WO2005026418A1 - Wholly aromatic polyamide fiber and process for producing the same - Google Patents

Wholly aromatic polyamide fiber and process for producing the same Download PDF

Info

Publication number
WO2005026418A1
WO2005026418A1 PCT/JP2004/013693 JP2004013693W WO2005026418A1 WO 2005026418 A1 WO2005026418 A1 WO 2005026418A1 JP 2004013693 W JP2004013693 W JP 2004013693W WO 2005026418 A1 WO2005026418 A1 WO 2005026418A1
Authority
WO
WIPO (PCT)
Prior art keywords
aromatic polyamide
wholly aromatic
clay mineral
fiber
layered clay
Prior art date
Application number
PCT/JP2004/013693
Other languages
French (fr)
Japanese (ja)
Inventor
Susumu Honda
Hideaki Nitta
Shunichi Matsumura
Yasushige Yagura
Hiroshi Fujita
Sadahito Hashidate
Original Assignee
Teijin Limited
Teijin Techno Products Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Limited, Teijin Techno Products Limited filed Critical Teijin Limited
Priority to EP04773312A priority Critical patent/EP1666648A4/en
Priority to US10/571,270 priority patent/US20070031663A1/en
Priority to JP2005513982A priority patent/JP4183710B2/en
Priority to CA002539124A priority patent/CA2539124A1/en
Publication of WO2005026418A1 publication Critical patent/WO2005026418A1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/88Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds
    • D01F6/90Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds of polyamides
    • D01F6/905Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds of polyamides of aromatic polyamides
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/02Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyamides
    • D10B2331/021Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyamides aromatic polyamides, e.g. aramides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2927Rod, strand, filament or fiber including structurally defined particulate matter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2973Particular cross section

Definitions

  • the present invention relates to a wholly aromatic polyamide fiber containing a layered clay mineral and a method for producing the same. More specifically, the present invention relates to a wholly aromatic polyamide fiber containing a layered clay mineral and having improved mechanical properties, particularly toughness, and a method for producing the same.
  • the strength of the composite material is greatly affected by the interfacial adhesion between the filler and the polymer, in addition to the strength of the polymer used as the matrix of the composite material and the filler itself used as the filler. It is known that poor or poor polymer wettability with fillers affects not only the difficulty of manufacturing but also the strength of the product. For these reasons, fillers or polymers that exhibit high strength and high elasticity are used as materials. However, it is not always possible to obtain a composite material with excellent strength.
  • filler-containing composite materials have a drawback of low elongation.
  • the toughness factor (TF) is known as one of the parameters for evaluating industrial aramide fibers.
  • the winding of the fiber around the drawing roll in the drawing process is reduced, and as a result, the single yarn breakage in the obtained yarn is reduced, and the stability of the drawing process is improved, and the obtained fiber is It is known that the quality of yarn is improved.
  • Japanese Patent Application Laid-Open No. 11-236501 discloses an aqueous solution containing a diamine monomer and a solution of an acylated dicarboxylic acid monomer in a water-soluble organic solvent to carry out polycondensation of the monomer.
  • a method for obtaining a wholly aromatic polyamide composite material useful as a high heat-resistant material by coexisting a clay mineral in an aqueous solution or an organic solvent solution has been disclosed in JP-A-11-255893.
  • H10-284,1992 discloses a method for efficiently obtaining a complex by solution-polymerizing a wholly aromatic polyamide in a solution of a layered clay mineral in a solvent capable of completely dissolving the same.
  • No. 11-256034 discloses that a layered clay mineral is highly contained in a wholly aromatic polyamide by removing the organic solvent from a solution comprising a wholly aromatic polyamide, a layered clay mineral and an organic solvent. Fine Is dispersed, a method of obtaining a wholly aromatic poly Ami de complexes with improved mechanical properties have been proposed.
  • An object of the present invention is to provide a wholly aromatic polyamide fiber having high mechanical properties, particularly a high toughness factor, and capable of spinning with good process stability in the spinning process, and industrially producing the same.
  • the idea is to provide a way.
  • a spinning solution containing a wholly aromatic polyamide and a layered clay mineral is wet-spun and drawn, and the drawing is performed.
  • Oriented wholly aromatic polyamide fibers have been found to have excellent mechanical properties, especially toughness factors. Even more surprising is that rather than dispersing the individual layers of the layered clay mineral in the fibers quite evenly, it separates the layered clay mineral into the aromatic polyamide polymer matrix that composes the fibers.
  • the present inventors have found that by scatteredly distributing a plurality of regions having relatively high distribution densities, it is possible to further increase the effect of improving the mechanical properties of fibers, particularly toughness factors, by the layered clay mineral particles. Was done.
  • the stretch-orientated wholly aromatic polyamide fiber of the present invention is obtained by mixing a matrix composed of a wholly aromatic polyamide polymer with 0.05 to 20 parts by mass based on 100 parts by mass of the matrix. It is characterized by including a resin composition containing layered clay mineral particles dispersed and distributed in a trix.
  • the wholly aromatic polyamide fiber of the present invention it is preferable that a plurality of regions in which the distribution density of the layered clay mineral particles is relatively high are scattered in the wholly aromatic polyamide matrix.
  • the wholly aromatic polyamide fiber of the present invention is cut along the fiber axis, and the longitudinal section is observed with an electron microscope at a magnification of 100,000.
  • the total cross-sectional area S 1 of a plurality of regions in which the state of the fiber cross-section changes due to the influence of the layered clay mineral particles described above is measured with respect to the observed cross-sectional area S 2 of ⁇ m 2, the following equation (1) is obtained.
  • the degree of dispersion Y of the layered clay mineral particles in the fiber defined by:
  • Y (%) (S1 / S2) X100 (1) is preferably in the range of 0.1 to 40.
  • the layered clay mineral may be made of hectrite, savonite, stevensite, paiderite, or It preferably contains at least one member selected from the group consisting of ammonium sulphonate and swellable mica.
  • the layered clay mineral particles have been subjected to a treatment with an inter-rate agent.
  • the layered clay mineral particles preferably have an average layer thickness of 10 to 500 nm.
  • the degree of orientation A of the layered clay mineral particles defined by the following formula (2):
  • a (%) [(180-w) Z180] X100 (2) (where, in the formula (2), in the X-ray analysis of the layered clay mineral particles, the reflection peak of the (001) plane of the layered clay mineral particles Represents the half-width of the intensity distribution measured along the Depay ring
  • the tensile strength (T) of the wholly aromatic polyamide fiber is the same as that of the wholly aromatic polyamide fiber except that it does not contain the layered clay mineral particles.
  • the ratio (T / To) to the tensile strength (To) of the comparative wholly aromatic polyamide fiber which is exactly the same as that of the fiber is preferably 1.1 or more.
  • the elongation rate ( ⁇ ) of the wholly aromatic polyamide fiber is the same as that of the wholly aromatic polyamide fiber except that it does not contain the layered clay mineral particles.
  • the ratio ⁇ / ⁇ to the elongation ( ⁇ ) of the comparative wholly aromatic polyamide fiber which is exactly the same as the amide fiber is preferably 1.1 or more.
  • the toughness factor (TF) of the wholly aromatic polyamide defined by the following formula (3):
  • T ′ represents a numerical value of the tensile strength in g / l.ldt ex unit of the wholly aromatic polyamide fiber
  • E ′ is a unit of% of the wholly aromatic polyamide fiber. (Representing the numerical value of the elongation percentage) is preferably 30 or more.
  • the other is the wholly aromatic polyamide.
  • the ratio TF / TFo to the toughness factor (TFo) of the comparative wholly aromatic polyamide fiber, which is all the same as the fiber, is preferably 1.1 or more.
  • the layered clay mineral particles have an organic ion between the layers.
  • the wholly aromatic polyamide is preferably selected from meta-based wholly aromatic polyamides.
  • the method for producing a stretch-orientated wholly aromatic polyamide fiber of the present invention comprises: a solvent, a wholly aromatic polyamide, and 0.05 to 20 parts by mass based on 100 parts by mass of the wholly aromatic polyamide.
  • the spinning dope containing the layered clay mineral particles is extruded into a fibrous form in an aqueous coagulation bath through a spinneret and spun out.
  • the extruded fibrous stock solution is coagulated, and the formed undrawn fibers are wet-wet atmosphere. Characterized in that the drawn fiber obtained is dried and heat-treated.
  • the spinning dope may include a part of the solvent, a part of the wholly aromatic polyamide, and 100 parts by mass of the wholly aromatic polyamide part. Is prepared by mixing a solution A consisting of 30 to 300 parts by mass of layered clay mineral particles, and a solution B consisting of the remainder of the solvent and the remainder of the wholly aromatic polyamide; 1) and (2):
  • the viscosity of solution A should be 4 to 20 times the viscosity of solution B at a shear rate of 0.1 sec- 1
  • the concentration of the wholly aromatic polyamide in the spinning dope may be 0 ::! It is preferably from 30 to 30% by mass.
  • a stretching ratio of the unstretched fiber in the wet atmosphere is in a range of 0.3 to 0.6 times the maximum stretching ratio. .
  • the solvent is preferably selected from amide-based polar solvents.
  • the wholly aromatic polyamide is selected from meta-based wholly aromatic polyamides.
  • FIG. 1 is an electron micrograph of a cross section of an example of the wholly aromatic polyamide fiber of the present invention.
  • the wholly aromatic polyamide used in the present invention is one in which the aromatic rings constituting the main skeleton of the repeating unit are connected to each other by an amide bond, and particularly a meta-based wholly aromatic polyamide. It is preferable to select from the list.
  • Such a wholly aromatic polyamide is generally produced by subjecting an aromatic dicarboxylate dihalide and an aromatic diamine to low-temperature solution polymerization or interfacial polymerization in a solution thereof.
  • the diamine components used in the present invention include, for example, paraphenylene diamine, 2-chloroparaphenylene diamine, 2,5-dichloroparaphenylene diamine, 2,6-dichloroparaphenylene diamine, m-phenylene diamine.
  • Diamine, 3,4 'diamino diphenyl ether, 4, 4, diamino diphenyl ether, 4, 4,-diamino diphenyl methane, 4, 4,-diamino diphenyl sulfone, 3, 3 'It is preferable to include one or more kinds such as diaminodiphenylsulfone, but it is not limited thereto.
  • these diamine compounds it is preferable to use p-phenylenediamine, m-phenylenediamine and 3,4, diamminodiphenyl ether.
  • the aromatic dicarboxylic acid dihalide component used in the present invention includes, for example, dichloride isophthalate, dichloride terephthalate, dichloride 2-chloroterephthalenolate, and 2,5-dichloride.
  • it contains at least one of dichloride / reterephthalic acid, 2,6-dichloroterephthalic acid dichloride, and 2,6-naphthalenediphthalic acid dichloride. It is not limited to.
  • polymethafylene disophthalamide copolyno ⁇ 0 raphenylene ⁇ 3,4, -dioxydiphenyreneterephthalamide, and in particular, polymethafene diamide. It is preferable to use renysophthalamide.
  • Solvents used for preparing a spinning dope by polymerizing a wholly aromatic polyamide include, for example, N, N-dimethylformamide, N, N-dimethylacetamide, and N-methyl-12-pyrrolidine.
  • Don and N-methylcap Organic polar amide solvents such as loractam; water-soluble ether compounds such as tetrahydrofuran and dioxane; water-soluble alcohol compounds such as methanol, ethanol and ethylene glycol; water-soluble such as acetone and methylethyl ketone A ketone compound and at least one water-soluble nitrile compound such as acetonitrile and propionitrile are used, but not limited thereto.
  • the solvent may be a mixture of two or more of the above compounds.
  • the solvent used in the method of the present invention is preferably dehydrated.
  • an appropriate amount of a conventionally known inorganic salt may be added to the polymerization mixture before, during, or at the end of the polymerization to increase the solubility.
  • inorganic salts include lithium chloride and calcium chloride.
  • the molar ratio of these diamine components to the acid halide component is 0.90 to 1.10. It is preferably controlled, more preferably 0.95 to 1.05.
  • the molecular end of the wholly aromatic polyamide used in the present invention may be blocked.
  • examples of the end-capping agent include phthalic acid chloride and its substituted product, and aniline and its substituted product as the amine component.
  • a basic inorganic compound for example, sodium hydroxide, potassium hydroxide, calcium hydroxide, calcium oxide, or the like is added to the reaction mixture and added. Neutralize.
  • the reaction conditions for producing the wholly aromatic polyamide of the present invention are not particularly limited.
  • the reaction between acid halide and diamin generally proceeds rapidly, and the reaction temperature is usually -25 to 100 ° C, preferably -10 to 80 ° C.
  • the wholly aromatic polyamide polymer thus obtained can be poured into a non-solvent such as alcohol or water to cause precipitation, and can be taken out as pulp-like flakes.
  • This polymer flake can be dissolved again in a solvent and the solution can be subjected to wet spinning, but the solution obtained by the polymerization reaction can be used as it is as a spinning solution.
  • the solvent used for the re-dissolution is not particularly limited as long as it dissolves the wholly aromatic polyamide, but it is preferable to use the solvent used for the polymerization of the above-mentioned wholly aromatic polyamide.
  • the layered clay mineral used in the present invention has a cation exchange ability, and further exhibits a property of swelling by taking in water between layers, and is preferably a smectite-type clay mineral and a swelling clay mineral.
  • Mica is used.
  • Specific examples of layered clay minerals include hematite, savonite, stevensite, paiderite, and montmorillonite as smectite-type clay minerals. And substituted compounds, derivatives or mixtures thereof.
  • examples of the swellable mica include synthetic swellable mica which is chemically synthesized and has Li and Na ions between layers, or a substitute, derivative or mixture thereof.
  • the present invention it is preferable to use those obtained by treating the above-mentioned layered clay mineral particles with a surface treating agent (intercalating agent) containing an organic ion.
  • a surface treating agent intercalating agent
  • organic anion By treating with the organic anion, the dispersibility of the obtained layered clay mineral particles in the wholly aromatic polyamide and matrix is improved, and the filament formation property and the toughness factor of the obtained fiber are improved. Can be improved.
  • the organic ion used for the surface treatment is represented by the following formula (1)
  • R x , R 2 , R 3 and R 4 are each independently an alkyl group having 1 to 30 carbon atoms or a hydroxypolyoxyethylene group represented by 1 (CH 2 CH 20 ) n H.)
  • Preferred quaternary ammonium compounds include, for example, dodecyltrimethylammonium chloride, tetradecyltrimethylammonium mouthride, hexadecinole trimethylammonium chloride.
  • Ride octadecyl trimethylammonium chloride, oreinoletri methinolemonium mouth lid, didodecyl / ledimethylammonium chloride, lide, ditetradecyldimethylammonium chloride mouth, lide, dihexadecyldimethylammonium chloride Demcrolide, Gio Ctadesino Resin Mesminole Ammonium Enclom Ride, Goreino Resime Mesinole Ammonium Mouth Ride, Dodecyl Jetinole Penzinole Ammonium Chloride, Tetradecyl Dimethylbenzyl Ammonium chloride Hexadecyldimethylbenzylammonium chloride, Ota tadecinores
  • the method of treating layered clay mineral particles with organic onion is as follows.
  • layered clay mineral particles and 1 to 10 parts by weight of organic anion are mixed in water, and then the mixture is dried.
  • the amount of water used is preferably 1 to L00 times that of the layered clay mineral.
  • the mixing temperature is preferably 30 to 70 ° C., and the mixing time is preferably 0.5 to 2 hours.
  • Rights Hitoshiso thickness of the layered clay mineral particles in the wholly aromatic polyamide de fibers of the present invention is preferably not more than 500n m, in particular less der Rukoto more preferably 200 nm.
  • the average layer thickness of the layered clay mineral referred to here is measured for all layered clay mineral particles observed in a cross-sectional area of 25 ⁇ m 2 by electron microscopic measurement (magnification 100,000 times) of the longitudinal section of the fiber. This is the average value of the layer thickness.
  • Average layer thickness of layered clay mineral is 500nm If it is larger than this, it may be difficult to ensure the molding stability of the obtained resin composition during spinning.
  • the average layer thickness of the layered clay mineral particles is preferably 10 nm or more, and more preferably 12 nm or more.
  • the vertical and horizontal dimensions of the layered clay mineral particles used in the present invention are preferably (50 to 1000 ⁇ ) X (50 to: l OOOnm), and more preferably (100 to 500 nm) X ( 100 to 500 nm).
  • the wholly aromatic poly Ami de fibers disconnects along the fiber axis, the longitudinal cross section, observed with a magnification of 100,000 Ri by the electron microscope, 25 mu m 2 observations sectional area S 2
  • the layered clay mineral particles defined by the following formula (1) are obtained.
  • Y (%) (S1 / S2) X 100 (1) is 0 :! It is preferably within a range of from 40 to 40, and more preferably from 0.5 to 30. If the dispersity Y is less than 0.1, the improvement in the toughness factor may be small. If the dispersity Y exceeds 40, it is prepared from wholly aromatic polyamide, layered clay mineral particles and a solvent. The transparency of the spinning dope may be low, and the formability may also be low.
  • the change in the fiber state observed in the cross section of the fiber indicates that the layered clay mineral particles distributed in the cross section area have a higher distribution density than the other areas. This is due to In the present invention, as described above, the wholly aromatic poly It was found for the first time that the toughness factor of the resulting fiber could be increased by interspersing the relatively high density of the layered clay mineral particles in the amorphous volma matrix. In order to moderately disperse the relatively high density distribution of the layered clay mineral particles, the dispersion degree Y of the layered clay mineral should be controlled within the range of 0 :! to 40. This can be achieved by:
  • FIG. 1 shows a cross section of an example of a wholly aromatic polyamide drawn fiber of the present invention.
  • Fig. 1 it can be seen that multiple areas with a high density of layered clay minerals are scattered and distributed in the form of short fibers in the fiber cross section.
  • the short fibrous region extends along the fiber axis direction.
  • a filament other than the layered clay mineral can be used together with the wholly aromatic polyamide polymer as long as the physical properties and the process stability during the spinning are not impaired.
  • the filler used include non-fibrous fillers such as fibrous or plate-like, scaly, granular, irregular, and crushed products, but non-fibrous ones are particularly preferable. Specific examples are potassium titanate whiskers, potassium titanate whiskers, aluminum borate whiskers, and silicon nitride whiskers.
  • Scar my strength, talc, kaolin, silica, calcium carbonate, glass beads, glass flakes, glass microvanolane, creed, molybdenum disulfide, wallastenite, titanium oxide, zinc oxide, calcium polyphosphate, graph Examples include iron, metal powder, metal flake, metal ribbon, metal oxide, carbon powder, graphite, carbon flake, and flaky carbon.
  • the single-filament fineness of the wholly aromatic polyamide fiber is large, glass fiber, PAN-based or pitch-based carbon fiber, stainless steel fiber, metal fiber such as aluminum fiber or brass fiber, and wholly aromatic polyamide Organic fibers such as fibers, gypsum fibers, ceramic fibers, asbestos fibers, zirconia fibers, alumina fibers, silicon fibers, titanium oxide fibers, silicon carbide fibers, rock wool, and metal ribbons can also be used. Two or more of these fillers may be used in combination.
  • the above-mentioned filler may be used by treating its surface with a known coupling agent (for example, a silane coupling agent, a titanate coupling agent, etc.) or other surface treatment agents.
  • a known coupling agent for example, a silane coupling agent, a titanate coupling agent, etc.
  • the layered clay mineral is contained in an amount of 0.05 to 20 parts by weight, preferably 0.:! It must be contained in an amount of from 10 to 10 parts by weight, more preferably from 0.5 to 5 parts by weight.
  • the content of the layered clay mineral is less than 0.05 part by weight with respect to 100 parts by weight of the wholly aromatic polyamide, no improvement in the toughness factor is observed. It is not preferable because the spinning solution comprising the clay mineral, the wholly aromatic polyamide and the solvent has low transparency and poor formability.
  • the degree of orientation A of the layered clay mineral in the fiber is 50% or more, preferably 70% or more, and more preferably 80% or more, the mechanical properties (toughness factor) and thermal dimensional stability And other physical properties are improved. Good.
  • the degree of orientation A of the layered clay mineral particles can be obtained from the following formula based on the intensity distribution measured along the Depay ring of the 001 surface reflection peak of the layered clay mineral particles measured by X-ray analysis. .
  • w represents the half width (degree) of the intensity distribution measured along the Depay ring of the reflection peak.
  • the wholly aromatic polyamide fiber of the present invention does not contain a layered clay mineral, the other is completely the same as the comparative wholly aromatic polyamide fiber, which is exactly the same as the above-mentioned wholly aromatic polyamide fiber.
  • the tensile strength (T) is improved by 10% or more
  • the elongation (E) is preferably improved by 10% or more.
  • the toughness factor (TF) is improved by 10% or more, particularly 20% or more, and it is preferable that the toughness factor (TF) has 30 or more.
  • the toughness factor (TF) is defined as the square root of the tensile strength ( ⁇ ') measured in grams / denier and the elongation ()) expressed in%. Product, that is, ⁇ 'X ( ⁇ ) 1/2 .
  • the toughness factor is increased to 30 or more in this manner, even if the draw ratio is increased to improve the strength of the fiber, breakage of single yarn in the fiber is reduced (improvement of quality), and the fiber is drawn to a drawing roller or the like at the time of drawing. The winding of the single yarn is reduced (improvement of process stability).
  • the improvement in the toughness factor is 10% or more, the effect of stabilizing the stretching step is increased, which is preferable.
  • the wholly aromatic polyamide fiber of the present invention may contain other components, for example, an antioxidant, a heat stabilizer, a weathering agent, a dye, an antistatic agent, a flame retardant, as long as the effects of the present invention are not impaired. It may contain conductive agents and other additives.
  • the wholly aromatic polyamide fiber of the present invention can be produced, for example, by the following method.
  • the mixing ratio of the layered clay mineral to the wholly aromatic polyamide in the spinning solution is 0.05 to 20 parts by mass, preferably 0.1 to 10 parts by mass, particularly preferably 0.1 to 10 parts by mass for the former 100 parts by weight. It is controlled in the range of 0.5 to 5 parts by mass. Further, the polymer concentration in the spinning dope is preferably 0.1 to 30% by mass, more preferably 1 to 25% by mass, and still more preferably 15 to 25% by mass. Further, the haze of the spinning dope is preferably adjusted to 10 or less, more preferably 5 or less.
  • A) a method of adding a layered clay mineral to a solution of a wholly aromatic polyamide (B) a solution of a solution of a whole aromatic polyamide and a solution of a layered clay mineral.
  • this wholly aromatic polyamide polymer part 100 A solution (A) consisting of 30 to 300 parts by mass of the layered clay mineral particles with respect to parts by mass is separately prepared. Separately, a solution B is prepared from the remainder of the solvent and the remainder of the wholly aromatic polyamide polymer. Then, the solution A and the solution B are mixed, and at this time, the solution A and the solution B are as follows:
  • the viscosity of the solution A at a shear rate of 0.1 second- 1 is 15 to 80 times the viscosity at a shear rate of 10 seconds- 1 .
  • the region where the distribution density of the layered clay mineral particles is relatively high in the spinning dope can be evenly dispersed and distributed, and the spinning process is stabilized and the layered clay mineral in the fiber obtained is obtained.
  • the degree of dispersion Y of the particles By controlling the degree of dispersion Y of the particles to a desired value, the effect of improving the toughness factor of the obtained fiber can be increased.
  • the ratio of the layered clay mineral to the wholly aromatic polyamide in the solution A is less than 30 parts by weight, the viscosity difference from the solution B becomes small, and the layered clay mineral is uniformly dispersed in the obtained spinning solution. The effect of improving the toughness factor may be reduced. On the other hand, if it exceeds 300 parts by weight, the distribution density of the layered clay mineral becomes extremely non-uniform, which may lower the stability of the spinning process.
  • the layered clay mineral is easily dispersed uniformly, and therefore, the relatively large distribution density of the layered clay mineral particles
  • the effect of improving the toughness factor may be reduced, and if it exceeds 20 times, the region where the distribution density of the layered clay mineral particles in the spinning dope is relatively high in the spinning process. Is excessively formed, which may cause an increase in pack pressure or the like, thereby deteriorating the process stability.
  • the layered clay mineral is easily dispersed evenly in the fiber.
  • the formation of a region having a relatively large distribution density of the layered clay mineral particles is reduced, and the effect of improving the toughness factor is reduced.
  • it exceeds 20 times the layered clay mineral particles in the spinning dope during the spinning process The formation of a region having a relatively high distribution density becomes excessive, and therefore, the process stability may decrease.
  • the solvent used for preparing the spinning solution is not particularly limited as long as it can dissolve the wholly aromatic polyamide, but it is preferable to use an amide-based polar solvent as a main component. For example,
  • NMP N-methyl-1-pyrrolidone
  • NMP N-ethyl-2-pyrrolidone
  • N N-dimethylacetamide, dimethylformamide, tetramethylurea, hexamethylphosphoramide
  • N — Nonprotonic amide-based organic solvents such as methylbutyrolactam.
  • the temperature of the undiluted spinning solution may be appropriately set according to the solubility of the wholly aromatic polyamide, but in the case of polymethaphenylene sophthalamide, the spinning ability should be set within the range of 50 to 90 ° C. This is preferred from the viewpoint of
  • the undiluted fiber is formed by spinning the spinning dope into a filament, for example, directly into an aqueous coagulation bath, and coagulating it, usually from a spinneret having 10 to 30,000 discharge holes.
  • the composition of the aqueous coagulation bath used here is not particularly limited, and may be appropriately selected depending on the type of the wholly aromatic polyamide and the solvent to be used, and may be a conventionally known aqueous solution containing an inorganic salt and Z or a solvent. Coagulation bath solutions can be used.
  • the wholly aromatic polyamide is polymetaphenylene isophthalamide and the solvent is N-methyl-2-pyrrolidone (NMP)
  • NMP N-methyl-2-pyrrolidone
  • the calcium chloride concentration is 34 to 42% by weight
  • the NMP N-methyl-2-pyrrolidone
  • An aqueous solution having a concentration of 3 to 10% by weight is exemplified as a preferable example.
  • the temperature of the aqueous coagulation bath is suitably in the range of 80 to 95 ° C
  • the time of immersing the fiber in the coagulation bath is suitably in the range of 1 to 11 seconds.
  • the undrawn fiber Since a considerable amount of solvent remains in the undrawn fiber drawn out of the coagulation bath, it is preferable to wash the undrawn fiber with water to extract and remove the residual solvent.
  • a method of passing undrawn fibers drawn from a coagulation bath through a water bath, a method of spraying water on the undrawn fibers, and the like are adopted.
  • the solvent content in the fibers after washing is controlled to 30% by weight or less. If the ratio exceeds this range, water easily penetrates into the fibers in the next drawing step, and voids are generated to reduce the fiber strength and make the fibers weak.
  • the undrawn fibers washed with water are drawn in a wet atmosphere, preferably in a warm water bath, and at the same time, the remaining solvent and, if necessary, inorganic salts such as calcium chloride are washed away. .
  • the stretching temperature in the stretching is appropriately set according to the amount of the solvent remaining in the undrawn fiber. For example, when the residual amount of the solvent is 50% or more relative to the mass of the polymer, it is preferable to control the stretching temperature to 0 to 50 ° C. If it is less than 50%, it is preferable to control the stretching temperature to 50 to 100 ° C.
  • the draw ratio is preferably 1.05 times or more, more preferably 1.10 times or more, and still more preferably the maximum draw ratio of undrawn fibers (the yarn breakage occurs when drawn under the same drawing conditions). (The starting draw ratio) is controlled in the range of 0.3 to 0.6 times.
  • the obtained drawn fiber is usually dried at a temperature of 100 ° C. or higher, and then, if necessary, further hot drawn, and then heat-treated by a heating roller, a hot plate or the like.
  • ⁇ Intrinsic viscosity IV> The test polymer was dissolved in NMP at a concentration of 0.5 g ZOO ml, the viscosity of this solution was measured at 30 ° C using an Ostwald viscometer, and the intrinsic viscosity was calculated from the measured value. .
  • the viscosity of the spinning solution was measured at 70 ° C. using a viscometer (trade name: Reomat 115) manufactured by Rheometric Scientific.
  • the measurement was performed according to JIS-L-1015 at a sample length of 20 mm, an initial load of 0.05 g / dt ex, and an extension speed of 20 mm / min.
  • X-ray generator (RU-200B manufactured by Rigaku Denki Co., Ltd.) measurement was performed under the conditions of a target CuK ⁇ ray, a voltage of 45 kV, and a current of 70 mA.
  • Incident X-rays were condensed and monochromated by an Osmic multilayer mirror, and fiber samples were measured by the vertical transmission method.
  • X-ray diffraction was measured using a 200 mm x 250 mm imaging plate (Fuji Photo Film) with a camera length of 250 mm.
  • the degree of orientation A of the clay layer surface was determined by the following equation from the intensity distribution measured along the Debye ring of the 001 surface reflection peak.
  • w is the half width (degrees) of the intensity distribution measured along the Depay ring of the reflection peak.
  • the wholly aromatic polyamide fiber was cut along the fiber axis, and the longitudinal section was observed with a transmission electron microscope (model: ⁇ -800) manufactured by Hitachi, Ltd. at a magnification of 100,000 to obtain a 25 ⁇ m
  • a transmission electron microscope model: ⁇ -800
  • Hitachi, Ltd. at a magnification of 100,000 to obtain a 25 ⁇ m
  • the shear viscosity of the solution at the time of preparing the spinning stock solution was measured at a temperature of 70 ° C. using a rheomat 115 manufactured by Rheometrics Scientific.
  • the fiber before drawing is centrifuged at 5000 rpm for 10 minutes, and then the fiber is boiled in methanol for 4 hours to extract the solvent and water in the fiber.
  • the methanol solution weight M2 after extraction and the dry weight Ml of the fiber were measured, the solvent weight concentration C (%) in the extract was determined by gas chromatography, and the solvent content N was calculated by the following formula. Calculated.
  • N (C / 100XM 2) / M 1 X 100
  • a plurality of the drawn fibers are drawn together to form a fiber bundle, one end of the fiber bundle is fixed, and cut so that the length of the other end from the fixing portion is 20 cm.
  • H be the total number of filaments at this time.
  • this fiber bundle After making 10 reciprocations in the vertical direction in a path filled with water (length 0.5m), the fiber bundle is pulled up, and the single yarn remaining in the path is counted. This operation is repeated 5 times, and the sum is M.
  • the number of single fiber breaks (X) in 15000 m was calculated by the following formula, and this was repeated three times to obtain an average value.
  • the obtained layered clay mineral dispersion was added to the wholly aromatic polyimide solution so as to have the composition shown in Table 1, and stirred to prepare a spinning dope (dope).
  • the haze of the obtained dope was 2.41.
  • After defoaming the obtained dope it was extruded into a filament form from a die having a cap diameter of 0.07 mm and a number of holes of 100, and a 43% aqueous solution of calcium chloride at 85 ° C (containing 1 mass./. NMP). And then coagulated at a spinning speed of 7 mZ, washed with water, stretched the undrawn fiber 2.4 times in boiling water, dried at 120 ° C, and dried at 350 ° C.
  • a 1.75-fold stretching heat set was performed at ° C.
  • a wholly aromatic polyamide fiber containing a layered clay mineral was obtained.
  • the longitudinal section of the single fiber was measured by TEM, the average layer thickness of the layered clay mineral particles was 90 nm.
  • the degree of orientation A of the layered clay mineral particles obtained from the X-ray diffraction results was 91%.
  • Example 2 In the same manner as in Example 1, a wholly aromatic polyamide fiber having the composition shown in Table 1 was produced.
  • a smectite-type layered clay mineral (trade name: Lucentite STN, manufactured by Corp Chemical) treated with trioctylmethylammonium-mum chloride was used.
  • the haze of the spinning dope at this time was 1.92.
  • the average layer thickness of the layered clay mineral particles was 86 nm, and the degree of orientation A was 91%.
  • Table 1 shows the tensile strength, elongation, and toughness factor (TF) of the obtained fiber.
  • Example 2 In the same manner as in Example 1, a wholly aromatic polyamide fiber was produced. ⁇ However, layered clay minerals were not included. Table 1 shows the tensile strength, elongation, and toughness factor (TF) of the obtained fiber.
  • This spinning stock solution was heated to 85 ° C, extruded in a filament form from a spinneret having a pore size of 0.07 mm and a number of holes of 1500, and introduced into a coagulation bath at 85 ° C to produce an undrawn fiber.
  • the composition of the coagulation bath is as follows: calcium chloride: 40% by mass, NMP: 5% by mass, water: 55% by mass, immersion length (effective coagulation bath length) is 100 cm, and unstretched fiber has a speed of 7. O m After passing through in Z minutes, it was immediately pulled out into the air.
  • the solidified unstretched filaments were sequentially washed with water in the first to third aqueous washing baths. The total immersion time in this washing was 50 seconds.
  • 0.32 parts by mass of the same polymetaphenyleneisophthalamide powder as in Example 3 was dissolved in 6.46 parts by mass of NMP cooled to 110 ° C to prepare a transparent polymer solution.
  • 0.72 parts by mass of a smectite-type clay mineral (trade name: Lucentite SPN, manufactured by Corp Chemical) was added as a layered clay mineral, followed by stirring to prepare a polymer solution A.
  • 13.28 parts by mass of a polymetaphenylene isophthalamide powder was dissolved in 48.49 parts by weight of NMP cooled to -10 ° C to prepare a transparent polymer solution B.
  • the spinning solution was subjected to spinning and elongation under the same conditions and operations as in Example 3 to obtain a single fiber fineness of 2.18 dt ex, a tensile strength of 6.03 cN / dt ex, and an elongation of 45.3%.
  • Lenisophthalamide fiber was produced.
  • the number of broken single fibers in the spinning and drawing step was 10 per 15,000 m in length, and the degree of dispersion Y of the layered clay mineral was 25%. Table 2 shows the test results.
  • Example 3 Spinning and stretching were performed under the same conditions and operations as in Example 3. However, the same spinning dope as in Example 3 was used, but the hot water draw ratio was 2.8 times and the 330 ° C hot plate draw ratio was 1.50 times. Polymetaphenylene sophthalamide fibers having a single fiber fineness of 2.22 dtex, a tensile strength of 5.49 cN / dtex and an elongation of 40.7% were obtained.
  • Example 6 Spinning and stretching were performed under the same conditions and operations as in Example 3. However, the spinning solution of Example 3 was used, but the washing time before hot water drawing was set to 34 seconds. A fiber having a single fiber fineness of 2. 21 dt ex, a tensile strength of 6.12 cNZ dt ex, and an elongation of 48.3% was obtained.
  • the maximum stretching ratio in the hot water stretching step is 4.9 (the maximum stretching ratio is 0.49) .
  • the solvent content of the fiber before stretching is 14 parts per 100 parts by mass of the wholly aromatic polyamide. 0 parts by weight.
  • the wholly aromatic polyamide fiber of the present invention has a higher mechanical strength, a lower degree of toughness and a higher toughness factor than conventional laminar clay mineral-free fibers. As described above, it can be suitably used for various applications utilizing these characteristics. In addition, according to the production method of the present invention, single-fiber breakage during spinning and drawing is reduced, and fibers of stable quality can be produced industrially and stably.

Abstract

A wholly aromatic polyamide fiber which has excellent mechanical properties (toughness factor) and can be produced while attaining satisfactory operation stability in the fiber formation step. The fiber comprises 100 parts by mass of a wholly aromatic polyamide and 0.05 to 20 parts by mass of particles of a lamellar clay mineral, e.g., hectorite, saponite, stivensite, beidellite, montmorillonite, or swelling mica.

Description

明 細 書 全芳香族ポリアミ ド繊維およびその製造方法 技術分野  Description Wholly aromatic polyamide fibers and method for producing the same
本発明は、 層状粘土鉱物を含有する全芳香族ポリ アミ ド繊維およ びその製造方法に関するものである。 さらに詳しく述べるならば本 発明は、 層状粘土鉱物を含有し、 改善された機械的特性、 特に靭性 を有する全芳香族ポリ アミ ド繊維およびその製造方法に関するもの である。 背景技術  The present invention relates to a wholly aromatic polyamide fiber containing a layered clay mineral and a method for producing the same. More specifically, the present invention relates to a wholly aromatic polyamide fiber containing a layered clay mineral and having improved mechanical properties, particularly toughness, and a method for producing the same. Background art
近年、 ポリマーに高い付加価値を付与すること、 及びその性能を 高めることについて、 高い関心が寄せられている。 ポリマーに高い 付加価値を付与し、 高性能を付与するために、 フィラー (充填剤) をポリマーに含有させて得られる複合材料の開発が盛んである。 こ れまで、 ポリマーの機械的特性及び耐熱性を向上させる 目的で、 繊 維状、 針状のフィ ラーが、 強化用充填剤として用いられ、 それによ つてポリマー材料の引張強度、 弾性率、 曲げ強度、 熱寸法安定性、 ク リープ特性の向上、 反りの改善、 耐摩耗性、 表面硬度、 耐熱性、 耐衝撃性などの諸物性が向上することが知られている。  In recent years, there has been a great deal of interest in providing high added value to polymers and enhancing their performance. In order to add high added value and high performance to polymers, the development of composite materials obtained by incorporating fillers into polymers is being actively pursued. Until now, fibrous or acicular fillers have been used as reinforcing fillers to improve the mechanical properties and heat resistance of polymers, thereby increasing the tensile strength, modulus, and bending of polymer materials. It is known that various properties such as strength, thermal dimensional stability, creep characteristics, warpage, abrasion resistance, surface hardness, heat resistance and impact resistance are improved.
しかし、 複合材料の強度は、 複合材料のマ ト リ ックスとなるポリ マー、 および充填剤として用いられたフィラー自身の強度のほかに 、 フィラーとポリマーとの界面接着性に大きく影響されることが知 られており、 フィラーに対するポリマーの濡れ性の良不良も、 製造 の難易度のみならず製品の強度に影響する。 このよ うな理由によ り 、 材料と して高強度、 高弾性を示すフィラーまたはポリマーを用い ても、 必ずしも強度に優れた複合材料が得られるとはかぎらないの である。 However, the strength of the composite material is greatly affected by the interfacial adhesion between the filler and the polymer, in addition to the strength of the polymer used as the matrix of the composite material and the filler itself used as the filler. It is known that poor or poor polymer wettability with fillers affects not only the difficulty of manufacturing but also the strength of the product. For these reasons, fillers or polymers that exhibit high strength and high elasticity are used as materials. However, it is not always possible to obtain a composite material with excellent strength.
さ らに、 フィ ラーを含有する複合材料は、 伸度が低いという欠点 を有することが、 一般的に知られている。  In addition, it is generally known that filler-containing composite materials have a drawback of low elongation.
一方、 全芳香族ポリ アミ ド繊維 (以下、 ァラミ ド繊維と称するこ とがある) の製糸工程では、 工程安定性および品質 (単糸切れ防止 性) の一層の向上が切望されている。 一般に、 工業的ァラミ ド繊維 の評価のパラメータ一として靭性因子 (TF) が知られている。 靱性 因子 (TF) はグラム/デニールの単位で測定された引張り強さ (T ' ) と、 伸び率 (E % ) の平方根と、 の積 (TF = T, X E 1 / 2 ) で 表される。 この靭性因子の高い繊維の場合、 延伸工程における繊維 の延伸ロールに対する卷付きが減少し、 その結果、 得られる糸中の 単糸切れが少なくなつて延伸工程の安定性が向上し、 得られる繊維 糸条の品質が向上することが知られている。 On the other hand, in the spinning process of wholly aromatic polyamide fibers (hereinafter sometimes referred to as “alamide fibers”), further improvement in process stability and quality (prevention of breakage of single yarn) is desired. Generally, the toughness factor (TF) is known as one of the parameters for evaluating industrial aramide fibers. The toughness factor (TF) is expressed as the product of the tensile strength (T '), measured in grams / denier, the square root of the elongation (E%), and (TF = T, XE 1/2 ) . In the case of the fiber having a high toughness factor, the winding of the fiber around the drawing roll in the drawing process is reduced, and as a result, the single yarn breakage in the obtained yarn is reduced, and the stability of the drawing process is improved, and the obtained fiber is It is known that the quality of yarn is improved.
繊維の機械的強度を向上させる方法としては、 例えば延伸によ り 繊維の配向度を向上させることが知られているが、 このような方法 を用いた場合、 引張り強さの向上とともに、 伸び率が低下し、 この ため靭性因子が高いフィラメ ントを製造することが困難であること が知られている。  As a method for improving the mechanical strength of a fiber, for example, it is known that the degree of orientation of the fiber is improved by drawing. However, when such a method is used, the elongation rate is improved along with the improvement in the tensile strength. It is known that it is difficult to manufacture a filament having a high toughness factor.
従来、 ポリアミ ド繊維の機械的物性及び寸法安定性を改善するた めに、 フィ ラーとして層状粘土鉱物を含有させることが提案されて いる (特開平 3 — 81364号公報、 特開平 4一 209822号公報、 特開平 8 — 3818号公報参照) 。 しかし、 これらはいずれも熱可塑性ポリ ア ミ ドを対象とするものであって、 これらの特許文献には、 非熱可塑 性ポリアミ ドである全芳香族ポリ アミ ド繊維について、 層状粘土鉱 物を利用することは開示されていない。  Hitherto, in order to improve the mechanical properties and dimensional stability of polyamide fibers, it has been proposed to include a layered clay mineral as a filler (JP-A-3-81364, JP-A-4-1209822). Gazette, JP-A-8-3818). However, these are all directed to thermoplastic polyamides, and these patent documents disclose a layered clay mineral for a wholly aromatic polyamide fiber which is a non-thermoplastic polyamide. Utilization is not disclosed.
また、 全芳香族ポリ アミ ドの機械的特性及び耐熱性を向上させる 目的で、 フイラ一と して層状粘土鉱物を用いる方法が検討されてい る。 例えば、 特開平 11— 236501号公報にはジァミ ンモノマーを含む 水溶液と、 ァシル化されたジカルボン酸モノマーの、 水に可溶な有 機溶媒溶液とを混合させて、 前記モノマーの重縮合を行う際に、 水 溶液中または有機溶媒溶液中に粘土鉱物を共存させることによ り高 耐熱材料と して有用な全芳香族ポリアミ ド複合材料を得る方法が開 示されており、 特開平 11— 255893号公報には、 層状粘土鉱物の、 そ れを完全に溶解できる溶媒中溶液中で、 全芳香族ポリアミ ドを溶液 重合することにより、 効率良く複合体を得る方法が開示されており 、 特開平 11— 256034号公報には、 全芳香族ポリアミ ド、 層状粘土鉱 物および有機溶媒からなる溶液から、 前記有機溶媒を除去すること によ り、 全芳香族ポリアミ ド中に層状粘土鉱物を高度に微分散させ 、 機械的物性の向上した全芳香族ポリ アミ ド複合体を得る方法が提 案されている。 It also improves the mechanical properties and heat resistance of wholly aromatic polyamides. For this purpose, a method of using layered clay mineral as a filler has been studied. For example, Japanese Patent Application Laid-Open No. 11-236501 discloses an aqueous solution containing a diamine monomer and a solution of an acylated dicarboxylic acid monomer in a water-soluble organic solvent to carry out polycondensation of the monomer. In addition, a method for obtaining a wholly aromatic polyamide composite material useful as a high heat-resistant material by coexisting a clay mineral in an aqueous solution or an organic solvent solution has been disclosed in JP-A-11-255893. Japanese Patent Application Laid-Open No. H10-284,1992 discloses a method for efficiently obtaining a complex by solution-polymerizing a wholly aromatic polyamide in a solution of a layered clay mineral in a solvent capable of completely dissolving the same. No. 11-256034 discloses that a layered clay mineral is highly contained in a wholly aromatic polyamide by removing the organic solvent from a solution comprising a wholly aromatic polyamide, a layered clay mineral and an organic solvent. Fine Is dispersed, a method of obtaining a wholly aromatic poly Ami de complexes with improved mechanical properties have been proposed.
しかしながら、 先行技術文献中に、 層状粘土鉱物をフイラ一と し て含有させるこ とによって、 全芳香族ポリアミ ド繊維の機械的物性 が向上すること、 及び層状粘土鉱物をフイラ一と して含み、 それに よって、 高い靱性因子を有する全芳香族ポリアミ ド繊維は未だ知ら れていない。 発明の開示  However, in the prior art documents, by including the layered clay mineral as a filler, the mechanical properties of the wholly aromatic polyamide fiber are improved, and the layered clay mineral is included as a filler. As a result, a wholly aromatic polyamide fiber having a high toughness factor is not yet known. Disclosure of the invention
本発明の目的は、 高い機械的物性、 特に高い靭性因子を有し、 製 糸工程において、 良好な工程安定性をもって製糸可能な全芳香族ポ リ アミ ド繊維、 およびそれを工業的に製造する方法を提供すること にある。  An object of the present invention is to provide a wholly aromatic polyamide fiber having high mechanical properties, particularly a high toughness factor, and capable of spinning with good process stability in the spinning process, and industrially producing the same. The idea is to provide a way.
本発明者らの研究によって、 全芳香族ポリアミ ドと層状粘土鉱物 を含有する紡糸溶液を、 湿式紡糸し、 かつ延伸して得られる、 延伸 配向された全芳香族ポリアミ ド繊維は、 優れた機械的特性特に靭性 因子を有することが見出された。 さ らに驚くべきことには、 前記層 状粘土鉱物の個々の層を繊維中に全く均一に分散させるのではなく 、 それを繊維を構成する芳香族ポリアミ ドポリマーマ ト リ ックス中 に、 層状粘土鉱物分布密度が比較的大きな複数の領域を散在分布さ せることによって、 層状粘土鉱物粒子による、 繊維の機械的特性、 特に、 靭性因子の向上効果をさらに増大させ得ることが本発明者ら によって見出された。 According to the study of the present inventors, a spinning solution containing a wholly aromatic polyamide and a layered clay mineral is wet-spun and drawn, and the drawing is performed. Oriented wholly aromatic polyamide fibers have been found to have excellent mechanical properties, especially toughness factors. Even more surprising is that rather than dispersing the individual layers of the layered clay mineral in the fibers quite evenly, it separates the layered clay mineral into the aromatic polyamide polymer matrix that composes the fibers. The present inventors have found that by scatteredly distributing a plurality of regions having relatively high distribution densities, it is possible to further increase the effect of improving the mechanical properties of fibers, particularly toughness factors, by the layered clay mineral particles. Was done.
本発明の延伸配向された全芳香族ポリアミ ド繊維は、 全芳香族ポ リ アミ ドポリマーからなるマ ト リ ッタスと、 その 100質量部に対し て 0. 05〜20質量部の割合で、 前記マ ト リ ックス中に分散分布してい る層状粘土鉱物粒子とを含有する樹脂組成物を含むことを特徴とす るものである。  The stretch-orientated wholly aromatic polyamide fiber of the present invention is obtained by mixing a matrix composed of a wholly aromatic polyamide polymer with 0.05 to 20 parts by mass based on 100 parts by mass of the matrix. It is characterized by including a resin composition containing layered clay mineral particles dispersed and distributed in a trix.
本発明の全芳香族ポリアミ ド繊維において、 前記全芳香族ポリァ ミ ドマ ト リ ックス中に、 前記層状粘土鉱物粒子の分布密度が比較的 高い複数の領域が散在分布していることが好ましい。  In the wholly aromatic polyamide fiber of the present invention, it is preferable that a plurality of regions in which the distribution density of the layered clay mineral particles is relatively high are scattered in the wholly aromatic polyamide matrix.
本発明の全芳香族ポリアミ ド繊維において、 前記全芳香族ポリア ミ ド繊維を、 その繊維軸に沿って切断し、 この縦断面を、 電子顕微 鏡によ り倍率 10万倍で観察し、 25 μ m 2の観察断面積 S 2当 り、 前 記層状粘土鉱物粒子の影響によって、 繊維断面の状態に変化が認め られる複数個の領域の合計面積 S 1 を測定したとき、 下記式 ( 1 ) によって規定される、 前記層状粘土鉱物粒子の、 前記繊維内におけ る分散度 Y : In the wholly aromatic polyamide fiber of the present invention, the wholly aromatic polyamide fiber is cut along the fiber axis, and the longitudinal section is observed with an electron microscope at a magnification of 100,000. When the total cross-sectional area S 1 of a plurality of regions in which the state of the fiber cross-section changes due to the influence of the layered clay mineral particles described above is measured with respect to the observed cross-sectional area S 2 of μm 2, the following equation (1) is obtained. The degree of dispersion Y of the layered clay mineral particles in the fiber, defined by:
Y ( % ) = ( S 1 / S 2 ) X 100 ( 1 ) が、 0. 1〜40の範囲内にあることが好ましい。  Y (%) = (S1 / S2) X100 (1) is preferably in the range of 0.1 to 40.
本発明の全芳香族ポリアミ ド繊維において、 前記層状粘土鉱物が 、 ヘク トライ ト、 サボナイ ト、 スチブンサイ ト、 パイデライ ト、 モ ンモ リ ロナイ ト、 及び膨潤性雲母から選ばれた少なく とも 1種を含 むこ とが好ましい。 In the wholly aromatic polyamide fiber of the present invention, the layered clay mineral may be made of hectrite, savonite, stevensite, paiderite, or It preferably contains at least one member selected from the group consisting of ammonium sulphonate and swellable mica.
本発明の全芳香族ポリ アミ ド繊維において、 前記層状粘土鉱物粒 子が、 イ ンター力レート剤による処理を施されたものであることが 好ましい。  In the wholly aromatic polyamide fiber of the present invention, it is preferable that the layered clay mineral particles have been subjected to a treatment with an inter-rate agent.
本発明の全芳香族ポリ アミ ド繊維において、 前記層状粘土鉱物粒 子の平均層厚さが 10〜500nmであることが好ましい。  In the wholly aromatic polyamide fiber of the present invention, the layered clay mineral particles preferably have an average layer thickness of 10 to 500 nm.
本発明の全芳香族ポリ アミ ド繊維において、 前記層状粘土鉱物粒 子の、 下記式 ( 2 ) によって規定される配向度 A :  In the wholly aromatic polyamide fiber of the present invention, the degree of orientation A of the layered clay mineral particles defined by the following formula (2):
A (%) = 〔 (180- w) Z180〕 X100 ( 2 ) (但し、 式 ( 2 ) 中、 前記層状粘土鉱物粒子の X線解析において、 前記層状粘土鉱物粒子の (001) 面の反射ピークのデパイ環に沿つ て測定された強度分布の半値幅を表す)  A (%) = [(180-w) Z180] X100 (2) (where, in the formula (2), in the X-ray analysis of the layered clay mineral particles, the reflection peak of the (001) plane of the layered clay mineral particles Represents the half-width of the intensity distribution measured along the Depay ring
が 50%以上であることが好ましい。 Is preferably 50% or more.
本発明の全芳香族ポリ アミ ド繊維において、 前記全芳香族ポリァ ミ ド繊維の引張り強さ (T) の、 前記層状粘土鉱物粒子を含有して いないことを除き、 その他は前記全芳香族ポリアミ ド繊維と全く同 一の比較全芳香族ポリアミ ド繊維の引張り強度 (To) に対する比 ( T/To) が、 1.1以上であることが好ましい。  In the wholly aromatic polyamide fiber of the present invention, the tensile strength (T) of the wholly aromatic polyamide fiber is the same as that of the wholly aromatic polyamide fiber except that it does not contain the layered clay mineral particles. The ratio (T / To) to the tensile strength (To) of the comparative wholly aromatic polyamide fiber which is exactly the same as that of the fiber is preferably 1.1 or more.
本発明の全芳香族ポリ アミ ド繊維において、 前記全芳香族ポリア ミ ド繊維の伸び率 (Ε) の、 前記層状粘土鉱物粒子を含有していな いことを除き、 その他は前記全芳香族ポリ ァミ ド繊維と全く 同一の 比較全芳香族ポリ アミ ド繊維の伸び率 (Εο) に対する比 Ε/Εοが、 1.1以上であることが好ましい。  In the wholly aromatic polyamide fiber of the present invention, the elongation rate (Ε) of the wholly aromatic polyamide fiber is the same as that of the wholly aromatic polyamide fiber except that it does not contain the layered clay mineral particles. The ratio Ε / Εο to the elongation (Εο) of the comparative wholly aromatic polyamide fiber which is exactly the same as the amide fiber is preferably 1.1 or more.
本発明の全芳香族ポリ ァミ ド繊維において、 前記全芳香族ポリァ ミ ドの下記式 ( 3 ) によ り規定される靭性因子 (TF) :  In the wholly aromatic polyamide fiber of the present invention, the toughness factor (TF) of the wholly aromatic polyamide defined by the following formula (3):
TF = Τ ' X E ' 1/2 ( 3 ) (上記式 ( 3 ) において、 T ' は前記全芳香族ポリアミ ド繊維の g / l . ldt ex単位における引張り強さの数値を表し、 E ' は前記全芳 香族ポリ アミ ド繊維の%単位における伸び率の数値を表す) が 30以上であることが好ましい。 TF = Τ 'XE' 1/2 (3) (In the above formula (3), T ′ represents a numerical value of the tensile strength in g / l.ldt ex unit of the wholly aromatic polyamide fiber, and E ′ is a unit of% of the wholly aromatic polyamide fiber. (Representing the numerical value of the elongation percentage) is preferably 30 or more.
本発明の全芳香族ポリアミ ド繊維において、 前記全芳香族ポリア ミ ド繊維の靭性因子 (TF) の、 前記層状粘土鉱物粒子を含有してい ないことを除き、 その他は前記全芳香族ポリ アミ ド繊維とすべて同 一の比較全芳香族ポリ アミ ド繊維の靭性因子 (TFo) に対する比 TF / TFoが、 1. 1以上であることが好ましい。  In the wholly aromatic polyamide fiber of the present invention, other than the toughness factor (TF) of the wholly aromatic polyamide fiber, except for not containing the layered clay mineral particles, the other is the wholly aromatic polyamide. The ratio TF / TFo to the toughness factor (TFo) of the comparative wholly aromatic polyamide fiber, which is all the same as the fiber, is preferably 1.1 or more.
本発明の全芳香族ポリアミ ド繊維において、 前記層状粘土鉱物粒 子が、 その層間に有機ォニゥムイオンを有することが好ましい。 本発明の全芳香族ポリアミ ド繊維において、 全芳香族ポリ アミ ド が、 メタ系全芳香族ポリアミ ドから選ばれることが好ましい。  In the wholly aromatic polyamide fiber of the present invention, it is preferable that the layered clay mineral particles have an organic ion between the layers. In the wholly aromatic polyamide fiber of the present invention, the wholly aromatic polyamide is preferably selected from meta-based wholly aromatic polyamides.
本発明の延伸配向された全芳香族ポリアミ ド繊維の製造方法は、 溶媒と、 全芳香族ポリ アミ ドと、 前記全芳香族ポリ アミ ド 100質量 部に対して 0. 05〜 20質量部の層状粘土鉱物粒子とを含む紡糸原液を 、 紡糸口金を通して水性凝固浴中に繊維状に押し出して紡出し、 前 記押し出された繊維状原液流を凝固し、 形成された未延伸繊維を湿 式雰囲気中で延伸し、 得られた延伸繊維を乾燥熱処理することを特 徴とする、  The method for producing a stretch-orientated wholly aromatic polyamide fiber of the present invention comprises: a solvent, a wholly aromatic polyamide, and 0.05 to 20 parts by mass based on 100 parts by mass of the wholly aromatic polyamide. The spinning dope containing the layered clay mineral particles is extruded into a fibrous form in an aqueous coagulation bath through a spinneret and spun out. The extruded fibrous stock solution is coagulated, and the formed undrawn fibers are wet-wet atmosphere. Characterized in that the drawn fiber obtained is dried and heat-treated.
本発明の全芳香族ポリ アミ ド繊維の製造方法において、 前記紡糸 原液が、 前記溶媒の一部分は、 前記全芳香族ポリアミ ドの一部分と 、 及び前記全芳香族ポリ アミ ド部分 100質量部に対して、 30〜300質 量部の層状粘土鉱物粒子とからなる溶液 Aと、 前記溶媒の残部及び 全芳香族ポリアミ ドの残部とからなる溶液 Bとを混合して調製され 、 かつ、 下記要件 ( 1 ) 及び ( 2 ) :  In the method for producing a wholly aromatic polyamide fiber of the present invention, the spinning dope may include a part of the solvent, a part of the wholly aromatic polyamide, and 100 parts by mass of the wholly aromatic polyamide part. Is prepared by mixing a solution A consisting of 30 to 300 parts by mass of layered clay mineral particles, and a solution B consisting of the remainder of the solvent and the remainder of the wholly aromatic polyamide; 1) and (2):
( 1 ) 溶液 Aの、 剪断速度 0. 1秒—1における粘度が、 剪断速度 10 秒- 1における粘度の 15〜80倍であること、 及び (1) solution A, shear rate 0.1 sec - viscosity at 1, shear rate 10 15 to 80 times the viscosity in sec- 1 ; and
( 2 ) 剪断速度 0. 1秒—1において、 溶液 Aの粘度が、 溶液 Bの粘度 の 4〜20倍であること (2) The viscosity of solution A should be 4 to 20 times the viscosity of solution B at a shear rate of 0.1 sec- 1
を満足する、 ことが好ましい。 Is preferably satisfied.
本発明の全芳香族ポリアミ ド繊維の製造方法において、 前記紡糸 原液中の全芳香族ポリ アミ ドの濃度が、 0.:!〜 30質量%であること が好ましい。  In the method for producing a wholly aromatic polyamide fiber according to the present invention, the concentration of the wholly aromatic polyamide in the spinning dope may be 0 ::! It is preferably from 30 to 30% by mass.
本発明の全芳香族ポリアミ ド繊維の製造方法において、 前記湿式 雰囲気中における前記未延伸繊維に対する延伸倍率が、 その最大延 伸倍率の 0. 3〜0. 6倍の範囲内にあることが好ましい。  In the method for producing a wholly aromatic polyamide fiber of the present invention, it is preferable that a stretching ratio of the unstretched fiber in the wet atmosphere is in a range of 0.3 to 0.6 times the maximum stretching ratio. .
本発明の全芳香族ポリアミ ド繊維の製造方法において、 前記溶媒 が、 アミ ド系極性溶媒から選ばれることが好ましい。  In the method for producing a wholly aromatic polyamide fiber of the present invention, the solvent is preferably selected from amide-based polar solvents.
本発明の全芳香族ポリアミ ド繊維の製造方法において、 前記全芳 香族ポリアミ ドがメタ系全芳香族ポリ アミ ドから選ばれることが好 ましい。 図面の簡単な説明  In the method for producing wholly aromatic polyamide fibers of the present invention, it is preferable that the wholly aromatic polyamide is selected from meta-based wholly aromatic polyamides. Brief Description of Drawings
図 1 は、 本発明の全芳香族ポリアミ ド繊維の一例の断面の電子顕 微鏡写真である。 発明を実施するための最良の形態  FIG. 1 is an electron micrograph of a cross section of an example of the wholly aromatic polyamide fiber of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
本発明に用いられる全芳香族ポリアミ ドは、 その繰り返し単位の 主骨格を構成する芳香環が、 互にアミ ド結合によ り結合されてなる ものであり、 特にメタ系全芳香族ポリ ァミ ドから選ばれることが好 ましい。 このよ うな全芳香族ポリアミ ドは、 通常、 芳香族ジカルポ ン酸ジハライ ドと、 芳香族ジァミンとを、 それらの溶液中において 低温溶液重合、 または界面重合することによ り製造される。 本発明において使用されるジァミ ン成分は、 例えばパラフエニレ ンジァミ ン、 2—ク ロルパラフエ二レンジァミ ン、 2, 5—ジク ロ ルパラフエ二レンジァミ ン、 2, 6 —ジク ロルパラフエ二レンジァ ミ ン、 m—フエ二レンジァ ミ ン、 3 , 4 ' ージアミ ノ ジフエニノレエ 一テル、 4 , 4, ージアミ ノ ジフエニルエーテル、 4, 4, ―ジァ ミ ノ ジブェニルメ タン、 4, 4, —ジアミ ノジフエニルスルフォン 、 3, 3 ' ージアミ ノ ジフエニルスルフォ ン等の 1種以上を含むも のであるこ とが好ましいが、 これらに限定されるものではない。 こ れらのジアミ ン化合物のなかで、 p —フエ二レンジァミ ン、 m—フ ェニレンジアミ ンおよび 3, 4, ージアミ ノ ジフエニルエーテルを 用いるこ とが好ましい。 The wholly aromatic polyamide used in the present invention is one in which the aromatic rings constituting the main skeleton of the repeating unit are connected to each other by an amide bond, and particularly a meta-based wholly aromatic polyamide. It is preferable to select from the list. Such a wholly aromatic polyamide is generally produced by subjecting an aromatic dicarboxylate dihalide and an aromatic diamine to low-temperature solution polymerization or interfacial polymerization in a solution thereof. The diamine components used in the present invention include, for example, paraphenylene diamine, 2-chloroparaphenylene diamine, 2,5-dichloroparaphenylene diamine, 2,6-dichloroparaphenylene diamine, m-phenylene diamine. Diamine, 3,4 'diamino diphenyl ether, 4, 4, diamino diphenyl ether, 4, 4,-diamino diphenyl methane, 4, 4,-diamino diphenyl sulfone, 3, 3 'It is preferable to include one or more kinds such as diaminodiphenylsulfone, but it is not limited thereto. Among these diamine compounds, it is preferable to use p-phenylenediamine, m-phenylenediamine and 3,4, diamminodiphenyl ether.
また、 本発明において使用される芳香族ジカルボン酸ジハライ ド 成分は、 例えばイ ソフタル酸ジク ロ ライ ド、 テレフタル酸ジク ロ ラ イ ド、 2—ク ロルテレフタノレ酸ジク ロ ライ ド、 2 , 5 —ジク ロ /レテ レフタル酸ジク ロライ ド、 2, 6 -ジク ロルテレフタル酸ジク 口 ラ イ ド、 2, 6 —ナフタレンジ力ルポン酸ジク ロライ ドなどの 1種以 上を含むものであるこ とが好ましいが、 これらに限定されるもので はない。 これら芳香族ジカルボン酸ジハライ ドのなかで、 テレフタ ル酸ジク 口 ライ ド及び Z又はィ ソフタル酸ジク 口 ライ ドを用いるこ とが好ましい。  The aromatic dicarboxylic acid dihalide component used in the present invention includes, for example, dichloride isophthalate, dichloride terephthalate, dichloride 2-chloroterephthalenolate, and 2,5-dichloride. Preferably, it contains at least one of dichloride / reterephthalic acid, 2,6-dichloroterephthalic acid dichloride, and 2,6-naphthalenediphthalic acid dichloride. It is not limited to. Among these aromatic dicarboxylic acid dihalides, it is preferable to use terephthalic acid dichloride and Z or isophthalic acid dichloride.
前記の全芳香族ポリ アミ ドのなかで、 ポリ メ タフエ二レンイ ソフ タルアミ ド、 コポリノヽ0ラフェニレン · 3, 4, —ジォキシジフエ二 レンテレフタルアミ ドを用いるこ とが好ましく 、 特にポリ メ タフエ 二レンイ ソフタルアミ ドを用いるこ とが好ましい。 Among the above-mentioned wholly aromatic polyamides, it is preferable to use polymethafylene disophthalamide, copolyno ヽ0 raphenylene · 3,4, -dioxydiphenyreneterephthalamide, and in particular, polymethafene diamide. It is preferable to use renysophthalamide.
全芳香族ポリ アミ ドを重合して紡糸原液を調製する際に用いられ る溶媒は、 例えば N, N—ジメチルホルムアミ ド、 N , N—ジメチ ルァセ トアミ ド、 N—メチル一 2 —ピロ リ ドン及び N—メチルカプ ロラクタム等の有機極性アミ ド系溶媒、 テ トラヒ ドロフラン及ぴジ ォキサン等の水溶性エーテル化合物、 メタノール、 エタノール及ぴ エチレングリ コール等の水溶性アルコール化合物、 ァセ トン及びメ チルェチルケ トン等の水溶性ケ トン化合物並びにァセ トニト リル、 及びプロ ピオ二 ト リル等の水溶性二 ト リル化合物等の少なく とも 1 種からなることが用いられるが、 しかしこれらに限定されるもので はない。 前記溶媒は前記化合物の 2種以上の混合液であってもよい 。 本発明方法に用いられる前記溶媒は、 脱水されているものである ことが好ましい。 Solvents used for preparing a spinning dope by polymerizing a wholly aromatic polyamide include, for example, N, N-dimethylformamide, N, N-dimethylacetamide, and N-methyl-12-pyrrolidine. Don and N-methylcap Organic polar amide solvents such as loractam; water-soluble ether compounds such as tetrahydrofuran and dioxane; water-soluble alcohol compounds such as methanol, ethanol and ethylene glycol; water-soluble such as acetone and methylethyl ketone A ketone compound and at least one water-soluble nitrile compound such as acetonitrile and propionitrile are used, but not limited thereto. The solvent may be a mixture of two or more of the above compounds. The solvent used in the method of the present invention is preferably dehydrated.
この場合、 溶解性をあげるために重合前、 重合途中、 または重合 終了の時に、 従来公知の無機塩の適当量を、 重合混合液に添加して も差し支えない。 このような無機塩と しては例えば、 塩化リチウム 、 塩化カルシウム等が挙げられる。  In this case, an appropriate amount of a conventionally known inorganic salt may be added to the polymerization mixture before, during, or at the end of the polymerization to increase the solubility. Examples of such inorganic salts include lithium chloride and calcium chloride.
また、 前記ジァミ ン成分と前記酸ハライ ド成分とから全芳香族ポ リアミ ドを製造する際、 これらのジァミ ン成分の酸ハライ ド成分に 対するモル比が、 0. 90〜: 1. 10にコントロールされることが好ましく 、 よ り好ましくは 0. 95〜1. 05である。  When a wholly aromatic polyamide is produced from the diamine component and the acid halide component, the molar ratio of these diamine components to the acid halide component is 0.90 to 1.10. It is preferably controlled, more preferably 0.95 to 1.05.
本発明に用いられる全芳香族ポリアミ ドの分子末端は封止されて いてもよい。 この封止のために末端封止剤を用いる場合、 この末端 封止剤としては、 例えばフタル酸クロライ ドおよびその置換体、 ァ ミ ン成分と してァニリ ンおよびその置換体が挙げられる。  The molecular end of the wholly aromatic polyamide used in the present invention may be blocked. When an end-capping agent is used for this capping, examples of the end-capping agent include phthalic acid chloride and its substituted product, and aniline and its substituted product as the amine component.
一般に酸ハライ ドとジアミ ンの反対においては、 生成するハ口ゲ ン化水素のよ うな酸を捕捉するために、 脂肪族ァミ ン、 芳香族アミ ン、 及び第 4級アンモニゥム塩を併用することができる。  In general, the opposite of acid halides and diamines involves the combined use of aliphatic amines, aromatic amines, and quaternary ammonium salts to trap acids such as haploid hydride formed. be able to.
前記重合反応の終了後、 必要に応じて塩基性の無機化合物、 例え ば水酸化ナト リ ウム、 水酸化カ リ ウム、 水酸化カルシウム、 又は酸 化カルシゥム等を反応混合物中に添加してこれを中和反応する。 本発明の全芳香族ポリァミ ドの製造反応条件には特別な制限はな い。 酸ハライ ドとジァミ ンとの反応は一般に急速に進行し、 反応温 度は通常— 25〜100°Cであり好ましく は— 10〜80°Cである。 After the completion of the polymerization reaction, if necessary, a basic inorganic compound, for example, sodium hydroxide, potassium hydroxide, calcium hydroxide, calcium oxide, or the like is added to the reaction mixture and added. Neutralize. The reaction conditions for producing the wholly aromatic polyamide of the present invention are not particularly limited. The reaction between acid halide and diamin generally proceeds rapidly, and the reaction temperature is usually -25 to 100 ° C, preferably -10 to 80 ° C.
このようにして得られる全芳香族ポリアミ ドポリマーを、 アルコ ール又は水などの非溶媒に投入して沈殿せしめ、 パルプ状のフレー ク と して取り出すこ とができる。 このポリ マーフレークを再度溶媒 に溶解してその溶液を湿式紡糸に供することもできるが、 重合反応 によって得た溶液を、 そのまま紡糸用溶液として用いることもでき る。 再度溶解させる際に用いる溶媒としては、 該全芳香族ポリ アミ ドを溶解するものであれば特に限定はされないが、 上記全芳香族ポ リアミ ドの重合に使用される溶媒を用いることが好ましい。  The wholly aromatic polyamide polymer thus obtained can be poured into a non-solvent such as alcohol or water to cause precipitation, and can be taken out as pulp-like flakes. This polymer flake can be dissolved again in a solvent and the solution can be subjected to wet spinning, but the solution obtained by the polymerization reaction can be used as it is as a spinning solution. The solvent used for the re-dissolution is not particularly limited as long as it dissolves the wholly aromatic polyamide, but it is preferable to use the solvent used for the polymerization of the above-mentioned wholly aromatic polyamide.
次に、 本発明で使用される層状粘土鉱物は、 陽イオン交換能を有 し、 さ らに層間に水を取り込んで膨潤する性質を示すものであり、 好ましくはスメ クタイ ト型粘土鉱物及び膨潤性雲母が用いられる。 層状粘土鉱物を具体的に例示すれば、 スメ クタイ ト型粘土鉱物とし てへク トライ ト、 サボナイ ト、 スチブンサイ ト、 パイデライ ト、 モ ンモリ ロナイ ト (これらは天然のものであっても化学的に合成した ものであってもよい) 、 およびこれらの置換体、 誘導体、 あるいは 混合物を挙げることができる。 また、 膨潤性雲母としては、 化学的 に合成し、 層間に Li、 Naイオンを有する合成膨潤性雲母またはこれ らの置換体、 誘導体あるいは混合物を挙げることができる。  Next, the layered clay mineral used in the present invention has a cation exchange ability, and further exhibits a property of swelling by taking in water between layers, and is preferably a smectite-type clay mineral and a swelling clay mineral. Mica is used. Specific examples of layered clay minerals include hematite, savonite, stevensite, paiderite, and montmorillonite as smectite-type clay minerals. And substituted compounds, derivatives or mixtures thereof. In addition, examples of the swellable mica include synthetic swellable mica which is chemically synthesized and has Li and Na ions between layers, or a substitute, derivative or mixture thereof.
本発明では、 上記層状粘土鉱物粒子を、 有機ォニゥムイオンを含 む表面処理剤 (イ ンターカレーティ ング剤) で処理したものを用い る.のが好ましい。 該有機ォニゥムイオンで処理することによ り、 得 られる層状粘土鉱物粒子の全芳香族ポリ アミ ド、 マ ト リ ックス中に おける分散性が向上し、 フィラメ ント形成性および得られる繊維の 靭性因子を向上させることができる。 前記表面処理に使用される有機ォニゥムイオンは、 下記式 ( 1 ) In the present invention, it is preferable to use those obtained by treating the above-mentioned layered clay mineral particles with a surface treating agent (intercalating agent) containing an organic ion. By treating with the organic anion, the dispersibility of the obtained layered clay mineral particles in the wholly aromatic polyamide and matrix is improved, and the filament formation property and the toughness factor of the obtained fiber are improved. Can be improved. The organic ion used for the surface treatment is represented by the following formula (1)
I I
Rx -N+ -R3 ( 1 ) R x -N + -R 3 (1)
R 4 R 4
(Rx , R2、 R3および R4は、 それぞれ独立に、 炭素数 1〜30のァ ルキル基または一(CH2CH20)nHであらわされるヒ ドロキシポリ オキ シェチレン基である。 ) (R x , R 2 , R 3 and R 4 are each independently an alkyl group having 1 to 30 carbon atoms or a hydroxypolyoxyethylene group represented by 1 (CH 2 CH 20 ) n H.)
で表される化学構造を有する第 4級アンモニゥムイオンから選ばれ るこ とが好ましい。 ここで R2、 R3及び R4によ り表される、 炭素数 1〜 30のアルキル基の中でも、 炭素数 1〜 18のアルキル基が 好ましい。 It is preferable to select from quaternary ammonium ions having the chemical structure represented by Here, among the alkyl groups having 1 to 30 carbon atoms represented by R 2 , R 3 and R 4 , an alkyl group having 1 to 18 carbon atoms is preferable.
好ま しく使用される第 4級アンモニゥム化合物と しては、 例えば ドデシルト リ メチルァンモニゥムク ロ ライ ド、 テ トラデシルト リ メ チルアンモニゥムク 口ライ ド、 へキサデシノレ ト リ メチノレアンモニゥ ムク ロ ライ ド、 ォクタデシルト リ メチルアンモニゥムク ロ ライ ド、 ォレイノレト リ メチノレアンモニゥムク 口ライ ド、 ジ ドデシ/レジメチル アンモニゥムク ロ ライ ド、 ジテ トラデシルジメチルアンモニゥムク 口 ライ ド、 ジへキサデシルジメチルアンモニゥムク ロ ライ ド、 ジォ クタデシノレジメチノレアンモニゥムク ロライ ド、 ジォレイノレジメチノレ アンモニゥムク 口 ライ ド、 ドデシルジェチノレペンジノレアンモニゥム ク ロ ライ ド、 テ ト ラデシルジメチルベンジルアンモニゥムク ロ ライ ド、 へキサデシルジメチルベンジルアンモニゥムク ロ ライ ド、 オタ タデシノレジメチノレペンジノレアンモニゥムク ロライ ド、 ォレイノレジメ チルベンジルク ロ ライ ド、 ト リ オクチルメチルアンモニゥムク ロラ ィ ド、 ヒ ドロキシポリ オキシプロ ピレンメチルジェチルアンモニゥ ムク ロ ライ ド、 ヒ ドロキシポリオキシエチレン ドデシルジメチルァ ンモニゥムクロ ライ ド、 ヒ ドロキシポリ オキシエチレンテ トラデシ ルジメチルアンモニゥムク ロ ライ ド、 ヒ ドロキシポリオキシェチレ ンへキサデシルジメチルアンモニゥムク 口 ライ ド、 ヒ ドロキシポリ ォキシエチレンォクタデシルジメチルアンモニゥムク 口 ライ ド、 ヒ ドロキシポリオキシエチレンォレイノレジメチノレアンモニゥムク 口 ラ ィ ド、 ジヒ ドロキシポリ オキシエチレン ドデシルメチルアンモニゥ ムク ロライ ド、 ビス (ヒ ドロキシポリ オキシエチレン) テ トラデシ ノレメチノレアンモニゥムク ロ ライ ド、 ビス (ヒ ドロキシポリ オキシェ チレン) へキサデシルメチルアンモニゥムクロライ ド、 ビス (ヒ ド ロキシポリ ォキシエチレン) ォクタデシルメチノレアンモニゥムク 口 ライ ド、 およびビス (ヒ ドロキシポリ オキシエチレン) ォレイルメ チルアンモニゥムク ロライ ド等が挙げられるが、 これらに限定され るものではない。 Preferred quaternary ammonium compounds include, for example, dodecyltrimethylammonium chloride, tetradecyltrimethylammonium mouthride, hexadecinole trimethylammonium chloride. Ride, octadecyl trimethylammonium chloride, oreinoletri methinolemonium mouth lid, didodecyl / ledimethylammonium chloride, lide, ditetradecyldimethylammonium chloride mouth, lide, dihexadecyldimethylammonium chloride Demcrolide, Gio Ctadesino Resin Mesminole Ammonium Enclom Ride, Goreino Resime Mesinole Ammonium Mouth Ride, Dodecyl Jetinole Penzinole Ammonium Chloride, Tetradecyl Dimethylbenzyl Ammonium chloride Hexadecyldimethylbenzylammonium chloride, Ota tadecinoresin methinole penzinoleammonium chloride, oleinoresimetyl benzyl benzyl chloride, trioctylmethylammonium chloride, hydroxypolyoxypropylene methyl chloride Chillammonium chloride, hydroxypolyoxyethylene dodecyldimethyla Ammonium chloride, hydroxypolyoxyethylenetetradecyldimethylammonium chloride, hydroxypolyoxyethylenehexadecyldimethylammonium mouth light, hydroxypolyethyleneethyleneoctadecyldimethylammonium chloride Mouth Ride, Hydroxypolyoxyethylene Oleno Resin Methinoleammonium Mouth Ride, Dihydroxypoxypolyoxyethylene Dodecylmethyl Ammonium Mulride, Bis (Hydroxypolyoxyethylene) Tetradecine Chloride, bis (hydroxypolyoxyethylene) hexadecylmethylammonium chloride, bis (hydroxypolyoxyethylene) octadecylmethylaminomonium mouth light, and Scan (heat Dorokishipori oxyethylene) Oreirume chill ammonium Niu Solid but Rorai de like, not shall be limited thereto.
層状粘土鉱物粒子の有機ォニゥムィオンによる処理方法と しては The method of treating layered clay mineral particles with organic onion is as follows.
、 通常、 層状粘土鉱物粒子 1重量部と、 有機ォニゥムイオン 1 〜10 重量部とを水中で混合した後、 この混合物を乾燥する方法が挙げら れる。 水の使用量は、 層状粘土鉱物の 1 〜: L00倍であることが好ま しい。 また、 混合するときの温度は、 30〜70°Cであることが好まし く、 混合時間は 0. 5〜 2時間であることが好ましい。 乾燥条件と し ては、 70〜: L00°Cで 3 日間常圧乾燥し、 2 日間真空乾燥することが 好ましい。 Usually, 1 part by weight of layered clay mineral particles and 1 to 10 parts by weight of organic anion are mixed in water, and then the mixture is dried. The amount of water used is preferably 1 to L00 times that of the layered clay mineral. The mixing temperature is preferably 30 to 70 ° C., and the mixing time is preferably 0.5 to 2 hours. As the drying conditions, 70 to: It is preferable to dry under normal pressure at L00 ° C for 3 days and then vacuum dry for 2 days.
本発明の全芳香族ポリアミ ド繊維における層状粘土鉱物粒子の平 均層厚さは、 500nm以下であることが好ましい、 特に 200nm以下であ ることがより好ましい。 なお、 ここでいう層状粘土鉱物の平均層厚 さとは、 繊維の縦断面の電子顕微鏡測定 (倍率 10万倍) において断 面積 25 μ m 2中に観察される全ての層状粘土鉱物粒子について測定 された層厚さの平均値である。 層状粘土鉱物の平均層厚さが 500nm よ り も大きくなると、 得られる樹脂組成物の製糸時の成形安定性を 確保することが困難となることがある。 一方、 層状粘土鉱物粒子を 分子レベルまで分散させよ う とすると、 層状粘土鉱物粒子の増粘効 果及び分散性を確保するために、 紡糸原液の溶液濃度を低下させる 必要があり、 紡糸工程の生産効率が低下するだけでなく、 得られる 繊維の靭性に対する向上効果が小さくなる傾向がある。 このため、 層状粘土鉱物粒子の平均層厚さは、 10nm以上であることが好ましく 、 特に 12nm以上であることがよ り好ましい。 また、 本発明に用いら れる層状粘土鉱物粒子のたて · よこ寸法は、 (50〜1000ηιη) X ( 50 〜: l OOOnm) であることが好ましく、 よ り好ましく は (100〜500nm) X ( 100 ~ 500nm) である。 Rights Hitoshiso thickness of the layered clay mineral particles in the wholly aromatic polyamide de fibers of the present invention is preferably not more than 500n m, in particular less der Rukoto more preferably 200 nm. The average layer thickness of the layered clay mineral referred to here is measured for all layered clay mineral particles observed in a cross-sectional area of 25 μm 2 by electron microscopic measurement (magnification 100,000 times) of the longitudinal section of the fiber. This is the average value of the layer thickness. Average layer thickness of layered clay mineral is 500nm If it is larger than this, it may be difficult to ensure the molding stability of the obtained resin composition during spinning. On the other hand, in order to disperse the layered clay mineral particles to the molecular level, it is necessary to lower the solution concentration of the spinning solution in order to secure the thickening effect and dispersibility of the layered clay mineral particles. Not only does production efficiency decrease, but the effect of improving the toughness of the resulting fiber tends to decrease. Therefore, the average layer thickness of the layered clay mineral particles is preferably 10 nm or more, and more preferably 12 nm or more. The vertical and horizontal dimensions of the layered clay mineral particles used in the present invention are preferably (50 to 1000ηιη) X (50 to: l OOOnm), and more preferably (100 to 500 nm) X ( 100 to 500 nm).
さらに、 前記全芳香族ポリ アミ ド繊維を、 その繊維軸に沿って切 断し、 この縦断面を、 電子顕微鏡によ り倍率 10万倍で観察し、 25 μ m 2の観察断面積 S 2当 り、 前記層状粘土鉱物粒子の影響によって 、 繊維断面の状態に変化が認められる複数個の領域の合計面積 S 1 を測定したとき、 下記式 ( 1 ) によって規定される、 前記層状粘土 鉱物粒子の、 前記繊維内における分散度 Y : Moreover, the wholly aromatic poly Ami de fibers, disconnects along the fiber axis, the longitudinal cross section, observed with a magnification of 100,000 Ri by the electron microscope, 25 mu m 2 observations sectional area S 2 In this case, when the total area S 1 of a plurality of regions where the state of the fiber cross section is changed due to the influence of the layered clay mineral particles is measured, the layered clay mineral particles defined by the following formula (1) are obtained. Of the dispersion Y in the fiber:
Y ( % ) = ( S 1 / S 2 ) X 100 ( 1 ) が、 0.:!〜 40の範囲内にあることが好ましく、 0. 5〜30であることが よ り好ましい。 分散度 Yが 0. 1未満であると、 靱性因子の向上が小 さいことがあり、 また分散度 Yが 40を超えると、 全芳香族ポリ アミ ド、 層状粘土鉱物粒子及び溶媒から調製される紡糸原液の透明性が 低くなり、 かつ成形性も低くなることがある。  Y (%) = (S1 / S2) X 100 (1) is 0 :! It is preferably within a range of from 40 to 40, and more preferably from 0.5 to 30. If the dispersity Y is less than 0.1, the improvement in the toughness factor may be small.If the dispersity Y exceeds 40, it is prepared from wholly aromatic polyamide, layered clay mineral particles and a solvent. The transparency of the spinning dope may be low, and the formability may also be low.
前記顕微鏡観察において、 繊維断面中に認められる繊維状態の変 化は、 当該断面領域中に分布している層状粘土鉱物粒子が、 他の領 域に比較して、 高い分布密度をもつて分布していることに起因する ものである。 本発明においては、 このように、 繊維の全芳香族ポリ アミ ドボリマーマ ト リ ックス中に、 層状粘土鉱物粒子の比較的分布 密度の高い領域を散在分布させることによ り、 得られる繊維の靭性 因子を、 高め得ることが、 初めて見出されたのである。 層状粘土鉱 物粒子の比較的分布密度の高い領域を、 適度に散在分布させるため には、 前記層状粘土鉱物の分散度 Yを、 0.:!〜 40の範囲内にコン ト 口ールすることによつて達成することができる。 In the microscopic observation, the change in the fiber state observed in the cross section of the fiber indicates that the layered clay mineral particles distributed in the cross section area have a higher distribution density than the other areas. This is due to In the present invention, as described above, the wholly aromatic poly It was found for the first time that the toughness factor of the resulting fiber could be increased by interspersing the relatively high density of the layered clay mineral particles in the amorphous volma matrix. In order to moderately disperse the relatively high density distribution of the layered clay mineral particles, the dispersion degree Y of the layered clay mineral should be controlled within the range of 0 :! to 40. This can be achieved by:
図 1は、 本発明の全芳香族ポリ アミ ド延伸繊維の一例の断面を示 すものである。 図 1 において、 繊維断面中に層状粘土鉱物の分布密 度の高い複数の領域が、 短繊維状に散在分布していることが認めら れる。 前記短繊維状領域は繊維軸方向に沿って伸びている。  FIG. 1 shows a cross section of an example of a wholly aromatic polyamide drawn fiber of the present invention. In Fig. 1, it can be seen that multiple areas with a high density of layered clay minerals are scattered and distributed in the form of short fibers in the fiber cross section. The short fibrous region extends along the fiber axis direction.
上述のように、 繊維中に、 層状粘土鉱物粒子の比較的高い分布密 度を有する領域を散在分布させることによ り、 得られる繊維の靭性 因子が向上する理由は、 未だ十分には明らかではないが、 このよ う な高い分布密度で層状粘土鉱物粒子を含む領域は、 それが延伸され たとき、 層状粘土鉱物粒子と、 全芳香族ポリ アミ ドポリマー分子と によるネッ トワーク構造が形成され、 さ らに、 このネッ トワーク構 造が、 延伸により繊維軸方向に沿って配向されるためと推測される 。 このよ うな層状粘土鉱物粒子とポリマーとの配向したネッ トヮー ク構造の形成は、 層状粘土鉱物粒子の含有量が、 比較的少量であつ ても、 靭性因子の向上に大きく寄与するものと思われる。  As described above, it is not yet sufficiently clear why the scattered distribution of regions having relatively high distribution densities of layered clay mineral particles in the fiber improves the toughness factor of the resulting fiber. However, when stretched, the area containing the layered clay mineral particles with such a high distribution density forms a network structure composed of the layered clay mineral particles and the wholly aromatic polyamide polymer molecules. Furthermore, it is assumed that this network structure is oriented along the fiber axis direction by drawing. The formation of such an oriented network structure of the layered clay mineral particles and the polymer seems to greatly contribute to the improvement of the toughness factor even if the content of the layered clay mineral particles is relatively small. .
本発明においては、 物性や製糸時の工程安定性を損なわない範囲 で、 全芳香族ポリアミ ドポリマー中に、 層状粘土鉱物以外のフイラ メ ントを併用することができる。 用いられるフイラ一としては、 繊 維状もしく は、 板状、 鱗片状、 粒状、 不定形状、 破砕品など非繊維 状の充填剤が挙げられるが、 特に非繊維状のものが好ましい。 それ を具体的に例示すれば、 チタン酸カリ ウムゥイスカー、 チタン酸パ リ ウムゥイスカー、 硼酸アルミニウムゥイスカー、 窒化ケィ素ウイ スカー、 マイ力、 タルク、 カオリ ン、 シリ カ、 炭酸カルシウム、 ガ ラスビーズ、 ガラスフレーク、 ガラスマイク ロバノレーン、 ク レー、 二硫化モリ ブデン、 ワラステナイ ト、 酸化チタン、 酸化亜鉛、 ポリ リ ン酸カルシウム、 グラフアイ ト、 金属粉、 金属フレーク、 金属リ ボン、 金属酸化物、 カーボン粉末、 黒鉛、 カーボンフレーク、 鱗片 状カーボンなどが挙げられる。 さらには、 全芳香族ポリアミ ド繊維 の単糸繊度が大きい場合には、 ガラス繊維、 PAN系やピッチ系の炭 素繊維、 ステンレス繊維、 アルミニウム繊維や黄銅繊維などの金属 繊維、 全芳香族ポリアミ ド繊維などの有機繊維、 石膏繊維、 セラミ ック繊維、 アスベス ト繊維、 ジルコニァ繊維、 アルミナ繊維、 シリ 力繊維、 酸化チタン繊維、 炭化ケィ素繊維、 ロックウール、 金属リ ボンなども用いることができる。 これらのフイラ一は 2種以上を併 用してよい。 In the present invention, a filament other than the layered clay mineral can be used together with the wholly aromatic polyamide polymer as long as the physical properties and the process stability during the spinning are not impaired. Examples of the filler used include non-fibrous fillers such as fibrous or plate-like, scaly, granular, irregular, and crushed products, but non-fibrous ones are particularly preferable. Specific examples are potassium titanate whiskers, potassium titanate whiskers, aluminum borate whiskers, and silicon nitride whiskers. Scar, my strength, talc, kaolin, silica, calcium carbonate, glass beads, glass flakes, glass microvanolane, creed, molybdenum disulfide, wallastenite, titanium oxide, zinc oxide, calcium polyphosphate, graph Examples include iron, metal powder, metal flake, metal ribbon, metal oxide, carbon powder, graphite, carbon flake, and flaky carbon. In addition, when the single-filament fineness of the wholly aromatic polyamide fiber is large, glass fiber, PAN-based or pitch-based carbon fiber, stainless steel fiber, metal fiber such as aluminum fiber or brass fiber, and wholly aromatic polyamide Organic fibers such as fibers, gypsum fibers, ceramic fibers, asbestos fibers, zirconia fibers, alumina fibers, silicon fibers, titanium oxide fibers, silicon carbide fibers, rock wool, and metal ribbons can also be used. Two or more of these fillers may be used in combination.
なお、 上記のフイラ一はその表面を公知のカップリ ング剤 (例え ば、 シラン系カップリ ング剤、 チタネー ト系カップリ ング剤など) 、 その他の表面処理剤で処理して用いることもできる。  In addition, the above-mentioned filler may be used by treating its surface with a known coupling agent (for example, a silane coupling agent, a titanate coupling agent, etc.) or other surface treatment agents.
本発明の全芳香族ポリアミ ド繊維においては、 全芳香族ポリ アミ ド 100重量部に対し、 層状粘土鉱物が 0. 05〜20重量部、 好ましく は 0 .:!〜 10重量部、 さらに好ましく は 0. 5〜 5重量部の範囲で含まれて いる必要がある。 層状粘土鉱物の含有量が該全芳香族ポリアミ ド 10 0重量部に対して 0. 05重量部未満である場合には靭性因子の向上が 見られず、 一方 20重量部を超える場合には層状粘土鉱物、 全芳香族 ポリアミ ドおよび溶媒からなる紡糸溶液の透明性が低くなり、 成形 性が乏しくなるので好ましくない。  In the wholly aromatic polyamide fiber of the present invention, the layered clay mineral is contained in an amount of 0.05 to 20 parts by weight, preferably 0.:! It must be contained in an amount of from 10 to 10 parts by weight, more preferably from 0.5 to 5 parts by weight. When the content of the layered clay mineral is less than 0.05 part by weight with respect to 100 parts by weight of the wholly aromatic polyamide, no improvement in the toughness factor is observed. It is not preferable because the spinning solution comprising the clay mineral, the wholly aromatic polyamide and the solvent has low transparency and poor formability.
また、 繊維中の層状粘土鉱物は、 その配向度 A 50 %以上、 好ま しくは 70 %以上、 さ らに好ましく は 80%以上である場合、 機械的物 性 (靭性因子) および熱寸法安定性などの諸物性が向上するので好 ましい。 なお、 層状粘土鉱物粒子の配向度 Aは、 X線解析で測定し た層状粘土鉱物粒子の 001面反射ピークのデパイ環に沿って測定さ れた強度分布から、 下記式で求められるものである。 When the degree of orientation A of the layered clay mineral in the fiber is 50% or more, preferably 70% or more, and more preferably 80% or more, the mechanical properties (toughness factor) and thermal dimensional stability And other physical properties are improved. Good. The degree of orientation A of the layered clay mineral particles can be obtained from the following formula based on the intensity distribution measured along the Depay ring of the 001 surface reflection peak of the layered clay mineral particles measured by X-ray analysis. .
A = ( 180 - w ) / 180 X 100  A = (180-w) / 180 X 100
但し、 式中 wは、 反射ピークのデパイ環に沿って測定された強度分 布の半値幅 (度) を表す。 Here, w represents the half width (degree) of the intensity distribution measured along the Depay ring of the reflection peak.
本発明の全芳香族ポリアミ ド繊維は、 層状粘土鉱物を含有してい ないことを除き、 その他は、 前記全芳香族ポリアミ ド繊維と全く同 一の比較全芳香族ポリアミ ド繊維に比較して、 引張り強さ (T ) が 10%以上向上していることが好ましく、 また、 伸び率 (E ) は 10% 以上向上していることが好ましい。 さらには、 靭性因子 (TF) は 10 %以上、 特に 20%以上向上し、 30以上の靭性因子を有していること が好ましい。 なお、 ここでいぅ靭性因子 (TF) とは、 グラム/デニ ールの単位で測定された引張り強さ (Τ ' ) と%単位で表される伸 び率 (Ε ) の平方根と、 の積、 すなわち Τ ' X ( Ε ) 1 / 2で定義され るものである。 Except that the wholly aromatic polyamide fiber of the present invention does not contain a layered clay mineral, the other is completely the same as the comparative wholly aromatic polyamide fiber, which is exactly the same as the above-mentioned wholly aromatic polyamide fiber. Preferably, the tensile strength (T) is improved by 10% or more, and the elongation (E) is preferably improved by 10% or more. Further, the toughness factor (TF) is improved by 10% or more, particularly 20% or more, and it is preferable that the toughness factor (TF) has 30 or more. Here, the toughness factor (TF) is defined as the square root of the tensile strength (Τ ') measured in grams / denier and the elongation ()) expressed in%. Product, that is, Τ 'X (Ε) 1/2 .
このよ うに靭性因子が 30以上に向上すると、 繊維の強度を向上さ せるために延伸倍率をあげても繊維中の単糸切れが少なくなり (品 質向上) 、 また延伸時の延伸ローラー等への単糸の卷付きが減少す る (工程安定性の向上) 。 特に靭性因子の向上が 10%以上となると 、 延伸工程の安定化効果が大きく なるので好ましい。  When the toughness factor is increased to 30 or more in this manner, even if the draw ratio is increased to improve the strength of the fiber, breakage of single yarn in the fiber is reduced (improvement of quality), and the fiber is drawn to a drawing roller or the like at the time of drawing. The winding of the single yarn is reduced (improvement of process stability). In particular, when the improvement in the toughness factor is 10% or more, the effect of stabilizing the stretching step is increased, which is preferable.
さらに、 本発明の全芳香族ポリ アミ ド繊維は、 本発明の効果を損 なわない範囲内で他の成分、 例えば酸化防止剤、 耐熱安定剤、 耐候 剤、 染料、 帯電防止剤、 難燃剤、 導電剤、 その他の添加剤を含有し ていてもよレ、。  Further, the wholly aromatic polyamide fiber of the present invention may contain other components, for example, an antioxidant, a heat stabilizer, a weathering agent, a dye, an antistatic agent, a flame retardant, as long as the effects of the present invention are not impaired. It may contain conductive agents and other additives.
本発明の全芳香族ポリアミ ド繊維は、 例えば下記の方法によ り製 造することができる。 すなわち、 ( 1 ) 全芳香族ポリ アミ ド、 層状 粘土鉱物および溶媒からなる紡糸原液 (ドープ) を調整する工程、The wholly aromatic polyamide fiber of the present invention can be produced, for example, by the following method. (1) wholly aromatic polyamide, layered A process of preparing a spinning dope comprising a clay mineral and a solvent,
( 2 ) 前記紡糸原液を水性凝固浴中に紡出して凝固させる工程、 ( 3 ) 前記凝固糸を湿式雰囲気中で延伸する工程、 及び ( 4 ) 前記延 伸糸を乾燥熱処理する工程によ り製造することができる。 (2) a step of spinning the raw spinning solution into an aqueous coagulation bath and coagulating; (3) a step of drawing the coagulated yarn in a wet atmosphere; and (4) a step of drying and heat treating the drawn yarn. Can be manufactured.
紡糸原液中の全芳香族ポリ アミ ドに対する層状粘土鉱物の配合割 合は、 前者 100重量部に対して後者が 0. 05〜20質量部、 好ましく は 0 . 1〜10重量部、 特に好ましくは 0. 5〜 5質量部の範囲にコント ロー ルされる。 また、 紡糸原液中のポリマー濃度は、 0. 1〜30質量%で あることが好ましく、 よ り好ましくは 1〜 25質量%であり、 さらに 好ましくは 15〜25質量%である。 さらに、 紡糸原液のヘイズを 10以 下に調製することが好ましく、 よ り好ましくは 5以下である。  The mixing ratio of the layered clay mineral to the wholly aromatic polyamide in the spinning solution is 0.05 to 20 parts by mass, preferably 0.1 to 10 parts by mass, particularly preferably 0.1 to 10 parts by mass for the former 100 parts by weight. It is controlled in the range of 0.5 to 5 parts by mass. Further, the polymer concentration in the spinning dope is preferably 0.1 to 30% by mass, more preferably 1 to 25% by mass, and still more preferably 15 to 25% by mass. Further, the haze of the spinning dope is preferably adjusted to 10 or less, more preferably 5 or less.
なお、 紡糸原液を調製する方法には制限はなく、 例えば (A ) 全 芳香族ポリ アミ ドの溶液に層状粘土鉱物を加える方法、 (B ) 全芳 香族ポリアミ ドの溶液と層状粘土鉱物の分散液とを混合する方法、 及び (C ) 層状粘土鉱物の溶液に全芳香族ポリアミ ドを添加し分散 する方法などがある。  There is no limitation on the method for preparing the spinning stock solution. For example, (A) a method of adding a layered clay mineral to a solution of a wholly aromatic polyamide, (B) a solution of a solution of a whole aromatic polyamide and a solution of a layered clay mineral. There are a method of mixing with a dispersion, and a method of adding and dispersing a wholly aromatic polyamide to a solution of (C) a layered clay mineral.
本発明に用いられる紡糸原液を、 全芳香族ポリ アミ ドポリマー、 層状粘土鉱物粒子及び溶媒から調製に際し、 前記溶媒の一部分に、 前記全芳香族ポリアミ ドポリマーの一部分、 この全芳香族ポリ アミ ドボリマー部分 100質量部に対し、 30〜300質量部の層状粘土鉱物粒 子とからなる溶液 (A ) を調製し、 別に、 前記溶媒の残部と、 前記 全芳香族ポリ アミ ドポリマーの残部とから溶液 Bを調製し、 前記溶 液 Aと前記溶液 Bとを混合し、 このとき、 前記溶液 A及び前記溶液 Bが下記要件 :  When preparing the spinning dope used in the present invention from a wholly aromatic polyamide polymer, layered clay mineral particles and a solvent, a part of the above-mentioned solvent, a part of the above-mentioned wholly aromatic polyamide polymer, this wholly aromatic polyamide polymer part 100 A solution (A) consisting of 30 to 300 parts by mass of the layered clay mineral particles with respect to parts by mass is separately prepared. Separately, a solution B is prepared from the remainder of the solvent and the remainder of the wholly aromatic polyamide polymer. Then, the solution A and the solution B are mixed, and at this time, the solution A and the solution B are as follows:
( 1 ) 溶液 Aの、 剪断速度 0. 1秒—1における粘度が、 剪断速度 10 秒—1における粘度の 15〜 80倍であること、 及び (1) The viscosity of the solution A at a shear rate of 0.1 second- 1 is 15 to 80 times the viscosity at a shear rate of 10 seconds- 1 .
( 2 ) 剪断速度 0. 1秒—1において、 溶液 Aの粘度が、 溶液 Bの粘度 の 4〜20倍であること (2) At a shear rate of 0.1 s- 1 , the viscosity of solution A is 4 to 20 times
を満足するよ うに、 調製することが好ましい。 It is preferable to prepare so as to satisfy the following.
このよ う にすることにより、 紡糸原液中に、 層状粘土鉱物粒子の 分布密度が比較的高い領域を均等に分散分布させることができ、 紡 糸工程が安定すると共に得られる繊維中の層状粘土鉱物粒子の分散 度 Yを所望値にコント ロールして、 得られる繊維の靭性因子向上効 果を大きくすることができる。  By doing so, the region where the distribution density of the layered clay mineral particles is relatively high in the spinning dope can be evenly dispersed and distributed, and the spinning process is stabilized and the layered clay mineral in the fiber obtained is obtained. By controlling the degree of dispersion Y of the particles to a desired value, the effect of improving the toughness factor of the obtained fiber can be increased.
ここで溶液 A中の全芳香族ポリアミ ドに対する層状粘土鉱物の割 合が 30重量部未満になると溶液 Bとの粘度差が小さくなり、 得られ る紡糸原液中に層状粘土鉱物が均一に分散されやすく靱性因子の向 上効果が小さくなることがある。 一方、 それが 300重量部を超える と層状粘土鉱物の分布密度が著しく不均一になり このため紡糸工程 の安定性が低下することがある。  Here, when the ratio of the layered clay mineral to the wholly aromatic polyamide in the solution A is less than 30 parts by weight, the viscosity difference from the solution B becomes small, and the layered clay mineral is uniformly dispersed in the obtained spinning solution. The effect of improving the toughness factor may be reduced. On the other hand, if it exceeds 300 parts by weight, the distribution density of the layered clay mineral becomes extremely non-uniform, which may lower the stability of the spinning process.
また、 剪断速度 0. 1秒- 1における溶液 Aの粘度が溶液 Bの粘度の 4倍未満になると、 層状粘土鉱物が均一に分散しやすく、 このため 、 層状粘土鉱物粒子の比較的大きな分布密度を有する領域の形成が 少なくなり、 靱性因子の向上効果が小さく なることがあり、 一方そ れが 20倍を超えると、 紡糸工程において紡糸原液中の層状粘土鉱物 粒子の比較的分布密度の高い領域の形成が過多になり、 このため、 パック圧上昇などを生じて、 工程安定性が低下することがある。 さ らに、 溶液 Aの剪断速度 0. 1秒- 1における粘度が、 剪断速度 10秒- 1 における粘度の 15倍未満の場合には、 層状粘土鉱物が繊維中に均一 分散しやすく、 このため、 層状粘土鉱物粒子の比較的大きな分布密 度を有する領域の形成が少なくなり、 靭性因子の向上効果が小さく なり、 一方それが 20倍を超えると、 紡糸工程において紡糸原液中の 層状粘土鉱物粒子の比較的分布密度の高い領域の形成が過多になり 、 このため、 工程安定性が低下することがある。 紡糸原液を調整するために使用する溶媒は、 全芳香族ポリアミ ド を溶解するものであれば任意であるが、 アミ ド系極性溶媒を主成分 とするものを用いることが好ましい。 その具体例としては、 例えばAlso, when the viscosity of the solution A at a shear rate of 0.1 sec- 1 is less than 4 times the viscosity of the solution B, the layered clay mineral is easily dispersed uniformly, and therefore, the relatively large distribution density of the layered clay mineral particles In some cases, the effect of improving the toughness factor may be reduced, and if it exceeds 20 times, the region where the distribution density of the layered clay mineral particles in the spinning dope is relatively high in the spinning process. Is excessively formed, which may cause an increase in pack pressure or the like, thereby deteriorating the process stability. Furthermore, when the viscosity of the solution A at a shear rate of 0.1 second- 1 is less than 15 times the viscosity at a shear rate of 10 seconds- 1 , the layered clay mineral is easily dispersed evenly in the fiber. However, the formation of a region having a relatively large distribution density of the layered clay mineral particles is reduced, and the effect of improving the toughness factor is reduced. On the other hand, if it exceeds 20 times, the layered clay mineral particles in the spinning dope during the spinning process The formation of a region having a relatively high distribution density becomes excessive, and therefore, the process stability may decrease. The solvent used for preparing the spinning solution is not particularly limited as long as it can dissolve the wholly aromatic polyamide, but it is preferable to use an amide-based polar solvent as a main component. For example,
N—メチル一 2 —ピロ リ ドン (NMP) 、 N—ェチルー 2 —ピロ リ ド ン、 N, N—ジメチルァセ トアミ ド、 ジメチルホルムアミ ド、 テ ト ラメチル尿素、 へキサメチルホスホルアミ ド、 N—メチルブチロラ クタム等の非プロ ト ン性アミ ド系有機溶媒があげられる。 紡糸原液 の温度は、 全芳香族ポリアミ ドの溶解性に応じて適宜設定すればよ いが、 ポリ メ タフエ二レンイ ソフタルアミ ドの場合には 50〜90°Cの 範囲に設定することが紡糸性の点から好ましい。 N-methyl-1-pyrrolidone (NMP), N-ethyl-2-pyrrolidone, N, N-dimethylacetamide, dimethylformamide, tetramethylurea, hexamethylphosphoramide, N — Nonprotonic amide-based organic solvents such as methylbutyrolactam. The temperature of the undiluted spinning solution may be appropriately set according to the solubility of the wholly aromatic polyamide, but in the case of polymethaphenylene sophthalamide, the spinning ability should be set within the range of 50 to 90 ° C. This is preferred from the viewpoint of
本発明方法において、 紡糸原液は、 通常 10〜30000個の吐出孔を 有する紡糸口金から、 フィ ラメ ント状に、 例えば直接水性凝固浴中 に紡出して凝固させて未延伸繊維を形成する。 ここで使用する水性 凝固浴の組成には特に制限はなく 、 用いられる全芳香族ポリアミ ド および溶媒の種類に応じて適宜選定すればよいが、 従来公知の無機 塩および Zまたは溶媒を含有する水性凝固浴液を使用することがで きる。 具体的には、 全芳香族ポリ アミ ドがポリ メタフエ二レンイソ フタルアミ ドであり、 かつ溶媒が N—メチルー 2—ピロ リ ドン (NM P) の場合、 塩化カルシウム濃度が 34〜42重量%、 NMP濃度が 3〜: 10 重量%の水溶液が好ましいものと して例示される。 この場合、 水性 凝固浴液の温度は 80〜95°Cの範囲が適当であり、 凝固浴中への繊維 の浸漬時間は 1〜11秒の範囲が適当である。  In the method of the present invention, the undiluted fiber is formed by spinning the spinning dope into a filament, for example, directly into an aqueous coagulation bath, and coagulating it, usually from a spinneret having 10 to 30,000 discharge holes. The composition of the aqueous coagulation bath used here is not particularly limited, and may be appropriately selected depending on the type of the wholly aromatic polyamide and the solvent to be used, and may be a conventionally known aqueous solution containing an inorganic salt and Z or a solvent. Coagulation bath solutions can be used. Specifically, when the wholly aromatic polyamide is polymetaphenylene isophthalamide and the solvent is N-methyl-2-pyrrolidone (NMP), the calcium chloride concentration is 34 to 42% by weight, the NMP An aqueous solution having a concentration of 3 to 10% by weight is exemplified as a preferable example. In this case, the temperature of the aqueous coagulation bath is suitably in the range of 80 to 95 ° C, and the time of immersing the fiber in the coagulation bath is suitably in the range of 1 to 11 seconds.
凝固浴から引出された未延伸繊維には溶媒が相当量残留している ため、 該未延伸繊維を水洗して残留溶媒を抽出除去することが好ま しい。 例えば、 凝固浴から引出された未延伸繊維を水浴中に通す方 法や、 この未延伸繊維に水をスプレーする方法等が採用される。 こ こで、 洗浄後の繊維中の溶媒含有率を 30重量%以下にコント口ール することが好ましく、 この範囲を越える場合には、 次の延伸工程で 繊維中に水が浸入しやすくなり、 ボイ ドが生成して繊維強度が低下 しゃすくなる。 Since a considerable amount of solvent remains in the undrawn fiber drawn out of the coagulation bath, it is preferable to wash the undrawn fiber with water to extract and remove the residual solvent. For example, a method of passing undrawn fibers drawn from a coagulation bath through a water bath, a method of spraying water on the undrawn fibers, and the like are adopted. Here, the solvent content in the fibers after washing is controlled to 30% by weight or less. If the ratio exceeds this range, water easily penetrates into the fibers in the next drawing step, and voids are generated to reduce the fiber strength and make the fibers weak.
水洗された未延伸繊維は、 湿式雰囲気中、 好ましくは温水浴中に て、 延伸され、 それと同時に残留する溶媒、 および必要に応じて併 用されている塩化カルシウム等の無機塩が洗浄除去される。 前記延 伸における延伸温度は、 未延伸繊維中に残留している溶媒の量に応 じて、 適宜に設定する。 例えば、 溶媒残留量が、 ポリマー質量に対 して、 50%以上の場合には、 延伸温度を 0〜50°Cにコントロールす ることが好ましく、 また、 溶媒残留量が、 ポリマー質量に対して 50 %未満の場合には、 延伸温度を 50〜: 100°Cにコント 口ールすること が好ましい。 また延伸倍率は、 好ましく は 1. 05倍以上、 より好まし くは 1. 10倍以上、 さらに好ましく は未延伸繊維の最大延伸倍率 (同 一の延伸条件で延伸した際に断糸が発生し始める延伸倍率) の 0. 3 〜 0. 6倍の範囲にコントロールされる。  The undrawn fibers washed with water are drawn in a wet atmosphere, preferably in a warm water bath, and at the same time, the remaining solvent and, if necessary, inorganic salts such as calcium chloride are washed away. . The stretching temperature in the stretching is appropriately set according to the amount of the solvent remaining in the undrawn fiber. For example, when the residual amount of the solvent is 50% or more relative to the mass of the polymer, it is preferable to control the stretching temperature to 0 to 50 ° C. If it is less than 50%, it is preferable to control the stretching temperature to 50 to 100 ° C. The draw ratio is preferably 1.05 times or more, more preferably 1.10 times or more, and still more preferably the maximum draw ratio of undrawn fibers (the yarn breakage occurs when drawn under the same drawing conditions). (The starting draw ratio) is controlled in the range of 0.3 to 0.6 times.
得られた延伸繊維は、 通常 100°C以上の温度で乾燥され、 次いで 必要に応じてさ らに熱延伸された後、 加熱ローラ、 熱板等によ り熱 処理される。  The obtained drawn fiber is usually dried at a temperature of 100 ° C. or higher, and then, if necessary, further hot drawn, and then heat-treated by a heating roller, a hot plate or the like.
このようにして得られた全芳香族ポリアミ ド繊維は、 必要に応じ て トウとして収缶され、 或は卷き取られ、 或は直接後工程に送られ 、 また必要によ り捲縮を付与された後に、 カツ トされ、 短繊維とし て、 その後の所望の工程に提供される。 実施例  The thus obtained wholly aromatic polyamide fiber is collected as a tow as required, or wound up, or sent directly to a post-process, and if necessary, crimped. After being cut, it is cut and provided as short fibers for the subsequent desired steps. Example
以下、 実施例をあげて本発明をさらに具体的に説明する。 なお、 実施例中における各特性値は下記の方法で測定した。  Hereinafter, the present invention will be described more specifically with reference to examples. Each characteristic value in the examples was measured by the following method.
〈固有粘度 IV〉 供試ポリマーを、 NMP中に 0. 5 g Z lOOmlの濃度で溶解し、 この溶 液の粘度をォス トワルド粘度計を用い、 30°Cで測定し、 この測定値 から固有粘度を算出した。 <Intrinsic viscosity IV> The test polymer was dissolved in NMP at a concentration of 0.5 g ZOO ml, the viscosity of this solution was measured at 30 ° C using an Ostwald viscometer, and the intrinsic viscosity was calculated from the measured value. .
〈粘度〉  <Viscosity>
紡糸原液の粘度を、 レオメ ト リ ックサイエンティフィ ック社製粘 度計 (商標 : レオマッ ト 115) を用いて、 70°Cで測定した。  The viscosity of the spinning solution was measured at 70 ° C. using a viscometer (trade name: Reomat 115) manufactured by Rheometric Scientific.
〈繊度〉  <Fineness>
J I S— L— 1015に準じ、 測定した。  It was measured according to JIS-L-1015.
〈引張り強さ、 伸び率〉  <Tensile strength, elongation>
J I S— L— 1015に準じ、 試料長 20mm、 初荷重 0. 05 g / dt ex、 伸張 速度 20mm/分で測定した。  The measurement was performed according to JIS-L-1015 at a sample length of 20 mm, an initial load of 0.05 g / dt ex, and an extension speed of 20 mm / min.
〈層状粘土鉱物の配向度 A〉  <Orientation degree of layered clay mineral A>
X線発生装置 (理学電機社製 RU- 200 B ) を用い、 ターゲッ ト CuK α線、 電圧 45kV、 電流 70mAの条件にて測定した。 入射 X線は、 ォス ミ ック社製多層膜ミラーにより集光および単色化し、 繊維試料を垂 直透過法で測定した。 回折 X線の検出は大きさ 200mm X 250mmのィメ 一ジングプレート (富士写真フィルム製) を用い、 カメラ長 250mm の条件で測定した。 粘土層面の配向度 Aは、 001面反射ピークのデ バイ環に沿って測定された強度分布から、 下記式で求めた。 Using an X-ray generator (RU-200B manufactured by Rigaku Denki Co., Ltd.), measurement was performed under the conditions of a target CuK α ray, a voltage of 45 kV, and a current of 70 mA. Incident X-rays were condensed and monochromated by an Osmic multilayer mirror, and fiber samples were measured by the vertical transmission method. X-ray diffraction was measured using a 200 mm x 250 mm imaging plate (Fuji Photo Film) with a camera length of 250 mm. The degree of orientation A of the clay layer surface was determined by the following equation from the intensity distribution measured along the Debye ring of the 001 surface reflection peak.
Figure imgf000023_0001
Figure imgf000023_0001
但し、 式中 wは、 反射ピークのデパイ環に沿って測定された強度分 布の半値幅 (度) である。 Where w is the half width (degrees) of the intensity distribution measured along the Depay ring of the reflection peak.
〈紡糸原液のヘイズ〉  <Haze of spinning stock solution>
日本電色工業 (株) 製 濁度計 NDH2000を用い光路長 1 cmのセル 中に充填された紡糸原液のヘイズを測定した。  Using a turbidity meter NDH2000 manufactured by Nippon Denshoku Industries Co., Ltd., the haze of the spinning stock solution filled in a cell having an optical path length of 1 cm was measured.
〈層状粘土鉱物粒子の平均層厚さ〉  <Average layer thickness of layered clay mineral particles>
日立製作所製電子顕微鏡 H - 800を用いて測定した繊維縦断面の透 過型電子顕微鏡写真 (TEM写真、 倍率 10万倍) の断面積 25μ πι2中に 観察される全ての層状粘土鉱物粒子の層厚さを計測し、 その平均値 を算出した。 Permeability of fiber longitudinal section measured using Hitachi H-800 electron microscope Over type electron micrograph (TEM photograph, magnification of 100,000) the layer thickness of all of the layered clay mineral particles observed in the cross-sectional area 25 μ πι 2 in measure, and the average value was calculated.
〈層状粘土鉱物の分散度 (Υ) >  <Degree of dispersion of layered clay mineral (Υ)>
前記全芳香族ポリアミ ド繊維を、 その繊維軸に沿って切断し、 こ の縦断面を、 日立製作所製透過型電子顕微鏡 (モデル : Η- 800) に よ り倍率 10万倍で観察し、 25μ m2の観察断面積 S 2当り、 前記層 状粘土鉱物粒子の影響によって、 繊維断面の状態に変化が認められ る複数個の領域の合計面積 S 1 を測定したとき、 下記式 ( 1 ) によ つて規定される、 前記層状粘土鉱物粒子の、 前記繊維内における分 散度 Yを、 下記式により算出した。 The wholly aromatic polyamide fiber was cut along the fiber axis, and the longitudinal section was observed with a transmission electron microscope (model: Η-800) manufactured by Hitachi, Ltd. at a magnification of 100,000 to obtain a 25 μm When the total area S 1 of a plurality of regions in which the state of the fiber cross-section changes due to the influence of the layered clay mineral particles was measured per observation cross-sectional area S 2 of m 2, the following equation (1) was obtained. The dispersion Y of the layered clay mineral particles defined in the fiber in the fiber was calculated by the following equation.
Y (%) = ( S 1 / S 2 ) X10O  Y (%) = (S 1 / S 2) X10O
なお、 '上記を三回測定しその平均値を求めた。  The above was measured three times, and the average value was obtained.
〈溶液の剪断粘度〉  <Shear viscosity of solution>
紡糸原液調整時の溶液の剪断粘度は、 レオメ ト リ ックサイェンテ ィフィ ック社のレオマツ ト 115を用い、 温度 70°Cで測定した。  The shear viscosity of the solution at the time of preparing the spinning stock solution was measured at a temperature of 70 ° C. using a rheomat 115 manufactured by Rheometrics Scientific.
〈繊維中の含有溶媒量 N〉  <Solvent content in fiber N>
延伸前の繊維を遠心分離機 (回転数 5000rpm) に 10分かけ、 次い でこの繊維をメタノール中で 4時間煮沸し、 繊維中の溶媒および水 を抽出する。 抽出後のメタノール溶液重量 M 2および繊維の乾燥重 量 M l を測定し、 抽出液中の溶媒重量濃度 C (%) をガスク ロマ ト グラフによ り求め、 含有溶媒量 Nを下記式よ り算出した。  The fiber before drawing is centrifuged at 5000 rpm for 10 minutes, and then the fiber is boiled in methanol for 4 hours to extract the solvent and water in the fiber. The methanol solution weight M2 after extraction and the dry weight Ml of the fiber were measured, the solvent weight concentration C (%) in the extract was determined by gas chromatography, and the solvent content N was calculated by the following formula. Calculated.
N = (C/100XM 2 ) /M 1 X 100  N = (C / 100XM 2) / M 1 X 100
〈単繊維切れ数〉  <Number of single fibers>
得られた延伸繊維を複数本引き揃えて繊維束となし、 該繊維束の 片端を固定し、 固定部から他端の長さが 20cmになるよ う切断する。 この時の繊維束のフイラメ ント総数を Hとする。 次にこの繊維束を 水で満たしたパス (縦幅 0. 5m ) 中にて縦方向に 10往復させた後に 該繊維束を引き上げ、 パスに残った単糸をカウントする。 この操作 を 5回繰り返しその合計を Mとする。 15000m中の単繊維切れ数 ( X ) を、 下記式よ り算出し、 これを 3回よ り繰り返し平均値を求め た。 A plurality of the drawn fibers are drawn together to form a fiber bundle, one end of the fiber bundle is fixed, and cut so that the length of the other end from the fixing portion is 20 cm. Let H be the total number of filaments at this time. Next, this fiber bundle After making 10 reciprocations in the vertical direction in a path filled with water (length 0.5m), the fiber bundle is pulled up, and the single yarn remaining in the path is counted. This operation is repeated 5 times, and the sum is M. The number of single fiber breaks (X) in 15000 m was calculated by the following formula, and this was repeated three times to obtain an average value.
X = M X 15000/ ( H X T X 0. 2)  X = M X 15000 / (H X T X 0.2)
実施例 1 Example 1
固有粘度 1 · 35dl/ gのポリ メタフエ二レンイソフタルアミ ド 215 gを NMP785 gに溶解し、 均一透明 ドープになるまで攪拌した。 別に 、 層状粘土鉱物として、 ポリオキシプロ ピレンメチルジェチルアン モニゥムクロライ ドで処理されたスメクタイ ト型粘土鉱物 (商標 : ルーセンタイ ト SPN、 コープケミカル製) を、 1重量0/。の濃度にな るよ うに匪 Pに混合して分散させた。 得られた層状粘土鉱物分散液 を、 表 1記載の組成になるよ うに、 上記全芳香族ポリァミ ド溶液に 添加し、 攪拌して紡糸原液 (ドープ) を調製した。 得られた ドープ のヘイズは、 2. 41であった。 得られた ドープを脱泡した後、 これを キヤップ径 0. 07mm, 孔数 100ホールの口金からフィラメント状に、 押出し、 85°Cの 43%塩化カルシウム水溶液 ( 1質量。/。の NMP含有) からなる凝固浴に導入して、 紡糸速度 7 m Z分で凝固させ、 水洗後 、 得られた未延伸繊維を沸水中で 2. 4倍に延伸し、 さらに 120°Cで乾 燥後、 350°Cにおいて 1. 75倍の延伸熱セッ トを施した。 層状粘土鉱 物を含有する全芳香族ポリ ァミ ド繊維を得た。 単繊維の縦断面を TE M測定したところ、 層状粘土鉱物粒子の平均の層厚さは 90nmであつ た。 また X線回折結果から得られた層状粘土鉱物粒子の配向度 Aは 91 %であった。 得られた繊維の引張り強さ、 伸び率、 及び靭性因子215 g of polymetaphenylene isophthalamide having an intrinsic viscosity of 1.35 dl / g was dissolved in 785 g of NMP and stirred until a uniform transparent dope was obtained. Separately, a layered clay mineral, Poriokishipuro pyrene methyl Jefferies chill en Moniumukurorai de treated with Sumekutai preparative clay minerals (trademark Rusentai preparative SPN, manufactured by Co-op Chemical), and 1 weight 0 /. Was mixed with and dispersed in the marauder P so as to obtain a concentration. The obtained layered clay mineral dispersion was added to the wholly aromatic polyimide solution so as to have the composition shown in Table 1, and stirred to prepare a spinning dope (dope). The haze of the obtained dope was 2.41. After defoaming the obtained dope, it was extruded into a filament form from a die having a cap diameter of 0.07 mm and a number of holes of 100, and a 43% aqueous solution of calcium chloride at 85 ° C (containing 1 mass./. NMP). And then coagulated at a spinning speed of 7 mZ, washed with water, stretched the undrawn fiber 2.4 times in boiling water, dried at 120 ° C, and dried at 350 ° C. A 1.75-fold stretching heat set was performed at ° C. A wholly aromatic polyamide fiber containing a layered clay mineral was obtained. When the longitudinal section of the single fiber was measured by TEM, the average layer thickness of the layered clay mineral particles was 90 nm. The degree of orientation A of the layered clay mineral particles obtained from the X-ray diffraction results was 91%. Tensile strength, elongation, and toughness factor of the obtained fiber
( TF) を表 1に示す。 (TF) is shown in Table 1.
実施例 2 実施例 1 と同様にして、 表 1記載の組成を有する全芳香族ポリ ァ ミ ド繊維を製造した。 但し、 層状粘土鉱物と して、 ト リオクチルメ チルアンモ -ゥムク ロライ ドで処理されたスメクタイ ト型層状粘土 鉱物 (商標 : ルーセンタイ ト STN、 コープケミカル製) を使用した 。 この時の紡糸原液のヘイズは 1. 92であった。 また、 層状粘土鉱物 粒子の平均の層厚さは 86nmであり、 配向度 Aは 91 %であった。 得ら れた繊維の引張り強さ、 伸び率、 及び靭性因子 (TF) を表 1 に示す 比較例 1 Example 2 In the same manner as in Example 1, a wholly aromatic polyamide fiber having the composition shown in Table 1 was produced. However, as the layered clay mineral, a smectite-type layered clay mineral (trade name: Lucentite STN, manufactured by Corp Chemical) treated with trioctylmethylammonium-mum chloride was used. The haze of the spinning dope at this time was 1.92. The average layer thickness of the layered clay mineral particles was 86 nm, and the degree of orientation A was 91%. Table 1 shows the tensile strength, elongation, and toughness factor (TF) of the obtained fiber.
実施例 1 と同様にして、 全芳香族ポリァミ ド繊維を製造した。 伹 し、 層状粘土鉱物を含ませなかった。 得られた繊維の引張り強さ、 伸び率、 及び靭性因子 (TF) を表 1 に示す。  In the same manner as in Example 1, a wholly aromatic polyamide fiber was produced.た However, layered clay minerals were not included. Table 1 shows the tensile strength, elongation, and toughness factor (TF) of the obtained fiber.
表 1  table 1
Figure imgf000026_0001
実施例 3
Figure imgf000026_0001
Example 3
固有粘度 1. 9dl / gのポリ メ タフエ二レンイ ソフタルアミ ド 0. 16 質量部を、 NMP1. 46質量部に溶解し、 均一透明 ドープになるまで攪 拌した。 この ドープに、 層状粘土鉱物として、 ポリオキシプロ'ピレ ンメチルジェチルアンモニゥムク 口 ライ ドで処理されたスメクタイ ト型層状粘土鉱物 (商標 : ルーセンタイ ト SPN、 コープケミカル製 ) 0. 18質量部を添加し、 攪拌してポリマー溶液 Aを調製した。 別に 、 ポリ メ タフエ二レンイ ソフタルァミ ド 17. 44質量部を匪 P63. 68重 量部に溶解し、 透明なポリマー溶液 Bを調製した。 0.16 parts by mass of an intrinsic viscosity of 1.9 dl / g of polymethaphenylene isophtalamide was dissolved in 1.46 parts by mass of NMP and stirred until a uniform transparent dope was obtained. To this dope, as a layered clay mineral, 0.18 parts by mass of a smectite-type layered clay mineral (trade name: Lucentite SPN, manufactured by Corp Chemical) treated with polyoxypropyl pyrene methyl getyl ammonium hydroxide mouth light was added. Then, the mixture was stirred to prepare a polymer solution A. Separately Then, 17.44 parts by mass of polymethafenylenisophthalamide was dissolved in 63.68 parts by mass of a marauder to prepare a transparent polymer solution B.
前記ポリマー溶液 Aとポリマー溶液 Bとを混合攪拌後、 この混合 液にさ らに NMP17. 08質量部を加えて、 それによつてポリ メタフエ二 レンイ ソフタルアミ ド 17. 60質量部、 ルーセンタイ ト SPN (商標) 0. 18質量部、 及び匪 P82. 22質量部からなる紡糸原液を調製した。  After mixing and stirring the polymer solution A and the polymer solution B, 17.08 parts by mass of NMP is further added to the mixed solution, whereby 17.60 parts by mass of polymetaphenylene sophthalamide is added, and Rucentite SPN (trademark) ) A spinning dope was prepared comprising 0.18 parts by mass and a marble P82.22 parts by mass.
この紡糸原液を 85°Cに加温し、 孔径 0. 07mm、 孔数 1500の紡糸口金 からフィ ラメ ント状に押し出し、 85°Cの凝固浴中に導入して未延伸 繊維を作製した。 前記凝固浴の組成は、 塩化カルシウム : 40質量% 、 NMP: 5質量%、 水 : 55質量%であり、 浸漬長 (有効凝固浴長) は 100cmであり、 未延伸繊維を速度 7. O m Z分で通過させた後、 いつ たん空気中に引き出した。 この凝固した未延伸フィ ラメ ントを第 1 〜第 3水性洗浄浴中において順次に水洗した。 この水洗における総 浸漬時間は 50秒であった。 なお、 第 1〜第 3水性洗浄浴には、 温度 30°Cの水を用いた。 次に、 この洗浄未延伸フィ ラメ ントを 95°Cの温 水中にて 2. 4倍に延伸し、 引続き 95°Cの温水中に 48秒浸漬して洗浄 後、 表面温度 130°Cのローラーに卷き回して乾熱処理した後、 表面 温度 330°Cの熱板に接触させながら 1. 75倍に延伸して、 ポリ メタフ ェニレンイソフタルアミ ド繊維を製造した。 その繊度は 2. 26dt exで あり、 引張り強さは 5. 16cN/ dt exであり、 伸び率は 43. 2%であった 上記温水延伸工程における最大延伸倍率は 4. 7 (延伸倍率 Z最大 延伸倍率 = 0. 51 ) であり、 延伸前の溶媒含有量は全芳香族ポリ アミ ド 100重量部に対して 5. 0質量部であった。  This spinning stock solution was heated to 85 ° C, extruded in a filament form from a spinneret having a pore size of 0.07 mm and a number of holes of 1500, and introduced into a coagulation bath at 85 ° C to produce an undrawn fiber. The composition of the coagulation bath is as follows: calcium chloride: 40% by mass, NMP: 5% by mass, water: 55% by mass, immersion length (effective coagulation bath length) is 100 cm, and unstretched fiber has a speed of 7. O m After passing through in Z minutes, it was immediately pulled out into the air. The solidified unstretched filaments were sequentially washed with water in the first to third aqueous washing baths. The total immersion time in this washing was 50 seconds. Water at a temperature of 30 ° C. was used for the first to third aqueous washing baths. Next, the unstretched washed film is stretched 2.4 times in hot water of 95 ° C, then immersed in hot water of 95 ° C for 48 seconds, washed, and then rolled at a surface temperature of 130 ° C. After being subjected to dry heat treatment, it was stretched 1.75 times while being in contact with a hot plate having a surface temperature of 330 ° C to produce poly (metaphenylene isophthalamide fiber). The fineness was 2.26 dt ex, the tensile strength was 5.16 cN / dt ex, and the elongation was 43.2%. The maximum draw ratio in the above hot water drawing process was 4.7 (the draw ratio Z The stretching ratio was 0.51), and the solvent content before stretching was 5.0 parts by mass with respect to 100 parts by mass of the wholly aromatic polyamide.
また、 上記紡糸延伸工程における単繊維切れ数は、 長さ 15000 m あたり 6本であり、 層状粘土鉱物の分散度 Yは 3 %であった。 テス ト結果を表 2に示す。 実施例 4 In addition, the number of broken single fibers in the spinning and drawing step was 6 per 15000 m in length, and the degree of dispersion Y of the layered clay mineral was 3%. Table 2 shows the test results. Example 4
実施例 3 と同一のポリ メタフエ二レンイ ソフタルアミ ド粉末 0. 32 質量部を、 一 10°Cに冷却された NMP6. 46質量部中に溶解して透明な ポリマー溶液を調製した。 これに層状粘土鉱物と して、 スメクタイ ト型粘土鉱物 (商標 : ルーセンタイ ト SPN、 コープケミカル製) 0. 7 2質量部を添加し、 攪拌してポリマー溶液 Aを調製した。 別に、 ポ リ メタフヱ二レンイソフタルアミ ド粉末 13. 28質量部を、 _ 10°Cに 冷却された NMP48. 49重量部中に溶解し、 透明なポリマー溶液 Bを調 製した。  0.32 parts by mass of the same polymetaphenyleneisophthalamide powder as in Example 3 was dissolved in 6.46 parts by mass of NMP cooled to 110 ° C to prepare a transparent polymer solution. To this, 0.72 parts by mass of a smectite-type clay mineral (trade name: Lucentite SPN, manufactured by Corp Chemical) was added as a layered clay mineral, followed by stirring to prepare a polymer solution A. Separately, 13.28 parts by mass of a polymetaphenylene isophthalamide powder was dissolved in 48.49 parts by weight of NMP cooled to -10 ° C to prepare a transparent polymer solution B.
前記ポリマー溶液 Aとポリマー溶液 Bとを混合し攪拌後、 この混 合液にさらに NMP30. 73質量部を加え、 それによつてポリ メタフエ二 レンィ ソフタルアミ ド 17. 60質量部と、 ルーセンタイ ト SPN (商標) 6. 80質量部と、 匪 P75. 6質量部からなる紡糸原液が得られた。  After mixing and stirring the polymer solution A and the polymer solution B, 30.73 parts by mass of NMP is further added to the mixed solution, whereby 17.60 parts by mass of polymetaphenylene sophthalamide is added, and Lucentite SPN (trademark) 6.) A spinning dope consisting of 80 parts by mass and P75.6 parts by mass was obtained.
前記紡糸原液を、 実施例 3 と同様の条件 ·操作による紡糸及び延 伸に供し、 単繊維繊度 2. 18dt ex、 引張り強さ 6. 03cN/ dt ex、 伸び率 45. 3 %のポリ メタフエ二レンイソフタルアミ ド繊維を製造した。 前記紡糸延伸工程における単繊維切れ数は、 長さ 15000mあたり 1 0本であり、 層状粘土鉱物の分散度 Yは 25 %であった。 テス ト結果 を表 2に示す。 The spinning solution was subjected to spinning and elongation under the same conditions and operations as in Example 3 to obtain a single fiber fineness of 2.18 dt ex, a tensile strength of 6.03 cN / dt ex, and an elongation of 45.3%. Lenisophthalamide fiber was produced. The number of broken single fibers in the spinning and drawing step was 10 per 15,000 m in length, and the degree of dispersion Y of the layered clay mineral was 25%. Table 2 shows the test results.
表 2 実施例 3 実施例 4Table 2 Example 3 Example 4
)
Figure imgf000029_0001
/0 1.0 4 0 iV - Ar の V 。ノ IスS ., 前 Hff;亩 U. 1 poise) 7 0
)
Figure imgf000029_0001
/ 0 1.0 4 0 iV-V of Ar. No I S., before Hff; 亩 U. 1 poise) 7 0
剪断速度 10秒- 1 poise 90 溶液 Βの粘度:剪断速度 0.1秒- 1 poise) 420
Figure imgf000029_0002
繊度 2 26 I S 引張り強さ (cN/dtex) 5.17 5 2 で
Shear rate 10 sec- 1 poise 90 Viscosity of solution :: Shear rate 0.1 sec- 1 poise) 420
Figure imgf000029_0002
Fineness 2 26 IS Tensile strength (cN / dtex) 5.17 5 2
伸び率 % 43.2 45.3 靭性因子 (TF) 38.5 40.6 単繊維切れ数 (個/ 15000m) 6 10 分散度 Υ (%) 3 25  Elongation% 43.2 45.3 Toughness factor (TF) 38.5 40.6 Number of broken single fibers (pieces / 15000m) 6 10 Dispersity Υ (%) 3 25
* : 全芳香族ポリ アミ ドの質量を基準と した。 実施例 5 *: Based on the mass of wholly aromatic polyamide. Example 5
実施例 3 と同様の条件 · 操作によ り紡糸及び延伸を行った。 但し 、 実施例 3 と同一の紡糸原液を用いたが、 温水延伸倍率は 2.8倍で あり、 330°C熱板延伸倍率は 1.50倍であった。 単繊維繊度 2.22dtex 、 引張り強さ 5.49cN/dtex、 伸び率 40.7%のポリメタフエ二レンィ ソフタルアミ ド繊維が得られた。  Spinning and stretching were performed under the same conditions and operations as in Example 3. However, the same spinning dope as in Example 3 was used, but the hot water draw ratio was 2.8 times and the 330 ° C hot plate draw ratio was 1.50 times. Polymetaphenylene sophthalamide fibers having a single fiber fineness of 2.22 dtex, a tensile strength of 5.49 cN / dtex and an elongation of 40.7% were obtained.
前記温水延伸工程における最大延伸倍率は 4.7 (延伸倍率 Z最大 延伸倍率 = 0.60) であり、 繊維の延伸前の溶媒含有量は、 全芳香族 ポリ アミ ド 100質量部に対して 5.0質量部であった。  The maximum stretching ratio in the hot water stretching step was 4.7 (stretching ratio Z maximum stretching ratio = 0.60), and the solvent content of the fiber before stretching was 5.0 parts by mass with respect to 100 parts by mass of the wholly aromatic polyamide. Was.
またこの繊維の単繊維切れ数は 15000mあたり 8本であった。 テ ス ト結果を表 3に示す。  Also, the number of broken single fibers of this fiber was 8 per 15000 m. Table 3 shows the test results.
実施例 6 実施例 3 と同様の条件 ·操作により紡糸、 延伸を行った。 但し、 実施例 3の紡糸原液を用いたが、 温水延伸前の水洗時間を 34秒とし た。 単繊維繊度 2. 21dt ex、 引張り強さ 6. 12cNZ dt ex、 伸び率 48. 3 % 、 の繊維が得られた。 Example 6 Spinning and stretching were performed under the same conditions and operations as in Example 3. However, the spinning solution of Example 3 was used, but the washing time before hot water drawing was set to 34 seconds. A fiber having a single fiber fineness of 2. 21 dt ex, a tensile strength of 6.12 cNZ dt ex, and an elongation of 48.3% was obtained.
前記温水延伸工程での最大延伸倍率は 4. 9 (延伸倍率ノ最大延伸 倍率 = 0. 49) であり、 延伸前の繊維の含有溶媒量は全芳香族ポリア ミ ド 100質量部に対して 14. 0質量部であつだ。  The maximum stretching ratio in the hot water stretching step is 4.9 (the maximum stretching ratio is 0.49) .The solvent content of the fiber before stretching is 14 parts per 100 parts by mass of the wholly aromatic polyamide. 0 parts by weight.
また前記紡糸 · 延伸工程における繊維の単繊維切れ数は 15000 m あたり 2本であった。 テス ト結果を表 3に示す。  In the spinning and drawing step, the number of broken single fibers was 2 per 15000 m. Table 3 shows the test results.
表 3 Table 3
Figure imgf000030_0001
Figure imgf000030_0001
* : 全芳香族ポリ アミ ド重量を基準にした。  *: Based on the weight of wholly aromatic polyamide.
** : 全芳香族ポリ アミ ド 100質量部当りの含有量 産業上の利用の可能性  **: Content per 100 parts by mass of wholly aromatic polyamide Industrial applicability
本発明の全芳香族ポリ ァミ ド繊維は、 従来の層状粘土鉱物を含有 していないものと比較して、 機械的強度、 ί昨度および靭性因子が向 上しているので、 これらの特性を生かした各種用途に好適に使用す ることができる。 また、 本発明の製造方法によれば、 紡糸延伸時の 単繊維切れの発生が少なく、 安定した品質の繊維を、 工業的に安定 して製造することができる。 The wholly aromatic polyamide fiber of the present invention has a higher mechanical strength, a lower degree of toughness and a higher toughness factor than conventional laminar clay mineral-free fibers. As described above, it can be suitably used for various applications utilizing these characteristics. In addition, according to the production method of the present invention, single-fiber breakage during spinning and drawing is reduced, and fibers of stable quality can be produced industrially and stably.

Claims

δ冃 求 の δ 冃
1 . 全芳香族ポリ アミ ドポリマーからなるマ ト リ ックスと、 その 100質量部に対して 0. 05〜20質量部の割合で、 前記マ ト リ ックス中 に分散分布している層状粘土鉱物粒子とを含有する樹脂組成物を含 むことを特徴とする、 延伸配向された全芳香族ポリ アミ ド繊維。 1. Matrix composed of wholly aromatic polyamide polymer, and layered clay mineral particles dispersed and distributed in the matrix at a ratio of 0.05 to 20 parts by mass with respect to 100 parts by mass. A stretch-orientated wholly aromatic polyamide fiber, characterized by comprising a resin composition containing:
2 . 前記全芳香族ポリアミ ドマ ト リ ックス中に、 前記層状粘土鉱 物粒子の分布密度が比較的高い複数の領域が散在分布している、 請 求の範囲第 1項に記載の全芳香族ポリアミ ド繊維。  2. The wholly aromatic compound according to claim 1, wherein a plurality of regions having a relatively high distribution density of said layered clay mineral particles are scatteredly distributed in said wholly aromatic polyamide matrix. Polyamide fiber.
3 . 前記全芳香族ポリアミ ド繊維を、 その繊維軸に沿って切断し 、 この縦断面を、 電子顕微鏡によ り倍率 10万倍で観察し、 25 z m 2 の観察断面積 S 2当 り、 前記層状粘土鉱物粒子の影響によって、 繊 維断面の状態に変化が認められる複数個の領域の合計面積 S 1 を測 定したとき、 下記式 ( 1 ) によって規定される、 前記層状粘土鉱物 粒子の、 前記繊維内における分散度 Y : 3. The wholly aromatic polyamide fiber is cut along its fiber axis, and the longitudinal section is observed with an electron microscope at a magnification of 100,000, and the observed sectional area S 2 at 25 zm 2 is When the total area S1 of a plurality of regions in which the state of the fiber cross section is changed due to the influence of the layered clay mineral particles is measured, the area of the layered clay mineral particles defined by the following formula (1) is determined. The degree of dispersion Y in the fiber:
Y ( % ) = ( S 1 / S 2 ) X 100 ( 1 ) が、 0. 1〜40の範囲内にある、 請求の範囲第 1又は 2項のいずれか 1項に記載の全芳香族ポリアミ ド繊維。  The wholly aromatic polyamide according to any one of claims 1 or 2, wherein Y (%) = (S1 / S2) X100 (1) is in a range of 0.1 to 40. Fiber.
4 . 前記層状粘土鉱物が、 へク トライ ト、 サボナイ ト、 スチブン サイ ト、 パイデライ ト、 モンモリ 口ナイ ト、 及び膨潤性雲母から選 ばれた少なく とも 1種を含む、 請求の範囲第 1 〜 3項のいずれか 1 項に記載の全芳香族ポリアミ ド繊維。  4. The layered clay mineral according to any one of claims 1 to 3, wherein the layered clay mineral includes at least one selected from hectrite, savonite, stevensite, paiderite, montmorinite, and swelling mica. Item 7. The wholly aromatic polyamide fiber according to any one of the above items.
5 . 前記層状粘土鉱物粒子が、 イ ンター力レー ト剤による処理を 施されたものである、 請求の範囲第 1 〜 3項のいずれか 1項に記载 の全芳香族ポリ アミ ド繊維。  5. The wholly aromatic polyamide fiber according to any one of claims 1 to 3, wherein the layered clay mineral particles have been treated with an intercalating agent.
6 . 前記層状粘土鉱物粒子の平均層厚さが 10〜500nmである、 請 求の範囲第 1 〜 3項のいずれか 1項に記載の全芳香族ポリアミ ド繊 6. The wholly aromatic polyamide fiber according to any one of claims 1 to 3, wherein the average layer thickness of the layered clay mineral particles is 10 to 500 nm.
7. 前記層状粘土鉱物粒子の、 下記式 ( 2 ) によって規定さ れる 配向度 A : 7. The degree of orientation A of the layered clay mineral particles defined by the following formula (2):
A (%) = [ (180- w) /180〕 X100 ( 2 ) (伹し、 式 ( 2 ) 中、 前記層状粘土鉱物粒子の X線解析において、 前記層状粘土鉱物粒子の (001) 面の反射ピークのデパイ環にノロ、つ て測定された強度分布の半値幅を表す)  A (%) = [(180-w) / 180] X100 (2) (伹) In equation (2), in the X-ray analysis of the layered clay mineral particles, the (001) surface of the layered clay mineral particles The half-width of the measured intensity distribution is shown on the depay ring of the reflection peak.
が 50%以上である、 請求の範囲第 1〜 3項のいずれか 1項に記載の 全芳香族ポリアミ ド繊維。 The wholly aromatic polyamide fiber according to any one of claims 1 to 3, wherein the total aromatic polyamide fiber is 50% or more.
8. 前記全芳香族ポリアミ ド繊維の引張り強さ (T) の、 前記層 状粘土鉱物粒子を含有していないことを除き、 その他は前記全芳香 族ポリアミ ド繊維と全く 同一の比較全芳香族ポリアミ ド繊維 引張 り強度 (To) に対する比 (TZTo) が 1,1以上である、 請求 範囲 第 1〜 3項のいずれか 1項に記載の全芳香族ポリアミ ド繊維。  8. Except that the tensile strength (T) of the wholly aromatic polyamide fiber does not contain the above-mentioned layered clay mineral particles, the others are exactly the same as the above wholly aromatic polyamide fiber. Polyamide fiber The wholly aromatic polyamide fiber according to any one of claims 1 to 3, wherein the ratio (TZTo) to the tensile strength (To) is 1,1 or more.
9. 前記全芳香族ポリ アミ ド繊維の伸び率 (Ε) の、 前記層状粘 土鉱物粒子を含有していないことを除き、 その他は前記全芳香族ポ リアミ ド繊維と全く 同一の比較全芳香族ポリアミ ド繊維の引張り伸 び率 (Εο) に対する比 (ΕΖΕο) 力 S、 1.1以上である、 請求の範囲 第 1〜 3項のいずれか 1項に記載の全芳香族ポリアミ ド繊維。  9. Except that the elongation rate (率) of the wholly aromatic polyamide fiber does not contain the above-mentioned layered clay mineral particles, the others are exactly the same as those of the wholly aromatic polyamide fiber. The wholly aromatic polyamide fiber according to any one of claims 1 to 3, wherein a ratio (ΕΖΕο) force S to the tensile elongation (率 ο) of the aromatic polyamide fiber is 1.1 or more.
10. 前記全芳香族ポリ アミ ドの下記式 ( 3 ) によ り規定される靭 性因子 (TF) :  10. Toughness factor (TF) of the wholly aromatic polyamide defined by the following formula (3):
TF = T ' X E ' 1 /2 ( 3 )TF = T 'XE' 1/2 (3)
(上記式 ( 3 ) において、 T' は前記全芳香族ポリアミ ド繊維の g /l.ldtex単位における引張り強さの数値を表し、 E' は前記全芳 香族ポリ アミ ド繊維の%単位における伸び率の数値を表す) が 30以上である、 請求の範囲第 1〜 3項のいずれか 1項に記翁の全 芳香族ポリァミ ド繊維。 (In the above formula (3), T ′ represents the numerical value of the tensile strength of the wholly aromatic polyamide fiber in g / l.ldtex unit, and E ′ represents the tensile strength of the wholly aromatic polyamide fiber in% unit. 4. The whole aromatic polyamide fiber according to any one of claims 1 to 3, wherein the total aromatic polyamide fiber has a value of 30 or more.
11. 前記全芳香族ポリアミ ド繊維の靭性因子 (TF) の、 前記層状 粘土鉱物粒子を含有していないことを除き、 その他は前記全芳香族 ポリ アミ ド繊維とすべて同一の比較全芳香族ポリ アミ ド繊維の靭性 因子 (TFo) に対する比 (TFZ TFo) 力 s、 1. 1以上である、 請求の範 囲第 10項に記載の全芳香族ポリアミ ド繊維。 11. Except for not containing the layered clay mineral particles, the toughness factor (TF) of the wholly aromatic polyamide fiber is the same as that of the wholly aromatic polyamide fiber except for the comparative wholly aromatic polyamide fiber. The wholly aromatic polyamide fiber according to claim 10, wherein the ratio (TFZ TFo) to the toughness factor (TFo) of the amide fiber (TFo) is 1.1 or more.
12. 前記層状粘土鉱物粒子が、 その層間に有機ォニゥムイオンを 有する請求の範囲第 1 〜 3項のいずれか 1項に記載の全芳香族ポリ ァミ ド繊維。  12. The wholly aromatic polyamide fiber according to any one of claims 1 to 3, wherein the layered clay mineral particles have an organic ion between the layers.
13. 全芳香族ポリアミ ドが、 メタ系全芳香族ポリアミ ドから選ば れる、 請求の範囲第 1 〜 3項のぃずれか 1項に記載の全芳香族ポリ ァミ ド繊維。  13. The wholly aromatic polyamide fiber according to any one of claims 1 to 3, wherein the wholly aromatic polyamide is selected from meta-based wholly aromatic polyamides.
14. 溶媒と、 全芳香族ポリ アミ ドと、 前記全芳香族ポリアミ ド 10 0質量部に対して 0. 05〜 20質量部の層状粘土鉱物粒子とを含む紡糸 原液を、 紡糸口金を通して水性凝固浴中に繊維状に押し出して紡出 し、 前記押し出された繊維状原液流を凝固せしめ、 得られた未延伸 繊維を湿式雰囲気中で延伸し、 得られた延伸繊維を乾燥熱処理する ことを特徴とする、 延伸配向された全芳香族ポリアミ ド繊維の製造 方法。  14. A spinning dope containing a solvent, a wholly aromatic polyamide, and 0.05 to 20 parts by mass of a layered clay mineral particle with respect to 100 parts by mass of the wholly aromatic polyamide is subjected to aqueous coagulation through a spinneret. The extruded fibrous stock solution is solidified by extruding into a fibrous bath and spinning, the obtained unstretched fiber is stretched in a wet atmosphere, and the obtained stretched fiber is dried and heat-treated. A method for producing a stretch-orientated wholly aromatic polyamide fiber.
15. 前記紡糸原液が、 前記溶媒の一部と、 前記全芳香族ポリアミ ドの一部と及び該全芳香族ポリアミ ド部分 100質量部に対して、 30 〜 300質量部の層状粘土鉱物粒子とからなる溶液 Aと、 前記溶媒の 残部及び前記全芳香族ポリアミ ドの残部とからなる溶液 Bとを混合 して調製され、 かつ、 下記要件 ( 1 ) 及び ( 2 ) :  15. The spinning dope comprises a part of the solvent, a part of the wholly aromatic polyamide, and 100 parts by mass of the wholly aromatic polyamide portion, and 30 to 300 parts by mass of layered clay mineral particles. And a solution B consisting of the remainder of the solvent and the remainder of the wholly aromatic polyamide, and prepared by mixing the following requirements (1) and (2):
( 1 ) 溶液 Aの剪断速度 0. 1秒—1における粘度が、 剪断速度 10秒一1 における粘度の 15〜 80倍であること、 及び (1) a shear rate of solution A 0. 1 sec - viscosity at 1 that is 15 to 80 times the viscosity at a shear rate of 10 seconds one 1, and
( 2 ) 剪断速度 0. 1秒—1において、 溶液 Aの粘度が、 溶液 Bの粘度 の 4〜20倍であること を満足する請求の範囲第 14又は 15項に記載の全芳香族ポリ アミ ド繊 維の製造方法。 (2) The viscosity of solution A should be 4 to 20 times the viscosity of solution B at a shear rate of 0.1 sec- 1 The method for producing a wholly aromatic polyamide fiber according to claim 14 or 15, which satisfies the following.
16. 前記紡糸原液中の全芳香族ポリ アミ ドの濃度が 0. 1〜30質量 %である、 請求の範囲第 14又は 15項に記載の全芳香族ポリ アミ ド繊 維の製造方法。  16. The method for producing a wholly aromatic polyamide fiber according to claim 14 or 15, wherein the concentration of the wholly aromatic polyamide in the spinning dope is 0.1 to 30% by mass.
17. 前記湿式雰囲気中における前記未延伸繊維に対する延伸倍率 が、 その最大延伸倍率の 0. 3〜0. 6倍の範囲内にある、 請求の範囲第 14又は 15項に記載の全芳香族ポリ ァミ ド繊維の製造方法。  17. The stretch ratio for the undrawn fiber in the wet atmosphere is within the range of 0.3 to 0.6 times the maximum draw ratio, The wholly aromatic poly- lylate according to claim 14 or 15. A method for producing amide fibers.
18. 前記溶媒が、 アミ ド系極性溶媒から選ばれる、 請求の範囲第 14又は 15項に記載の全芳香族ポリアミ ド繊維の製造方法。  18. The method for producing a wholly aromatic polyamide fiber according to claim 14, wherein the solvent is selected from amide-based polar solvents.
19. 前記全芳香族ポリアミ ドが、 メタ系全芳香族ポ リ アミ ドから 選ばれる、 請求の範囲第 14又は 15項に記載の全芳香族ポリ アミ ド繊 維の製造方法。  19. The method for producing a wholly aromatic polyamide fiber according to claim 14 or 15, wherein the wholly aromatic polyamide is selected from a meta-based wholly aromatic polyamide.
PCT/JP2004/013693 2003-09-16 2004-09-13 Wholly aromatic polyamide fiber and process for producing the same WO2005026418A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP04773312A EP1666648A4 (en) 2003-09-16 2004-09-13 Wholly aromatic polyamide fiber and process for producing the same
US10/571,270 US20070031663A1 (en) 2003-09-16 2004-09-13 Wholly aromatic polyamide fiber and process for producing the same
JP2005513982A JP4183710B2 (en) 2003-09-16 2004-09-13 Totally aromatic polyamide fiber and method for producing the same
CA002539124A CA2539124A1 (en) 2003-09-16 2004-09-13 Wholly aromatic polyamide fibers and production process of same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-322785 2003-09-16
JP2003322785 2003-09-16

Publications (1)

Publication Number Publication Date
WO2005026418A1 true WO2005026418A1 (en) 2005-03-24

Family

ID=34308680

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/013693 WO2005026418A1 (en) 2003-09-16 2004-09-13 Wholly aromatic polyamide fiber and process for producing the same

Country Status (9)

Country Link
US (1) US20070031663A1 (en)
EP (1) EP1666648A4 (en)
JP (1) JP4183710B2 (en)
KR (1) KR20060079803A (en)
CN (1) CN100529205C (en)
CA (1) CA2539124A1 (en)
RU (1) RU2316622C1 (en)
TW (1) TW200517535A (en)
WO (1) WO2005026418A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008240222A (en) * 2007-03-26 2008-10-09 Shanghai Tanlon Fiber Co Ltd Method for producing omni-meta aromatic polysulfonamide fiber
JP2010523743A (en) * 2007-04-05 2010-07-15 テイジン・アラミド・ビー.ブイ. Polymer foam
JP2010537070A (en) * 2007-08-22 2010-12-02 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Flame-retardant spun yarns made from blends of fibers derived from diaminodiphenylsulfone and high modulus fibers, fabrics and garments made therefrom, and methods for making them
JP2010537071A (en) * 2007-08-22 2010-12-02 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Spun staple yarns made from blends of rigid rod fibers and fibers derived from diaminodiphenylsulfone, fabrics and garments made therefrom, and methods for making them
JP2020193420A (en) * 2019-05-30 2020-12-03 帝人株式会社 Meta-type whole aromatic polyamide fiber and manufacturing method thereof

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2137341B1 (en) * 2007-04-05 2010-08-18 Teijin Aramid B.V. Particles comprising composite of para-aramid and additive material
GB2549428B (en) 2015-01-06 2021-12-08 Lawter Inc Polyamide resins for coating of sand or ceramic proppants used in hydraulic fracturing
CN104959048A (en) * 2015-05-29 2015-10-07 浙江大学 Reverse osmosis composite membrane containing layered nanometer clay
GB2557856B (en) * 2015-10-20 2022-04-06 Indian Institute Tech Delhi Composite fibers having aligned inorganic nano structures of high aspect ratio and preparation method
JP6708220B2 (en) * 2016-01-26 2020-06-10 ヤマハ株式会社 Reed for woodwind instrument and method for manufacturing reed for woodwind instrument
RU2641931C1 (en) * 2016-12-20 2018-01-23 Федеральное государственное бюджетное образовательное учреждение высшего образования "Волгоградский государственный технический университет" (ВолгГТУ) Fluorinated polyamide composition with reduced combustibility
CN108677267A (en) * 2018-04-27 2018-10-19 东华大学 A kind of preparation method of high-strength daiamid-6 fiber
CN109898172B (en) * 2019-02-27 2021-05-25 圣华盾防护科技股份有限公司 High-strength fiber and life rope

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58136829A (en) * 1982-02-09 1983-08-15 Teijin Ltd Fibrous material, its preparation and brush
JPH0381364A (en) * 1989-08-24 1991-04-05 Ube Ind Ltd Polyamide resin composition for filament and filament made therefrom
JPH05321026A (en) * 1992-05-20 1993-12-07 Toray Ind Inc Heat-resistant fiber
JPH1077536A (en) * 1996-08-09 1998-03-24 Akzo Nobel Nv Para-aromatic polyamide yarn having low linear density filament and its production
JP2001303365A (en) * 2000-02-16 2001-10-31 Teijin Ltd Method for producing meta wholly aromatic polyamide yarn and yarn obtained by the method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3133138A (en) * 1958-12-19 1964-05-12 Du Pont Stretching and heat crystallization of poly(meta-phenylene isophthalamide) fibers
US4758649A (en) * 1986-05-21 1988-07-19 Kuraray Co., Ltd. Heat resistant organic synthetic fibers and process for producing the same
FR2677376B1 (en) * 1991-06-07 1994-04-01 Rhone Poulenc Fibres PROCESS FOR OBTAINING POLYAMIDE YARNS WITH BETTER PRODUCTIVITY.
WO2000034375A1 (en) * 1998-12-07 2000-06-15 Eastman Chemical Company A polymer/clay nanocomposite comprising a clay mixture and a process for making same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58136829A (en) * 1982-02-09 1983-08-15 Teijin Ltd Fibrous material, its preparation and brush
JPH0381364A (en) * 1989-08-24 1991-04-05 Ube Ind Ltd Polyamide resin composition for filament and filament made therefrom
JPH05321026A (en) * 1992-05-20 1993-12-07 Toray Ind Inc Heat-resistant fiber
JPH1077536A (en) * 1996-08-09 1998-03-24 Akzo Nobel Nv Para-aromatic polyamide yarn having low linear density filament and its production
JP2001303365A (en) * 2000-02-16 2001-10-31 Teijin Ltd Method for producing meta wholly aromatic polyamide yarn and yarn obtained by the method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1666648A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008240222A (en) * 2007-03-26 2008-10-09 Shanghai Tanlon Fiber Co Ltd Method for producing omni-meta aromatic polysulfonamide fiber
JP2010523743A (en) * 2007-04-05 2010-07-15 テイジン・アラミド・ビー.ブイ. Polymer foam
JP2010537070A (en) * 2007-08-22 2010-12-02 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Flame-retardant spun yarns made from blends of fibers derived from diaminodiphenylsulfone and high modulus fibers, fabrics and garments made therefrom, and methods for making them
JP2010537071A (en) * 2007-08-22 2010-12-02 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Spun staple yarns made from blends of rigid rod fibers and fibers derived from diaminodiphenylsulfone, fabrics and garments made therefrom, and methods for making them
JP2020193420A (en) * 2019-05-30 2020-12-03 帝人株式会社 Meta-type whole aromatic polyamide fiber and manufacturing method thereof
JP7315378B2 (en) 2019-05-30 2023-07-26 帝人株式会社 Meta-type wholly aromatic polyamide fiber and method for producing the same

Also Published As

Publication number Publication date
RU2006112553A (en) 2007-10-27
JP4183710B2 (en) 2008-11-19
RU2316622C1 (en) 2008-02-10
EP1666648A1 (en) 2006-06-07
CA2539124A1 (en) 2005-03-24
CN100529205C (en) 2009-08-19
JPWO2005026418A1 (en) 2006-11-24
TW200517535A (en) 2005-06-01
EP1666648A4 (en) 2007-10-03
US20070031663A1 (en) 2007-02-08
KR20060079803A (en) 2006-07-06
CN1878894A (en) 2006-12-13

Similar Documents

Publication Publication Date Title
JP4820379B2 (en) Meta-type wholly aromatic polyamide fiber excellent in high-temperature processability and method for producing the same
WO2005026418A1 (en) Wholly aromatic polyamide fiber and process for producing the same
KR100490219B1 (en) Meta-form wholly aromatic polyamide fiber and process for producing the same
EP2231770A1 (en) Polyolefin nanocomposites with functional ionic liquids and carbon nanofillers
US20220403167A1 (en) Composite Fibers Having Aligned Inorganic Nano Structures of High Aspect Ratio and Preparation Method
JP7414000B2 (en) Fiber-reinforced resin prepreg, molded body, fiber-reinforced thermoplastic resin prepreg
JP2007145677A (en) Boron nitride nanotube coated with aromatic polyamide
CN110249083B (en) Method for producing polyetherketoneketone fibers
JP2011162767A (en) Carbon fiber reinforced polyphenylene sulfide resin composition, and molding material and molding using the same
JP3995532B2 (en) Method for producing dense meta-type wholly aromatic polyamide fiber
Tian et al. Scalable non-solvent-induced phase separation fabrication of poly (vinylidene fluoride) porous fiber with intrinsic flame-retardation and hydrophobic properties
JP5255284B2 (en) Molding dope
KR20100105157A (en) Process of producing nano size meta-aramid fibrils
RU2557625C1 (en) Method of obtaining aramid threads modified with carbon nanotubes
JP2006233378A (en) Fully aromatic polyamide fiber
JP2010059384A (en) Fiber-reinforced thermoplastic resin composition having electroconductivity and molded product from the same
JPH10176106A (en) Composite material of glass and polyamide and its preparation
JP2010229591A (en) Method for producing fully aromatic polyamide fiber
JP6356463B2 (en) Totally aromatic polyamide fiber
Tavanaie et al. Production of cationic dyeable poly (ethylene terephthalate) fibers via nanotechnology
JP2006234308A (en) Cloth for bullet-proof wear
RU2734673C1 (en) Polyethylene terephthalate thread and method of production thereof
JP2008038274A (en) Flame retardant aramid fiber containing inorganic carbonate
JP3929342B2 (en) Method for producing dense meta-type wholly aromatic polyamide fiber
JP2003342832A (en) Method for producing meta-type wholly aromatic polyamide fiber having excellent shrinkage stability

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480032866.5

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GM HR HU ID IL IN IS JP KE KG KP KZ LC LK LR LS LT LU LV MA MD MK MN MW MX MZ NA NI NO NZ PG PH PL PT RO RU SC SD SE SG SK SY TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SZ TZ UG ZM ZW AM AZ BY KG MD RU TJ TM AT BE BG CH CY DE DK EE ES FI FR GB GR HU IE IT MC NL PL PT RO SE SI SK TR BF CF CG CI CM GA GN GQ GW ML MR SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005513982

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2007031663

Country of ref document: US

Ref document number: 1274/DELNP/2006

Country of ref document: IN

Ref document number: 10571270

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2539124

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1020067005223

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2004773312

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006112553

Country of ref document: RU

WWP Wipo information: published in national office

Ref document number: 2004773312

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067005223

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 10571270

Country of ref document: US