の合計の少なくとも70モル%は芳
香族基である。] からなる群より選択された少なくとも一種の反復
単位から自質的になる固体の芳香族ポリアミド
を、多数の細〓を有する伝熱可能な平面体に供給
し、該平面体において芳香族ポリアミドを加熱溶
融し、芳香族ポリアミドが実質的に成形物形成能
を失わない時間内に吐出口を通して押出し、冷却
固化しながら成形することを特徴とする芳香族ポ
リアミド成形物の製造法。
[Claims] 1. The following formula as well as [In the formula, (1) and (2), if present, are present in substantially equimolar amounts, and the groups R,
R′ and R″ represent the same or different divalent groups,
At least 70 mol% of the sum of R, R' and R'' are aromatic groups.] A solid aromatic polyamide consisting essentially of at least one repeating unit selected from the group consisting of A method for producing an aromatic polyamide molded product, characterized in that the aromatic polyamide is extruded through a discharge port within a period of time during which the aromatic polyamide does not substantially lose its ability to form a molded product, and is molded while being cooled and solidified. 2 The following formula as well as [In the formula, (1) and (2), if present, are present in substantially equimolar amounts, and the groups R,
R′ and R″ represent the same or different divalent groups,
At least 70 mole percent of the sum of R, R' and R'' are aromatic groups.] A solid aromatic polyamide consisting essentially of at least one repeating unit selected from the group consisting of: The aromatic polyamide is heated and melted in the planar body, extruded through the discharge port within a time period in which the aromatic polyamide does not substantially lose its ability to form molded articles, and cooled and solidified. A method for producing an aromatic polyamide molded product, which is characterized by molding the product.
JP56070238A 1980-08-18 1981-05-12 Production of aromatic polyamide molded article Granted JPS57192436A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP56070238A JPS57192436A (en) 1981-05-12 1981-05-12 Production of aromatic polyamide molded article
EP81303726A EP0047091B1 (en) 1980-08-18 1981-08-14 Process and molding apparatus for producing a fibrous assembly by melt extrusion
DE8181303726T DE3163504D1 (en) 1980-08-18 1981-08-14 Process and molding apparatus for producing a fibrous assembly by melt extrusion
DE8383200570T DE3176590D1 (en) 1980-08-18 1981-08-14 Fibers and fibrous assembly of wholly aromatic polyamide
EP83200570A EP0089732B1 (en) 1980-08-18 1981-08-14 Fibers and fibrous assembly of wholly aromatic polyamide
US06/293,269 US4399084A (en) 1980-08-18 1981-08-17 Process for producing a fibrous assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56070238A JPS57192436A (en) 1981-05-12 1981-05-12 Production of aromatic polyamide molded article

Publications (2)

Publication Number Publication Date
JPS57192436A JPS57192436A (en) 1982-11-26
JPH0249212B2 true JPH0249212B2 (en) 1990-10-29

Family

ID=13425780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56070238A Granted JPS57192436A (en) 1980-08-18 1981-05-12 Production of aromatic polyamide molded article

Country Status (1)

Country Link
JP (1) JPS57192436A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59144607A (en) * 1983-01-28 1984-08-18 Teijin Ltd Formation of fiber bundle and equipment therefor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54139964A (en) * 1978-04-24 1979-10-30 Teijin Ltd Production of formed article of aromatic polyamide

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54139964A (en) * 1978-04-24 1979-10-30 Teijin Ltd Production of formed article of aromatic polyamide

Also Published As

Publication number Publication date
JPS57192436A (en) 1982-11-26

Similar Documents

Publication Publication Date Title
EP0137449B1 (en) Method for producing thermoplastic resin sheet or filler-containing resin sheet
GB2036636A (en) Moulding of non-melt fabricatable resins by ram extrusion
Ke et al. Differential thermal analysis of high polymers. III. Polyamides
CN102144056A (en) Method of manufacturing composite conducting fibres, fibres obtained by the method, and use of such fibres
JP2012500142A5 (en)
GB2139143A (en) A process for the manufacture of porous ptfe articles and articles made by this process
RU2149164C1 (en) Method of preparing molded polytetrafluoroethylene with lubricant, tape squeeze and dehydration apparatus, and method for dehydration of wet solid materials
JP2012531502A (en) Polyarylene ether ketone composition for induction welding
Sun et al. A reliable and highly conductive carbon nanotube/thermoplastic polyurethane composite with an enhanced segregated structure for electrically driven heater applications
US5928589A (en) Processing for producing shaped wholly aromatic polyamide resin composition article and shaped article produced thereby
EP0089732A2 (en) Fibers and fibrous assembly of wholly aromatic polyamide
KR20070068770A (en) Manufacturing method of carbon fiber for sheet heater
JPH0259174B2 (en)
Bhattacharyya et al. Development of polyurethane based conducting nanocomposite fibers via twin screw extrusion
JPH0249212B2 (en)
WO2005026418A1 (en) Wholly aromatic polyamide fiber and process for producing the same
Saiter et al. Characterisation of structural relaxation phenomena in polymeric materials from thermal analysis investigations
EP0086112B1 (en) Process and apparatus for producing fibrous assembly
JPH08508214A (en) Wet deposited sheet material and composites thereof
JPH0146606B2 (en)
JPH0623259B2 (en) Polyary lentithioether moldings and applications
JPH03124731A (en) Fiber-reinforced poly(biphenylene sulfide) composite material and its manufacture
JPS58109618A (en) Aromatic polyamide fiber, its aggregate and preparation thereof
Lučić Blagojević et al. Influence of carbon nanotubes on polyamide properties
JP3666210B2 (en) Method for producing polytetrafluoroethylene granulated powder