JPH0248504B2 - - Google Patents
Info
- Publication number
- JPH0248504B2 JPH0248504B2 JP61162100A JP16210086A JPH0248504B2 JP H0248504 B2 JPH0248504 B2 JP H0248504B2 JP 61162100 A JP61162100 A JP 61162100A JP 16210086 A JP16210086 A JP 16210086A JP H0248504 B2 JPH0248504 B2 JP H0248504B2
- Authority
- JP
- Japan
- Prior art keywords
- plaster
- fiber
- cured product
- producing
- cement
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000011505 plaster Substances 0.000 claims description 26
- 239000010440 gypsum Substances 0.000 claims description 24
- 229910052602 gypsum Inorganic materials 0.000 claims description 24
- 239000000126 substance Substances 0.000 claims description 23
- 239000000835 fiber Substances 0.000 claims description 16
- 238000004519 manufacturing process Methods 0.000 claims description 16
- 239000000463 material Substances 0.000 claims description 15
- 150000004683 dihydrates Chemical class 0.000 claims description 14
- 239000000203 mixture Substances 0.000 claims description 11
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 claims description 10
- 239000004568 cement Substances 0.000 claims description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 9
- 238000013007 heat curing Methods 0.000 claims description 5
- 238000002156 mixing Methods 0.000 claims description 5
- 239000011398 Portland cement Substances 0.000 claims description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 4
- 239000011400 blast furnace cement Substances 0.000 claims description 3
- 239000010881 fly ash Substances 0.000 claims description 3
- 238000001723 curing Methods 0.000 claims description 2
- 230000002787 reinforcement Effects 0.000 claims 1
- 238000007493 shaping process Methods 0.000 claims 1
- 238000000034 method Methods 0.000 description 17
- 239000013078 crystal Substances 0.000 description 15
- 229910001653 ettringite Inorganic materials 0.000 description 13
- 238000000465 moulding Methods 0.000 description 7
- 239000002994 raw material Substances 0.000 description 7
- 238000005452 bending Methods 0.000 description 6
- 239000003562 lightweight material Substances 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 238000007792 addition Methods 0.000 description 4
- 239000000654 additive Substances 0.000 description 4
- 239000010425 asbestos Substances 0.000 description 4
- 229910052895 riebeckite Inorganic materials 0.000 description 4
- 239000002893 slag Substances 0.000 description 4
- 239000003513 alkali Substances 0.000 description 3
- 239000004566 building material Substances 0.000 description 3
- 239000000378 calcium silicate Substances 0.000 description 3
- 229910052918 calcium silicate Inorganic materials 0.000 description 3
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 239000003365 glass fiber Substances 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 230000000704 physical effect Effects 0.000 description 3
- -1 pulp Substances 0.000 description 3
- 239000012783 reinforcing fiber Substances 0.000 description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- 229920000049 Carbon (fiber) Polymers 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- 150000001447 alkali salts Chemical class 0.000 description 2
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 2
- 239000004917 carbon fiber Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- 239000000499 gel Substances 0.000 description 2
- 230000007062 hydrolysis Effects 0.000 description 2
- 238000006460 hydrolysis reaction Methods 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 229920002972 Acrylic fiber Polymers 0.000 description 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 1
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 239000001888 Peptone Substances 0.000 description 1
- 108010080698 Peptones Proteins 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 229920002978 Vinylon Polymers 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- JLFVIEQMRKMAIT-UHFFFAOYSA-N ac1l9mnz Chemical compound O.O.O JLFVIEQMRKMAIT-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 235000011126 aluminium potassium sulphate Nutrition 0.000 description 1
- 150000003862 amino acid derivatives Chemical class 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 229920006231 aramid fiber Polymers 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- 235000011116 calcium hydroxide Nutrition 0.000 description 1
- 239000000920 calcium hydroxide Substances 0.000 description 1
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229910052620 chrysotile Inorganic materials 0.000 description 1
- 239000004567 concrete Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000004134 energy conservation Methods 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000012784 inorganic fiber Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 239000011490 mineral wool Substances 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 229910001562 pearlite Inorganic materials 0.000 description 1
- 235000019319 peptone Nutrition 0.000 description 1
- 239000010451 perlite Substances 0.000 description 1
- 235000019362 perlite Nutrition 0.000 description 1
- 229940050271 potassium alum Drugs 0.000 description 1
- GRLPQNLYRHEGIJ-UHFFFAOYSA-J potassium aluminium sulfate Chemical compound [Al+3].[K+].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O GRLPQNLYRHEGIJ-UHFFFAOYSA-J 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 235000011127 sodium aluminium sulphate Nutrition 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 229920002994 synthetic fiber Polymers 0.000 description 1
- 239000012209 synthetic fiber Substances 0.000 description 1
- CWBIFDGMOSWLRQ-UHFFFAOYSA-N trimagnesium;hydroxy(trioxido)silane;hydrate Chemical compound O.[Mg+2].[Mg+2].[Mg+2].O[Si]([O-])([O-])[O-].O[Si]([O-])([O-])[O-] CWBIFDGMOSWLRQ-UHFFFAOYSA-N 0.000 description 1
- 239000010456 wollastonite Substances 0.000 description 1
- 229910052882 wollastonite Inorganic materials 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
Landscapes
- Curing Cements, Concrete, And Artificial Stone (AREA)
Description
〔産業上の利用分野〕
本発明は、繊維補強せつこう系硬化体の製造方
法に関し、さらに詳しくは内外装材として、耐火
性、寸法精度、柔軟性および湾曲性にも優れた建
築材料およびその製造方法に関する。
〔従来の技術〕
建築用の内外装材として、省資源、省エネルギ
ーの立場から繊維補強せつこう系硬化体の製造方
法が開発され、登録された(特公昭55−46985)。
この繊維補強せつこう系硬化体の製造方法は、二
水せつこうと微粉スラグを主成分とし、微粉スラ
グの刺激剤としてアルカリ塩類物質を添加し、更
に反応促進剤として硫酸アルミニウム含有物質を
添加し、補強繊維として石綿、ガラス繊維、カー
ボン繊維、パルプ、合成繊維等から1〜2種を選
択して混合し、更に必要に応じて軽量骨材を混合
して、円網抄造法、押出成形法、またはモールド
成形法等の方法によつて製造するものである。
さらに本出願人らは特願昭60−295324に焼せつ
こうを含むせつこうとスラグを用いた繊維補強せ
つこう系硬化体およびその製造方法を出願してい
る。
〔発明が解決しようとする問題点〕
特公昭55−46985のような繊維補強せつこう系
硬化体の成形品は、強度が高く、速硬性、耐水
性、耐候性に富み加工性に優れており、安価であ
るが、その反面一般不燃材と同様に硬くてもろい
性質をもつている。
この材料に柔軟性を付与し、加工や取り扱いを
容易にし、材木の性質に近づけるためには、基材
自身に柔軟性を付与する必要がある。
特願昭60−295324は上記従前の発明にさらに改
善を加え、柔軟性を付与し、可撓性に富んだすぐ
れた特性を有する繊維補強せつこう系硬化体およ
びその製造方法を提供している。
本発明はさらにこのようなすぐれた特性を有す
る繊維補強せつこう系硬化体を一層容易に製造す
る方法を提供することを目的とする。
〔問題点を解決するための手段〕
本発明者らは種々研究の結果、このような繊維
補強せつこう系硬化体を製造するには、
(1) 二水せつこうと焼せつこうが重量比で1:9
乃至9:1であるせつこうと水硬性物質とを、
せつこうと水硬性物質との重量比が2:8乃至
8:2の範囲内で混合し、
(2) 該混合物に硫酸アルミニウム含有物質、凝結
遅延剤を添加混合し、
(3) 繊維と水を加え混合して成形し、湿熱養生す
る
ことを特徴とする技術手段を講じた。
この製造方法において、好ましい実施態様とし
て、
(a) 水硬性物質がポルトランドセメント、高炉セ
メント、フライアツシユセメント、アルミナセ
メント、その他の混合セメントであること、
(b) 硫酸アルミニウム含有物質、凝結遅延剤の
各々の添加割合がせつこう、水硬性物質の混合
物に対して0.1〜5重量%であること、
(c) 繊維の混合割合がせつこう、水硬性物質の混
合物に対して5〜30%であること、
(d) 湿熱養生温度が90℃以下、かつ400℃・時以
上で養生すること
とするのが好適である。
〔作用〕
繊維補強せつこう系硬化体の無機質のマトリツ
クスはエトリンガイト、二水せつこう、カルシウ
ムシリケート水和物が主成分であり、このうち、
エトリンガイトと、焼せつこうから生成した二水
せつこうは共に針状結晶であり、この結晶をより
大きく成長させることにより、曲げ強度が高くな
り、また撓み量が大きくなる。
本発明では、スラグやアルカリ塩類物質を用い
る代りにポルトランドセメント等の水硬性物質を
用いることにより、容易、安価にすぐれた性能の
繊維補強せつこう系硬化体を得ることができる。
本発明方法によれば、水硬性物質の加水分解が
始まり、これと二水せつこうと反応して、エトリ
ンガイトの結晶が析出して針状結晶が成長して行
く一方、水硬性物質の加水分解によつて、カルシ
ウムシリケートゲルができ、この時点において、
焼せつこうが凝結を始めるように凝結遅延剤で調
整すると、焼せつこうから二水せつこうの針状結
晶が同時に析出を始め、この針状結晶が大きく成
長する。と同時にエトリンガイトの針状結晶も大
きく成長し、エトリンガイトの針状結晶と焼せつ
こうの水和物(二水せつこう)の針状結晶は入り
乱れて大きく成長する。
ここで使用する焼せつこうとしては、β型半水
せつこうと、可溶性無水せつこうのいずれか1種
または2種の混合物である。
これらの焼せつこうは凝結が早いので、凝結遅
延剤を選定して、凝結時間を遅延させ、結晶化を
調整する必要がある。凝結遅延剤としてはクエン
酸アルカリ、ペプトン、ゼラチン、アミノ酸誘導
物質の1種または2種以上を使用する。
二水せつこうの針状結晶を生成させ、その結晶
を成長させるので、せつこうは焼せつこうを必須
とする。一方、エトリンガイトの生成の観点から
二水せつこうの存在を考慮する。従つて、二水せ
つこうと焼せつこうとは1:9乃至9:1とし、
好ましくは3:7乃至7:3である。
水硬性物質はポルトランドセメント、高炉セメ
ント、フライアツシユセメント、アルミナセメン
ト、その他混合セメントを用いる。ただしエトリ
ンガイトの成長に十分なアルミナ原料を含まない
ときはこれを補充する。
硫酸アルミニウム含有物質としては、たとえば
硫酸アルミニウム、好適には無水硫酸アルミニウ
ム、ナトリウム明バン、カリ明バンが含まれ、そ
の添加量は主原料に対して0.1〜5重量%、好適
には0.5〜2.0重量%である。
この添加剤の添加量は上記のそれぞれの下限以
下では添加効果が少なく、また上限値以上の場合
は得られる硬化体の強度低下をもたらす。
補強繊維としては無機質繊維および有機質繊維
が使用でき、前者には、たとえば石綿(クリソタ
イル、アモーサイトを含む)、岩綿、ガラス繊維
(無アルカリガラス、低アルカリガラス、耐アル
カリ性ガラスを含む)、スチール繊維(鉄系、ス
テンレスを含む)、ワラストナイト、雲母片が含
まれ、後者にはたとえばカーボン繊維、合成化学
繊維のアラミド系繊維、ビニロン繊維、アクリル
繊維、ポリプロピレン繊維、ナイロン繊維、パル
プ繊維、天然性植物繊維が含まれる。これらの繊
維長は作業性、硬化体の加工性、曲げ強度などを
考慮して適宜選択することができるが、繊維の長
さとして0.5〜50mm、好適には2〜10mmである。
これらの繊維の中から1種または2種以上添加す
ることが可能であり、例えば石綿とガラス繊維、
石綿とポリプロピレン繊維等である。
補強繊維を添加すると硬化体の成形、保形性を
助けると共に、硬化体の物性、特に曲げ強度と靭
性が向上する。その添加量は主原料に対して15〜
30重量%、好適には10〜25重量%である。添加量
が30重量%を越えると曲げ強度が低下し、保形性
も劣るものとなる。
軽量化を行う場合は無機質、有機質の軽量材を
使用することが可能であり、無機質軽量材として
は例えばシラスバルーン、パーライト、発泡軽量
骨材、合成ゼオライトが使用され、有機質軽量材
として例えば木屑、発泡性物質であるスチレン発
泡体が有効である。また耐候性の改善を目的とす
る場合はセメントコンクリートで使用される軽砂
が使用される。軽量材の添加量は主成分に対して
1〜25重量%、好適には10〜20重量%である。軽
量材を添加すると硬化体の嵩比重が小となるの
で、添加量が25重量%を越すと全般的に物性が低
下し、1重量%以下ではその添加効果が少ない。
次に成形方法として、公知のいずれの方法でも
適用することが可能であり限定されない。たとえ
ば流し込み方法、加圧成形方法、押出成形方法、
抄造方法などがある。
硬化体の調合原料に加える水の量は成形方法に
よつて異なり、その成形方法に適した水量を適宜
選ぶことができる。
本発明によつて得られた硬化体は本質的に主原
料の水硬性物質中の酸化カルシウム(CaO)、酸
化アルミニウム(Al2O3)と二水せつこう
(CaSO4・2H2O)との反応によつて生成したエ
トリンガイト(3CaO・Al2O3・3CaSO4・31〜
32H3O)、焼せつこうから生成した針状の二水せ
つこう、これらの結晶体をとりまくカルシウムシ
リケート水和物、および未反応の余剰の二水せつ
こうよりなるものであり、この硬化体が示す高強
度は初期材令においては上記エトリンガイトと焼
石こうから生成した針状のせつこうによつて、ま
た長期材令では水硬性物質の水硬性によつてそれ
ぞれ確保されているものである。
また、エトリンガイトを短期でしかも生成量を
多くする場合には水酸化アルミニウム含有物質、
例えば赤泥を混合することができる。
硬化体の養生としては90℃以下かつ400℃・時
以上で湿熱養生を行う。湿熱温度が90℃を越える
と二水せつこうの脱水や生成したエトリンガイト
の分解が発生する。400℃・時以上では水硬性物
質の加水分解を起こし、上記各種の結晶体やゲル
物質を生成するために必要である。また夏場のと
きには常温で養生してもよいが200℃・時以上が
好ましい。
上記水酸化アルミニウム含有物質、および硫酸
アルミニウム含有物質の添加効果としてはこれら
添加剤が相乗的にエトリンガイトの生成を促進す
るものでありこのエトリンガイトの生成は本発明
の硬化体に初期材令における高強度、すなわち早
硬性および耐水性を付与するものである。
しかして、本発明の上記の硬化体はさらにマト
リツクス中の二水せつこうの針状結晶の優れた効
果により引張強度、柔軟性、可撓性、湾曲性に富
んだ特性を示すものである。
〔実施例〕
次に、本発明を実施例によつて具体的に説明す
るが、本発明はその要旨を越えない限りは以下の
実施例に限定されるものではない。
第1表、No.1〜No.13に示した配合に従つて、主
原料、副原料、添加剤を配合し、水を加え混合し
てスラリー状として、円網式抄造法によつて抄き
上げ、メーキングロール上に厚さ6mmまで積層さ
せたものを切断展開して生シートを得た。この生
シートを60℃で24時間蒸気養生し、さらに7日間
自然養生し、乾燥して、本発明の実施例のせつこ
う系硬化体を得た。
第1表にはNo.13として従来法による配合で製造
した比較例を併せて示した。
また第1表にこれらの物性値を示した。表中の
軽量材はパーライト、添加剤のA,Bは消石灰、
硫酸アルミニウム、アミノ酸系凝結遅延剤であ
る。
実施例は比較例に比し、乾燥時の曲げ強度、た
わみが向上し、長さ変化率が低減した。また吸水
時の曲げ強度、たわみが向上し、建築材料として
用いる場合にわずかに湿潤させてコーナー部等を
施工することが容易となつた。
[Industrial Application Field] The present invention relates to a method for producing a fiber-reinforced plaster-based cured body, and more specifically to a building material that has excellent fire resistance, dimensional accuracy, flexibility, and bendability, and its use as interior and exterior materials. Regarding the manufacturing method. [Prior Art] A method for manufacturing fiber-reinforced plaster-based hardened materials was developed and registered as interior and exterior materials for buildings from the standpoint of resource and energy conservation (Japanese Patent Publication No. 55-46985).
This method for producing a fiber-reinforced gypsum-based cured product consists of dihydrate gypsum and finely divided slag as the main components, an alkali salt substance as a stimulant for the finely divided slag, and an aluminum sulfate-containing substance as a reaction accelerator. One or two types of reinforcing fibers are selected and mixed from asbestos, glass fiber, carbon fiber, pulp, synthetic fiber, etc., and if necessary, lightweight aggregate is further mixed to form a circular mesh, extrusion molding method, etc. Alternatively, it is manufactured by a method such as a molding method. Furthermore, the present applicants have applied for a fiber-reinforced plaster-based hardened body using plaster containing calcined plaster and slag in Japanese Patent Application No. 60-295324, and a method for producing the same. [Problems to be solved by the invention] Molded products made of fiber-reinforced gypsum cured products such as those disclosed in Japanese Patent Publication No. 55-46985 have high strength, quick hardening, water resistance, weather resistance, and excellent workability. Although it is cheap, it is hard and brittle like other noncombustible materials. In order to impart flexibility to this material, make it easier to process and handle, and approximate the properties of lumber, it is necessary to impart flexibility to the base material itself. Japanese Patent Application No. 60-295324 further improves the above-mentioned previous invention to provide a fiber-reinforced plaster-based cured product having excellent flexibility and flexibility, and a method for producing the same. . A further object of the present invention is to provide a method for producing a fiber-reinforced gypsum cured product having such excellent properties more easily. [Means for solving the problem] As a result of various studies, the present inventors have found that in order to produce such a fiber-reinforced gypsum-based cured product, (1) the weight ratio of dihydrate and calcined gypsum is 1:9
to 9:1 plaster and hydraulic material,
Mix plaster and hydraulic material in a weight ratio of 2:8 to 8:2, (2) add and mix an aluminum sulfate-containing material and a setting retarder to the mixture, and (3) mix fibers and water. A technical measure was taken that featured the addition, mixing, molding, and moist heat curing. In this manufacturing method, as a preferred embodiment, (a) the hydraulic substance is Portland cement, blast furnace cement, flyash cement, alumina cement, or other mixed cement; (b) a substance containing aluminum sulfate or a setting retarder is used; The proportion of each added is 0.1 to 5% by weight based on the mixture of plaster and hydraulic substances; (c) The proportion of fibers added is 5 to 30% based on the mixture of plaster and hydraulic substances; (d) Moist heat curing It is preferable to cure at a temperature of 90°C or lower and 400°C/hour or higher. [Function] The inorganic matrix of the fiber-reinforced gypsum-based hardened product is mainly composed of ettringite, gypsum dihydrate, and calcium silicate hydrate.
Both ettringite and dihydric gypsum produced from calcined gypsum are needle-shaped crystals, and by growing these crystals larger, the bending strength becomes higher and the amount of deflection becomes larger. In the present invention, by using a hydraulic substance such as Portland cement instead of using slag or an alkali salt substance, a fiber-reinforced gypsum-based hardened body with excellent performance can be obtained easily and inexpensively. According to the method of the present invention, hydrolysis of the hydraulic substance begins, and this reacts with gypsum dihydrate to precipitate ettringite crystals and grow into needle-like crystals. Thus, a calcium silicate gel is formed, and at this point,
When the setting retardant is used to make the calcined gypsum begin to set, needle-shaped crystals of dihydrate gypsum begin to precipitate from the calcined gypsum at the same time, and these needle-shaped crystals grow larger. At the same time, the needle-like crystals of ettringite grow large, and the needle-like crystals of ettringite and the needle-like crystals of calcined gypsum hydrate (dihydrate) intermingle and grow large. The calcined plaster used here is one or a mixture of two of β-type hemihydrate plaster and soluble anhydrous plaster. Since these calcined plasters set quickly, it is necessary to select a setting retarder to delay the setting time and control crystallization. As the setting retarder, one or more of alkali citrate, peptone, gelatin, and amino acid derivatives are used. Since needle-shaped crystals of dihydrate plaster are generated and the crystals are grown, calcined plaster is essential for plaster. On the other hand, the presence of gypsum dihydrate is considered from the viewpoint of the formation of ettringite. Therefore, dihydrate and calcined plaster should be 1:9 to 9:1,
Preferably the ratio is 3:7 to 7:3. The hydraulic material used is Portland cement, blast furnace cement, flyash cement, alumina cement, and other mixed cements. However, if sufficient alumina raw material is not included for the growth of ettringite, this is replenished. Examples of aluminum sulfate-containing substances include aluminum sulfate, preferably anhydrous aluminum sulfate, sodium alum, and potassium alum, and the amount added is 0.1 to 5% by weight, preferably 0.5 to 2.0% by weight based on the main raw material. Weight%. If the amount of this additive is below each of the above lower limits, the effect of the addition will be small, and if it is above the upper limit, the strength of the resulting cured product will be reduced. Inorganic fibers and organic fibers can be used as reinforcing fibers, and the former include, for example, asbestos (including chrysotile and amosite), rock wool, glass fiber (including alkali-free glass, low-alkali glass, and alkali-resistant glass), and steel. Fibers (including iron-based and stainless steel), wollastonite, and mica flakes are included, and the latter include carbon fibers, aramid fibers of synthetic chemical fibers, vinylon fibers, acrylic fibers, polypropylene fibers, nylon fibers, pulp fibers, Contains natural plant fibers. The length of these fibers can be appropriately selected in consideration of workability, workability of the cured product, bending strength, etc., but the length of the fibers is 0.5 to 50 mm, preferably 2 to 10 mm.
It is possible to add one or more types of these fibers, such as asbestos and glass fiber,
These include asbestos and polypropylene fibers. Addition of reinforcing fibers not only helps the molding and shape retention of the cured product, but also improves the physical properties of the cured product, especially its bending strength and toughness. The amount added is 15~15% to the main raw material.
30% by weight, preferably 10-25% by weight. If the amount added exceeds 30% by weight, the bending strength will decrease and the shape retention will also be poor. When reducing weight, it is possible to use inorganic or organic lightweight materials. Examples of inorganic lightweight materials include shirasu balloons, perlite, foamed lightweight aggregate, and synthetic zeolite, and examples of organic lightweight materials include wood chips, Styrene foam, which is an expandable material, is effective. Also, when the purpose is to improve weather resistance, light sand, which is used in cement concrete, is used. The amount of the lightweight material added is 1 to 25% by weight, preferably 10 to 20% by weight, based on the main component. When a lightweight material is added, the bulk specific gravity of the cured product becomes small, so if the amount added exceeds 25% by weight, the physical properties generally deteriorate, and if the amount added is less than 1% by weight, the effect of the addition is small. Next, the molding method is not limited and any known method can be used. For example, pouring method, pressure molding method, extrusion molding method,
There are papermaking methods. The amount of water added to the raw material for preparing the cured product varies depending on the molding method, and the amount of water suitable for the molding method can be appropriately selected. The cured product obtained by the present invention essentially contains calcium oxide (CaO), aluminum oxide (Al 2 O 3 ), and dihydric acid (CaSO 4 2H 2 O) in the hydraulic material as the main raw material. Ettringite (3CaO・Al 2 O 3・3CaSO 4・31~
32H 3 O), acicular dihydrate produced from calcined gypsum, calcium silicate hydrate surrounding these crystals, and unreacted surplus dihydrate, and this hardened product The high strength shown by is ensured by the needle-shaped plaster formed from the above-mentioned ettringite and calcined gypsum at the early stage of the timber, and by the hydraulic properties of the hydraulic substance at the long stage of the timber. In addition, when producing ettringite in a short period of time and in large quantities, aluminum hydroxide-containing substances,
For example, red mud can be mixed. For curing of the cured product, moist heat curing is performed at a temperature of 90°C or lower and 400°C/hour or higher. When the moist heat temperature exceeds 90℃, dehydration of dihydrate gypsum and decomposition of generated ettringite occur. Temperatures above 400°C/hour cause hydrolysis of hydraulic substances, which is necessary to produce the various crystals and gel substances mentioned above. In addition, in the summer, it may be cured at room temperature, but preferably at 200°C/hour or higher. The effect of adding the aluminum hydroxide-containing substance and the aluminum sulfate-containing substance is that these additives synergistically promote the production of ettringite, and the production of ettringite gives the cured product of the present invention high strength at the initial stage. That is, it imparts quick hardening properties and water resistance. Therefore, the above-mentioned cured product of the present invention exhibits properties rich in tensile strength, softness, flexibility, and bendability due to the excellent effects of the acicular crystals of gypsum dihydrate in the matrix. [Examples] Next, the present invention will be specifically explained with reference to Examples, but the present invention is not limited to the following Examples unless the gist thereof is exceeded. According to the formulations shown in Table 1, No. 1 to No. 13, the main raw materials, auxiliary raw materials, and additives are blended, water is added and mixed to form a slurry, and the slurry is made into a paper using the circular mesh method. The material was rolled up, laminated on a making roll to a thickness of 6 mm, and then cut and developed to obtain a green sheet. This green sheet was steam-cured at 60° C. for 24 hours, further naturally cured for 7 days, and dried to obtain a cured plaster-based material of an example of the present invention. Table 1 also shows Comparative Example No. 13, which was manufactured using a conventional method. Table 1 also shows these physical property values. The lightweight material in the table is pearlite, additives A and B are slaked lime,
Aluminum sulfate, amino acid-based setting retarder. As compared to the comparative example, the bending strength and deflection during drying of the example were improved, and the rate of change in length was reduced. In addition, the bending strength and deflection when water is absorbed are improved, and when used as a building material, it becomes easier to construct corners etc. with a slight amount of moisture.
本発明方法は水硬性物質を用いて繊維補強せつ
こう系硬化成形体のマトリツクス中に二水せつこ
うの針状結晶を形成させることにより、高強度で
耐水耐候性に富み加工性に優れ、柔軟性、可撓
性、湾曲性に富んだ成形体を、安価に合理的に製
造することを可能とした。
また本発明方法により製造した硬化体は建築材
料としてわずかに湿潤させて撓ませて接着する場
合にすぐれた特性を有している。
従つて本発明の工業的価値はきわめて大きいも
のである。
The method of the present invention uses a hydraulic substance to form acicular crystals of dihydrate in the matrix of a fiber-reinforced gypsum-based cured molded product, which has high strength, excellent water and weather resistance, excellent workability, and flexibility. This makes it possible to rationally manufacture a molded article with excellent flexibility, flexibility, and bendability at low cost. Further, the cured product produced by the method of the present invention has excellent properties when it is used as a building material and is bonded by being slightly moistened and flexed. Therefore, the industrial value of the present invention is extremely large.
Claims (1)
1:9乃至9:1であるせつこうと水硬性物質と
を、せつこうと水硬性物質との重量比が2:8乃
至8:2の範囲内で混合し、該混合物に、硫酸ア
ルミニウム含有物質および凝結遅延剤を添加混合
し、繊維と水を加え混合して成形し、湿熱養生す
ることを特徴とする繊維補強せつこう系硬化体の
製造方法。 2 水硬性物質がポルトランドセメント、高炉セ
メント、フライアツシユセメント、アルミナセメ
ント、その他の混合セメントであることを特徴と
する特許請求の範囲第1項に記載の繊維補強せつ
こう系硬化体の製造方法。 3 硫酸アルミニウム含有物質、凝結遅延剤の
各々の添加割合がせつこう、水硬性物質の混合物
に対して0.1〜5重量%であることを特徴とする
特許請求の範囲第1項に記載の繊維補強せつこう
系硬化体の製造方法。 4 繊維の混合割合がせつこう、水硬性物質の混
合物に対して5〜30重量%であることを特徴とす
る特許請求の範囲第1項に記載の繊維補強せつこ
う系硬化体の製造方法。 5 湿熱養生温度が90℃以下、かつ400℃・時以
上で養生することを特徴とする特許請求の範囲第
1項に記載の繊維補強せつこう系硬化体の製造方
法。[Scope of Claims] 1 Gypsum dihydrate and calcined gypsum are mixed in a weight ratio of 1:9 to 9:1, and a hydraulic substance is used in a weight ratio of 2:8 to 9:1. Fiber-reinforced plaster characterized by mixing within the range of 8:2, adding and mixing an aluminum sulfate-containing substance and a setting retarder to the mixture, adding fibers and water, mixing, shaping, and moist heat curing. Method for producing a cured product. 2. The method for producing a fiber-reinforced plaster-based cured body according to claim 1, wherein the hydraulic substance is Portland cement, blast furnace cement, flyash cement, alumina cement, or other mixed cement. 3. The fiber reinforcement according to claim 1, wherein the aluminum sulfate-containing substance and the setting retarder are each added in an amount of 0.1 to 5% by weight based on the mixture of plaster and hydraulic substance. A method for producing a plaster-based cured product. 4. The method for producing a fiber-reinforced plaster-based cured product according to claim 1, wherein the mixing ratio of fibers is 5 to 30% by weight based on the mixture of plaster and hydraulic material. 5. The method for producing a fiber-reinforced plaster-based cured product according to claim 1, wherein the curing is carried out at a moist heat curing temperature of 90° C. or lower and 400° C./hour or higher.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16210086A JPS6321247A (en) | 1986-07-11 | 1986-07-11 | Manufacture of fiber reinforced gypsum base hardened body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16210086A JPS6321247A (en) | 1986-07-11 | 1986-07-11 | Manufacture of fiber reinforced gypsum base hardened body |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6321247A JPS6321247A (en) | 1988-01-28 |
JPH0248504B2 true JPH0248504B2 (en) | 1990-10-25 |
Family
ID=15748055
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16210086A Granted JPS6321247A (en) | 1986-07-11 | 1986-07-11 | Manufacture of fiber reinforced gypsum base hardened body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6321247A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6167625B1 (en) | 1999-05-18 | 2001-01-02 | Warner-Lambert Company | Shaving implement |
JP2008512149A (en) * | 2004-09-13 | 2008-04-24 | リグラス・プロプライエタリー・リミテッド | Beverage container with removable top |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5519910A (en) * | 1978-07-28 | 1980-02-13 | Toyota Motor Corp | Carburetor equipment of internal combustion engine |
JPS5546985A (en) * | 1978-09-29 | 1980-04-02 | Citizen Watch Co Ltd | Printing mechanism for printer |
-
1986
- 1986-07-11 JP JP16210086A patent/JPS6321247A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5519910A (en) * | 1978-07-28 | 1980-02-13 | Toyota Motor Corp | Carburetor equipment of internal combustion engine |
JPS5546985A (en) * | 1978-09-29 | 1980-04-02 | Citizen Watch Co Ltd | Printing mechanism for printer |
Also Published As
Publication number | Publication date |
---|---|
JPS6321247A (en) | 1988-01-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8916277B2 (en) | Low embodied energy wallboards and methods of making same | |
FI78285B (en) | ICKE-EXPANDERANDE, SNABBHAORDNANDE CEMENT. | |
US4146402A (en) | Process of producing fiber-reinforced hardened body of gypsum system | |
JP3025906B2 (en) | Gypsum-containing cementitious composition and production material therefrom | |
CN1356966A (en) | Inorganic cementatious material | |
US4310358A (en) | Composition for forming inorganic hardened products and process for producing inorganic hardened products using the same | |
JPH0231027B2 (en) | ||
CN1175154C (en) | Prorous building block containing fibrous gypsum | |
JPH0248504B2 (en) | ||
CN111662062B (en) | Floor heating module produced by using industrial byproduct plaster of paris and preparation method | |
JPH0242784B2 (en) | ||
EP4025546B1 (en) | Water repellent composition | |
KR810000338B1 (en) | Process of producing fiber-reinforced hardened body of gypsum system | |
US11945751B2 (en) | Calcium aluminate cement and calcium sulfoaluminate cement catalysts in gypsum panels and use thereof | |
CN111439980A (en) | Self-leveling mortar with wear-resistant and hydrophobic-enhanced surface | |
CA3202804A1 (en) | Calcium aluminate cement and calcium sulfoaluminate cement catalysts in gypsum panels and use thereof | |
JPS5843345B2 (en) | Method for producing plaster-based cured product | |
JPS6374948A (en) | Manufacture of gypsum-slag hardened body | |
GB2109366A (en) | A method for producing a fiber-reinforced gypsum-based hardened body | |
JPS5825058B2 (en) | Materials for inorganic hardened bodies | |
KR970008696B1 (en) | Process for the preparation of slug board | |
GB2042496A (en) | Process for producing gypsum- based hardened body | |
JPH0518788B2 (en) | ||
JPS5811379B2 (en) | Manufacturing method of inorganic wall material | |
JPS6220147B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |