JPH0248827B2 - GOKUTEIONEKIKASOCHIOYOBISONONTENHOHO - Google Patents

GOKUTEIONEKIKASOCHIOYOBISONONTENHOHO

Info

Publication number
JPH0248827B2
JPH0248827B2 JP5924483A JP5924483A JPH0248827B2 JP H0248827 B2 JPH0248827 B2 JP H0248827B2 JP 5924483 A JP5924483 A JP 5924483A JP 5924483 A JP5924483 A JP 5924483A JP H0248827 B2 JPH0248827 B2 JP H0248827B2
Authority
JP
Japan
Prior art keywords
temperature
gas
valve
heat exchanger
expansion valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5924483A
Other languages
Japanese (ja)
Other versions
JPS59185949A (en
Inventor
Norihide Saho
Seiichi Yoshikawa
Sei Murakami
Yoshihisa Awata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5924483A priority Critical patent/JPH0248827B2/en
Publication of JPS59185949A publication Critical patent/JPS59185949A/en
Publication of JPH0248827B2 publication Critical patent/JPH0248827B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Separation By Low-Temperature Treatments (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は極低温液化装置及びその運転方法に係
り、特に予冷時の運転に好適な極低温液化装置及
びその運転方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a cryogenic liquefaction device and a method of operating the same, and particularly to a cryogenic liquefaction device suitable for operation during precooling and a method of operating the same.

〔発明の背景〕[Background of the invention]

従来の極低温液化装置、例えば、ヘリウム液化
機における予冷時の操作手順を第1図に示す。第
1図はガスヘリウムの液化機を示したもので、液
化機1は、基本的に第1熱交換器2、第2熱交換
器3、第3熱交換器4、第4熱交換器5、第5熱
交換器6と、寒冷発生用の第1膨張タービン7、
第2膨張タービン8およびジユールトムソン弁9
で構成される。圧縮機10で圧縮された常温の高
圧ガスヘリウムは、第1熱交換器2の高温端に流
入する。第1熱交換器2の冷温端より流出した高
圧ガスヘリウムは、流量もしくは圧力調整弁11
を通つてその1部が第1膨張タービン7に配流さ
れ、第1膨張タービン7で寒冷を発生した後、そ
の寒冷を第3熱交換器4内で高圧ガスヘリウムに
与え、再び第2膨張タービン8内で寒冷を発生し
た後、第4熱交換器5の低温端側低圧入口に流入
されて寒冷を第4熱交換器5に与える。ここで、
ジユールトムソン弁9は弁入口側の高圧ガスヘリ
ウムの温度が約20K以下まで降下しないと、実用
上膨張後の寒冷を利用できない。ジユールトムソ
ン弁9の入口温度が20K以下になると、ジユール
トムソン弁9出口の膨張した低温ガスヘリウム
が、第5熱交換器6の低温端入口より熱交換器6
〜2に順次流入し、その寒冷で各熱交換器6〜2
内の高圧ガスヘリウムを冷却する。このようにし
て、しだいにジユールトムソン弁9入口のガスヘ
リウムの温度は降下し、ジユールトムソン弁9出
口で、膨張後の低圧ガスヘリウムの1部が液化
し、気液分離器9′に液化ヘリウムが製造される。
液化機全体が常温の状態から、液化を開始するま
での時間をクールダウン時間と呼ばれており、液
化機を利用する場合、このクールダウン時間は短
い程有利となる。クールダウン時間を短縮させる
一方法として、第5熱交換器6の低温端入口と、
第1熱交換器2の低温端入口とをバイパス弁12
を介して導管13で導通させ、第2膨張タービン
8出口の低温低圧ガスおよびジユールトムソン弁
9で膨張後のガスの1部を、バイパス弁12より
第1熱交換器2の低温端入口に戻す方法がある。
この方法によつて、第5熱交換器6の温度は、第
2膨張タービン8の膨張出口温度約15K以下まで
短時間で冷却する。すなわち、低温側の熱交換
器、例えば、第4熱交換器5及び第5熱交換器6
においては、低圧戻りガスの温度が高いと熱交換
器を通るときの圧損が大きくなり、高圧ガスを所
定流量供給できなくなるが、この温度の高い低圧
戻りガスを導管13に通して高温部分にバイパス
させることによつて圧損をなくせ、所定流量の高
圧ガスを膨張タービン等に供給でき寒冷の発生も
多くなつて早く冷却できる。また、ジユールトム
ソン弁9の入口側の高圧ヘリウムガスの温度が約
20K以上の高い温度の場合には、実用上利用可能
な寒冷が発生されないため、第5熱交換器6の低
圧ガス戻り側には温度の高いガスが流れて第5熱
交換器6の高圧ガスを冷却できなくなるが、この
温度の高いガスを導管13にバイパスさせること
で、第5熱交換器6は第4熱交換器5で冷却され
る高圧ガスによつて徐々に冷却される。その後
は、バイパス弁12を絞り、バイパス流量を止
め、ジユールトムソン弁9の寒冷で液化開始状態
に至る。第2図は、ジユールトムソン弁9出口の
温度計14の温度θと、クールダウン開始から時
間Tの関係およびそれと同時間のバイパス弁12
とジユールトムソン弁9の開度との関係を示して
いる。おのおのの弁は、開度を増す程弁通過ガス
流量が増加する特性を有している。従来のこの弁
開度の設定値変更およびその切換タイミングは、
ジユールトムソン弁9の出口温度降下割合が減少
してきた時点、例えば第2図で液化運転開始、す
なわち、クールダウン開始時点Sから温度降下割
合が減少したA点、切換後の温度降下割合が減少
したB点、その後のC,D点および液化温度とな
つたE点である。従来技術では、この操作を温度
計14の値を入力値、各A〜E点の設定温度値を
設定弁開度への切換条件の判定値とする。シーケ
ンス制御で行つていた。
FIG. 1 shows the operating procedure during precooling in a conventional cryogenic liquefaction device, such as a helium liquefaction machine. FIG. 1 shows a gas helium liquefaction machine. The liquefaction machine 1 basically consists of a first heat exchanger 2, a second heat exchanger 3, a third heat exchanger 4, and a fourth heat exchanger 5. , a fifth heat exchanger 6, and a first expansion turbine 7 for cold generation.
Second expansion turbine 8 and Joel-Thomson valve 9
Consists of. The high pressure gas helium at room temperature compressed by the compressor 10 flows into the high temperature end of the first heat exchanger 2 . The high pressure gas helium flowing out from the cold end of the first heat exchanger 2 is transferred to the flow rate or pressure regulating valve 11.
A part of the gas is distributed to the first expansion turbine 7 through the first expansion turbine 7, and after generating cold in the first expansion turbine 7, the cold is given to high-pressure gas helium in the third heat exchanger 4, and then again to the second expansion turbine. After generating cold in the fourth heat exchanger 8, the cold is introduced into the low-pressure inlet on the low temperature end side of the fourth heat exchanger 5, and the cold is provided to the fourth heat exchanger 5. here,
The Joel-Thomson valve 9 cannot practically utilize the cooling after expansion unless the temperature of the high-pressure gas helium on the valve inlet side drops to about 20K or less. When the inlet temperature of the Joel-Thomson valve 9 becomes 20K or less, the expanded low-temperature gas helium at the outlet of the Joel-Thomson valve 9 flows into the heat exchanger 6 from the low-temperature end inlet of the fifth heat exchanger 6.
〜2 sequentially, and the cold temperature cools each heat exchanger 6〜2.
Cool the high pressure gas helium inside. In this way, the temperature of the gas helium at the inlet of the Joel-Thomson valve 9 gradually decreases, and at the outlet of the Joel-Thomson valve 9, a part of the expanded low-pressure gas helium is liquefied and transferred to the gas-liquid separator 9'. Liquefied helium is produced.
The time it takes for the entire liquefier to start liquefying from room temperature is called a cool-down time, and when using a liquefier, the shorter the cool-down time, the more advantageous it is. As one method of shortening the cool down time, the low temperature end inlet of the fifth heat exchanger 6,
The low temperature end inlet of the first heat exchanger 2 and the bypass valve 12
The low-temperature, low-pressure gas at the outlet of the second expansion turbine 8 and a portion of the gas expanded by the Joel-Thomson valve 9 are passed through the bypass valve 12 to the low-temperature end inlet of the first heat exchanger 2. There is a way to get it back.
By this method, the temperature of the fifth heat exchanger 6 is cooled down to the expansion outlet temperature of the second expansion turbine 8 of about 15 K or less in a short time. That is, the heat exchanger on the low temperature side, for example, the fourth heat exchanger 5 and the fifth heat exchanger 6
, if the temperature of the low-pressure return gas is high, the pressure drop when passing through the heat exchanger becomes large, making it impossible to supply the high-pressure gas at a predetermined flow rate.However, this high-temperature low-pressure return gas is passed through the conduit 13 and bypassed to the high-temperature part. By doing so, pressure loss can be eliminated, and a predetermined flow rate of high-pressure gas can be supplied to the expansion turbine, etc., and cold generation can be increased, resulting in faster cooling. Also, the temperature of the high pressure helium gas on the inlet side of the Joel-Thomson valve 9 is approximately
In the case of a high temperature of 20K or more, practically usable cold is not generated, so the high temperature gas flows to the low pressure gas return side of the fifth heat exchanger 6, and the high pressure gas of the fifth heat exchanger 6 However, by bypassing this high temperature gas to the conduit 13, the fifth heat exchanger 6 is gradually cooled by the high pressure gas cooled by the fourth heat exchanger 5. Thereafter, the bypass valve 12 is throttled, the bypass flow rate is stopped, and the Joel-Thompson valve 9 is cooled to reach a liquefaction start state. FIG. 2 shows the relationship between the temperature θ of the thermometer 14 at the outlet of the Joel-Thomson valve 9 and the time T from the start of cool-down, and the relationship between the temperature θ of the thermometer 14 at the outlet of the Joel-Thomson valve 9 and the bypass valve 12 at the same time.
The relationship between the opening degree of the Joel-Thomson valve 9 and the opening degree of the Joel-Thomson valve 9 is shown. Each valve has a characteristic that the flow rate of gas passing through the valve increases as the degree of opening increases. The conventional setting value change of this valve opening and its switching timing are as follows.
When the temperature drop rate at the outlet of the Joel-Thomson valve 9 begins to decrease, for example, point A where the temperature drop rate decreases from the start of liquefaction operation, that is, the cool-down start point S in Figure 2, the temperature drop rate after switching decreases. point B, then points C and D, and point E, which reached the liquefaction temperature. In the prior art, this operation uses the value of the thermometer 14 as an input value, and the set temperature values at each point A to E as the judgment value for the switching condition to the set valve opening. This was done using sequence control.

この制御法では、クールダウン時間を短縮させ
るためには、以下に述べる欠点が生じる。その第
1は、シーケンス制御の切換回数を増加させ、お
のおのの切換時点に最適な弁開度を設定しなけれ
ばならない。すなわち、温度および弁開度の設定
値は、液化機を実際に液化運転して、温度計14
およびバイパス弁12、ジユールトムソン弁9の
特性を考慮した上で、その液化機に合つた値を決
定しなければならない。これには、多くの時間と
運転費用を必要とする。第2に、クールダウン時
間を短縮するためには、シーケンス切換回数を増
加させなければならない。これは、シーケンスプ
ログラム量が増加し、制御器のコストが上昇す
る。第3に、温度計および弁特性の経年変化、例
えば、温度計の電源および素子の特性変化に伴う
絶対温度値の変化、弁の汚れ、ゴミ等のつまり、
弁棒駆動部の出力変化に伴う実質開度の変化によ
る誤つた制御が生じることである。
In this control method, the following disadvantages occur in order to shorten the cool-down time. First, it is necessary to increase the number of times the sequence control is switched and to set the optimum valve opening degree at each switching point. In other words, the set values for the temperature and valve opening are determined by actually operating the liquefier and measuring the temperature and valve opening using the thermometer 14.
In consideration of the characteristics of the bypass valve 12 and the Joel-Thompson valve 9, values suitable for the liquefier must be determined. This requires a lot of time and operating costs. Second, in order to shorten the cool-down time, the number of sequence changes must be increased. This increases the amount of sequence programs and increases the cost of the controller. Thirdly, changes in the thermometer and valve characteristics over time, such as changes in absolute temperature values due to changes in the power supply and element characteristics of the thermometer, dirt on the valve, clogging due to dust, etc.
The problem is that erroneous control occurs due to changes in the actual opening degree due to changes in the output of the valve stem drive section.

〔発明の目的〕 本発明の目的は、クールダウン時間が短縮で
き、かつ、その制御性が経年的に損われない液化
機のクールダウン制御法を提供することにある。
[Object of the Invention] An object of the present invention is to provide a method for controlling cool-down of a liquefier, which can shorten the cool-down time and whose controllability is not impaired over time.

〔発明の概要〕[Summary of the invention]

本発明は、圧縮機からの冷媒ガスの一部を分岐
し断熱膨張させて寒冷を発生させ、該寒冷を有す
る戻りガスと熱交換させて前記冷媒ガスを冷却
し、該冷却された冷媒ガスを膨張弁によつて断熱
膨張させて液化させるものにおいて、膨張弁下流
側の戻しラインから分岐し熱交換器をバイパスす
る流路と、該流路の戻りガスの流量を調整する弁
と、膨張弁下流側の戻しラインの戻りガス温度を
検出する温度検出器と、該温度検出器の検出した
温度値によつて温度の時間に対する二次微分値を
算出し該二次微分値により弁を制御する制御装置
とを具備した装置とし、膨張弁下流側の戻しライ
ンから分岐し熱交換器をバイパスさせて圧縮機側
に戻す戻りガスの流量を調整する弁を、予冷運転
の間、膨張弁下流側の戻しラインの戻しガス温度
を検出して算出した温度の時間に対する二次微分
値により制御することにより、クールダウン時間
を短縮するとともに、制御性が損なわれないよう
にしたものである。
The present invention branches a part of refrigerant gas from a compressor and adiabatically expands it to generate cold, cools the refrigerant gas by exchanging heat with return gas containing the cold, and cools the cooled refrigerant gas. In a device that is adiabatically expanded and liquefied by an expansion valve, a flow path that branches from a return line downstream of the expansion valve and bypasses a heat exchanger, a valve that adjusts the flow rate of return gas in the flow path, and an expansion valve. A temperature detector detects the return gas temperature in the return line on the downstream side, and a second differential value of temperature with respect to time is calculated based on the temperature value detected by the temperature detector, and the valve is controlled based on the second differential value. During pre-cooling operation, a valve that branches from the return line downstream of the expansion valve, bypasses the heat exchanger, and returns the return gas to the compressor side, is installed on the downstream side of the expansion valve during precooling operation. By controlling the return gas temperature of the return line by detecting and calculating the temperature using the second-order differential value with respect to time, the cool-down time is shortened and controllability is not impaired.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第3図ないし第6図
により説明する。
An embodiment of the present invention will be described below with reference to FIGS. 3 to 6.

第5図に極低温液化装置の一例を示す。本図
は、バイパス弁の制御機構を示したもので、第1
図で示した液化機の第4熱交換器5以降のみ図示
している。本図において、第1図と同符号は同一
部材を示し、また、図示を省略した部分は第1図
と同様であり、説明を省略する。本図が第1図と
異なるのは、温度計14の信号を演算器15に入
力して演算器15によつてバイパス弁12を制御
するようにしている点である。
FIG. 5 shows an example of a cryogenic liquefaction device. This figure shows the control mechanism of the bypass valve.
Only the fourth heat exchanger 5 and subsequent parts of the liquefier shown in the figure are shown. In this figure, the same reference numerals as in FIG. 1 indicate the same members, and the parts omitted from illustration are the same as in FIG. 1, and their explanation will be omitted. This figure differs from FIG. 1 in that the signal from the thermometer 14 is input to a computing unit 15, and the bypass valve 12 is controlled by the computing unit 15.

以下、この制御について説明する。 This control will be explained below.

まず、第3図は、第2図で示したような極低温
液化装置のクールダウン時の温度θと時間Tとの
温度分布モデルを示す。温度θがこのような温度
分布を示すとき、その温度降下割合、すなわち、
時間dT経過前後の温度差dθ(すなわち、一次微分
値)は、各A1〜A11の間で時間の経過とともに第
4図のごとく変化する。第3図の温度分布モデル
は、図中A4の時点でバイパス弁12の開度を大
幅に減少させた場合に生じる。即ち、A6〜A8
時間までは、A6の温度よりも高い値を示す。こ
れは、第5熱交換器6側に流れるジユールトムソ
ン弁9を出たまだ温度の高いガスの流量が多くな
つて、第5熱交換器6での圧損が大きくなり、液
化機への高圧ガスの供給量が減少するとともに、
第5熱交換器6側に流れるジユールトムソン弁9
を出たまだ温度の高いガスの流量が多くなつて、
一時的に第5熱交換器6内で高圧ガスの寒冷を奪
つてしまうからである。この後は、供給される高
圧ガスの寒冷によつて徐々に冷却され高圧側と低
圧側のガス温度のバランスが良くなり、また温度
降下していく。この時点で、さらにバイパス弁1
2の開度を減少させると、上記の理由によりA6
の温度より低くなるのに時間が掛かり、クールダ
ウン時間が長くなる。
First, FIG. 3 shows a temperature distribution model of temperature θ and time T during cool-down of the cryogenic liquefaction device as shown in FIG. When the temperature θ shows such a temperature distribution, the temperature drop rate, that is,
The temperature difference dθ (that is, the first-order differential value) before and after the elapse of time dT changes as time passes between each of A 1 to A 11 as shown in FIG. 4. The temperature distribution model in FIG. 3 occurs when the opening degree of the bypass valve 12 is significantly reduced at point A4 in the figure. That is, the temperature from A 6 to A 8 is higher than the temperature at A 6 . This is because the flow rate of the still-high-temperature gas that has exited the Joel-Thomson valve 9 flowing toward the fifth heat exchanger 6 increases, resulting in a large pressure drop in the fifth heat exchanger 6, which causes high pressure to flow into the liquefier. As the gas supply decreases,
Joel-Thomson valve 9 flowing to the fifth heat exchanger 6 side
As the flow rate of the still-hot gas increases,
This is because the high-pressure gas in the fifth heat exchanger 6 is temporarily deprived of cooling. After this, the supplied high-pressure gas is gradually cooled down, and the gas temperature on the high-pressure side and the low-pressure side becomes well balanced, and the temperature starts to drop again. At this point, additional bypass valve 1
If the opening degree of 2 is decreased, A 6 due to the above reason
It takes time for the temperature to drop below , and the cool-down time becomes longer.

従つて、第4図に示す温度降下割合dθ/dTと
時間Tとの関係で、dθ/dTの曲線が図中右下が
りの場合はバイパス弁12の開度を増加させ、曲
線が図中右上がりの場合はバイパス弁12の開度
を減少させるように制御する。尚、ここで、この
場合は、温度を下げるのが目的であるからθの降
下する方向を正とし上昇する方向を負としてい
る。また、この場合は、さらに制御を簡単にする
ため、第4図の温度降下割合dθ/dTの微分、即
ち、d2θ/dT2(二次微分値)を算出し、d2θ/dT2
<0の場合にはバイパス弁12の開度を増加さ
せ、d2θ/dT2≧0の場合にはバイパス弁12の
開度を減少させるように制御する。
Therefore, in the relationship between the temperature drop rate dθ/dT and the time T shown in FIG. 4, if the curve of dθ/dT is downward to the right in the figure, the opening degree of the bypass valve 12 is increased and the curve is to the right in the figure. In the case of an increase, the opening degree of the bypass valve 12 is controlled to be decreased. Note that in this case, since the purpose is to lower the temperature, the direction in which θ falls is defined as positive, and the direction in which θ increases is defined as negative. In this case, in order to further simplify the control, calculate the differential of the temperature drop rate dθ/dT in Figure 4, that is, d 2 θ/dT 2 (secondary differential value), and calculate d 2 θ/dT 2
When <0, the opening degree of the bypass valve 12 is increased, and when d 2 θ/dT 2 ≧0, the opening degree of the bypass valve 12 is controlled to be decreased.

本発明により、クールダウンを実施した場合の
温度降下曲線を第6図に示す。本制御法によれ
ば、液化機クールダウン開始時点Sより、液化開
始時点Eまでの間、バイパス弁開度は時間ピツチ
dTでゆるやかに減少させることにより、ジユー
ルトムソン弁後の温度θを急速に低下させること
ができ、クールダウン時間を大巾に短縮すること
ができる。
FIG. 6 shows a temperature drop curve when cool-down is performed according to the present invention. According to this control method, from the liquefaction machine cool-down start time S to the liquefaction start time E, the bypass valve opening degree is set at a time interval.
By gradually decreasing dT, the temperature θ after the Joel-Thompson valve can be rapidly lowered, and the cool-down time can be greatly shortened.

また、本制御法では、温度計14からの温度入
力値の差を間接的入力値としているので、温度計
14の入力値の絶対値が、実際の温度と一致する
必要がなく、温度計14の特性例えば温度の降下
とともに出力値が減少するという特性が逆転もし
くは、出力値が一定とならない限り、制御性を損
われることはない。このことは、弁の開度と流量
の特性についても同様で、弁の開度と流量特性、
すなわち、CV値が、ごみや弁棒駆動部の出力変
化に伴う実質弁開度が変化しても、開度の増加と
ともに流量が増加する特性があれば、制御性を損
われることはない。
In addition, in this control method, since the difference between the temperature input values from the thermometer 14 is used as an indirect input value, the absolute value of the input value of the thermometer 14 does not have to match the actual temperature, and the thermometer 14 Controllability will not be impaired unless the characteristic, for example, that the output value decreases as the temperature decreases, is reversed or the output value becomes constant. This also applies to the characteristics of the valve opening and flow rate.
In other words, even if the actual valve opening changes due to dust or a change in the output of the valve stem drive unit, the CV value will not impair controllability as long as the flow rate increases as the opening increases.

また、本制御法では、ジユールトムソン弁後の
実質温度は必要としないため、熱交換器の大きさ
が異なるような機種の異なつた液化機の場合で
も、同一操作の制御法を採用することができ、制
御判定値の選定のための試運転を必要としない。
In addition, since this control method does not require the actual temperature after the Joel-Thomson valve, the same control method can be used even for different types of liquefiers with different heat exchanger sizes. This eliminates the need for trial runs to select control judgment values.

更にまた、本制御法では、バイパス弁の開度増
減の判定を(d2θ/dT2)の≦0,>0のみで行う
だけでよく、制御器の構成および演算プログラム
量が少なくて済み、制御器のコストを低減するこ
とができる。
Furthermore, in this control method, it is only necessary to judge whether to increase or decrease the opening degree of the bypass valve when (d 2 θ/dT 2 ) is ≦0 or >0, and the configuration of the controller and the amount of calculation program can be reduced. , the cost of the controller can be reduced.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明によれば、弁開度の制
御時間ピツチdTを約1分間程度に短かくできる
ので、従来のシーケンス制御における約30分ごと
のシーケンス制御によるクールダウン時間に比
べ、約30%クールダウン時間を短縮することがで
きる。また、制御のための温度演算は温度差を基
準としているので、温度計の経年変化により制御
機能が劣化することがなく、かつ、制御弁の開度
も、微少開度の加算および減算で制御するため、
弁のCV値の経年変化等により制御機能が劣化し
ない効果がある。
As described above, according to the present invention, the control time pitch dT of the valve opening can be shortened to about 1 minute, so compared to the cool-down time of about 30 minutes in conventional sequence control, the control time pitch dT of the valve opening can be shortened to about 1 minute. Cooldown time can be reduced by 30%. In addition, since the temperature calculation for control is based on the temperature difference, the control function does not deteriorate due to aging of the thermometer, and the opening of the control valve is also controlled by adding and subtracting minute openings. In order to
This has the effect of preventing the control function from deteriorating due to changes in the CV value of the valve over time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来技術による液化機の系統図、第2
図は従来技術によるクールダウン時の温度−時間
の関係を示す線図、第3,第4図は本発明による
クールダウン制御法を説明する温度−時間の関係
線図、第5図は本発明を実施した液化機の一例を
示す系統図、第6図は本発明によるクールダウン
時の温度−時間の関係を示す線図である。 1……液化機、2……第1熱交換器、3……第
2熱交換器、4……第3熱交換器、5……第4熱
交換器、6……第5熱交換器、7……第1膨張タ
ービン、8……第2膨張タービン、9……ジユー
ルトムソン弁、9′……気液分離器、10……圧
縮機、11……圧力調整弁、12……バイパス
弁、13……導管、14……温度計、15……演
算器。
Figure 1 is a system diagram of a liquefaction machine according to the prior art;
The figure is a diagram showing the temperature-time relationship during cool-down according to the prior art, Figures 3 and 4 are temperature-time relationship diagrams explaining the cool-down control method according to the present invention, and Figure 5 is a diagram showing the temperature-time relationship according to the present invention. FIG. 6 is a system diagram showing an example of a liquefier in which the method is implemented, and FIG. 6 is a diagram showing the relationship between temperature and time during cool-down according to the present invention. 1... Liquefier, 2... First heat exchanger, 3... Second heat exchanger, 4... Third heat exchanger, 5... Fourth heat exchanger, 6... Fifth heat exchanger , 7...first expansion turbine, 8...second expansion turbine, 9...joule-Thompson valve, 9'...gas-liquid separator, 10...compressor, 11...pressure regulating valve, 12... Bypass valve, 13... Conduit, 14... Thermometer, 15... Arithmetic unit.

Claims (1)

【特許請求の範囲】 1 冷媒ガスを昇圧する圧縮機と、該圧縮機から
の冷媒ガスの一部を分岐し断熱膨張させて寒冷を
発生させ低圧戻りガスに合流させる膨張機と、前
記寒冷を有する低圧戻りガスと熱交換させて前記
冷媒ガスを冷却する熱交換器と、該冷却された冷
媒ガスを断熱膨張させて液化させる膨張弁とから
成る極低温液化装置において、 前記膨張弁下流側の戻しラインから分岐し前記
熱交換器をバイパスする流路と、該流路の戻りガ
スの流量を調整する弁と、前記膨張弁下流側の戻
しラインの戻りガス温度を検出する温度検出器
と、該温度検出器の検出した温度値によつて温度
の時間に対する二次微分値を算出し該二次微分値
により前記弁を制御する制御装置とを具備したこ
とを特徴とする極低温液化装置。 2 圧縮機からの冷媒ガスの一部を分岐し断熱膨
張させて寒冷を発生させ、熱交換器によつて前記
寒冷を有する戻りガスと熱交換させて前記冷媒ガ
スを冷却し、該冷却された冷媒ガスを膨張弁によ
つて断熱膨張させて液化させる極低温液化装置の
運転方法において、 前記膨張弁下流側の戻しラインから分岐し前記
熱交換器をバイパスさせて前記圧縮機側に戻す戻
りガスの流量を調整する弁を、予冷運転の間、前
記膨張弁下流側の戻しラインの戻しガス温度を検
出して算出した温度の時間に対する二次微分値に
より制御することを特徴とする極低温液化装置の
運転方法。
[Scope of Claims] 1. A compressor that boosts the pressure of refrigerant gas, an expander that branches off and adiabatically expands a part of the refrigerant gas from the compressor to generate cold and merges it with low-pressure return gas, and A cryogenic liquefaction device comprising: a heat exchanger that cools the refrigerant gas by exchanging heat with a low-pressure return gas having the refrigerant gas; and an expansion valve that adiabatically expands and liquefies the cooled refrigerant gas, the expansion valve being downstream of the expansion valve. a flow path that branches from the return line and bypasses the heat exchanger; a valve that adjusts the flow rate of return gas in the flow path; and a temperature detector that detects the temperature of the return gas in the return line downstream of the expansion valve; A cryogenic liquefaction device comprising: a control device that calculates a second-order differential value of temperature with respect to time based on the temperature value detected by the temperature detector, and controls the valve based on the second-order differential value. 2. A part of the refrigerant gas from the compressor is branched and adiabatically expanded to generate cold, and a heat exchanger exchanges heat with the return gas having the cold to cool the refrigerant gas, and the cooled gas is cooled. In a method of operating a cryogenic liquefaction device in which refrigerant gas is adiabatically expanded and liquefied by an expansion valve, the return gas is branched from a return line downstream of the expansion valve, bypasses the heat exchanger, and returns to the compressor side. A cryogenic liquefaction method characterized in that a valve that adjusts the flow rate of the expansion valve is controlled by a second-order differential value with respect to time of a temperature calculated by detecting a return gas temperature in a return line downstream of the expansion valve during precooling operation. How to operate the equipment.
JP5924483A 1983-04-06 1983-04-06 GOKUTEIONEKIKASOCHIOYOBISONONTENHOHO Expired - Lifetime JPH0248827B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5924483A JPH0248827B2 (en) 1983-04-06 1983-04-06 GOKUTEIONEKIKASOCHIOYOBISONONTENHOHO

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5924483A JPH0248827B2 (en) 1983-04-06 1983-04-06 GOKUTEIONEKIKASOCHIOYOBISONONTENHOHO

Publications (2)

Publication Number Publication Date
JPS59185949A JPS59185949A (en) 1984-10-22
JPH0248827B2 true JPH0248827B2 (en) 1990-10-26

Family

ID=13107775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5924483A Expired - Lifetime JPH0248827B2 (en) 1983-04-06 1983-04-06 GOKUTEIONEKIKASOCHIOYOBISONONTENHOHO

Country Status (1)

Country Link
JP (1) JPH0248827B2 (en)

Also Published As

Publication number Publication date
JPS59185949A (en) 1984-10-22

Similar Documents

Publication Publication Date Title
JP5785282B2 (en) Control of natural gas liquefaction
US4582519A (en) Gas-liquefying system including control means responsive to the temperature at the low-pressure expansion turbine
JP4563269B2 (en) Refrigeration capacity control device for turbine-type refrigerator
JPH0248827B2 (en) GOKUTEIONEKIKASOCHIOYOBISONONTENHOHO
JPH06265230A (en) Method and device for controlling operation of liquefaction-refrigerating device
JPH01269875A (en) Liquefaction control method and device for liquefying and refrigerating equipment
JP2512041B2 (en) Operation control method for cryogenic refrigerator
JP3847924B2 (en) Operation control device for helium refrigerating machine
JP3465117B2 (en) Helium refrigeration and liquefaction machine and its operation method
JPH05322344A (en) Method and apparatus for controlling operating state of turbine type expansion machine in freezer device
JPH01244254A (en) Method of controlling auxiliary cold source for cryogenic refrigerating plant
JP2793074B2 (en) Operation control method and apparatus for turbine type expander
JPH06101918A (en) Cryogenic refrigerator
JPH08121892A (en) Operation controlling method for turbine type expansion unit
JPH0480558A (en) Helium liquefying refrigerator
JPH0794928B2 (en) Cryogenic refrigerator and operation control method thereof
JPH01127862A (en) Method of controlling expansion valve in cryogenic refrigerator
JPS6136679A (en) Gas liquefier
JPH0579719A (en) Helium liquefaction refrigerator
JPH0425464B2 (en)
JPS6014065A (en) Method of controlling opening of valve on precooling in cryogenic refrigerator
JPH05196314A (en) Helium liquefaction refrigerating plant
JPH0379623B2 (en)
JPH01127860A (en) Method of controlling auxiliary cold source of cryogenic liquefying refrigerator
JPH0250381B2 (en)