JPH0518788B2 - - Google Patents

Info

Publication number
JPH0518788B2
JPH0518788B2 JP31491087A JP31491087A JPH0518788B2 JP H0518788 B2 JPH0518788 B2 JP H0518788B2 JP 31491087 A JP31491087 A JP 31491087A JP 31491087 A JP31491087 A JP 31491087A JP H0518788 B2 JPH0518788 B2 JP H0518788B2
Authority
JP
Japan
Prior art keywords
gypsum
weight
slag
water
hemihydrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31491087A
Other languages
Japanese (ja)
Other versions
JPH01157476A (en
Inventor
Katsuyoshi Imaizumi
Miki Aoyama
Osao Hori
Katsumi Takenami
Kyoshi Koibuchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiichi Semento Kk
KYOWA GIKEN KK
NAIGAI MOKUZAI KOGYO KK
OOBAYASHIGUMI KK
Original Assignee
Daiichi Semento Kk
KYOWA GIKEN KK
NAIGAI MOKUZAI KOGYO KK
OOBAYASHIGUMI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiichi Semento Kk, KYOWA GIKEN KK, NAIGAI MOKUZAI KOGYO KK, OOBAYASHIGUMI KK filed Critical Daiichi Semento Kk
Priority to JP31491087A priority Critical patent/JPH01157476A/en
Publication of JPH01157476A publication Critical patent/JPH01157476A/en
Publication of JPH0518788B2 publication Critical patent/JPH0518788B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/32Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen
    • C07C45/33Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties
    • C07C45/34Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties in unsaturated compounds
    • C07C45/35Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties in unsaturated compounds in propene or isobutene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/32Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/32Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen
    • C07C45/37Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of >C—O—functional groups to >C=O groups

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 この発明は、建築物の外壁材、および、内壁材
として、乾式工法で、しかも、耐火性能にすぐれ
た気泡混入スラグ石膏複合材の製造方法に関する
ものである。 従来の技術 従来の石膏、または、スラグの利用方法には、
石膏ボードに代表される半水石膏、および、型
無水石膏の利用がある。この石膏硬化体は、全く
耐水性がないという欠点を有する。その他、半水
石膏とガラス繊維をスプレーサクシヨン法で成型
する方法などがある。 また、半水石膏とポルトランドセメントとの複
合は、石膏の耐水性の改善方法として研究された
ものであるが、半水石膏とポルトランドセメント
とを複合する場合は、急結性を示し、作業性に欠
けるため遅延剤の添加を必要とするなどの問題点
があつた。 二水石膏とスラグの利用法に関して、エトリン
ジヤイトの生成によつて石膏の耐水性を図る方法
も提案されているが、養生時間がかかる等の問題
があつた。 発明が解決しようとする問題点 従来の石膏系壁装材は、石膏を主材としている
ために耐水性に問題があつた。また、この耐水性
の改善を図つた石膏・スラグ系、あるいは、石
膏・スラグ・セメント系の複合材が、一部で商品
化されているが、石膏(CaSO4・2H2O)は、ス
ラグやセメント中のカルシウムアルミネート
(3CaO・Al2O3)と反応し、エトリンジヤイト
(3CaO・Al2O3・3CaSO4・32H2O)が生成し、
水中での寸法安定性に欠けたり、膨張亀裂が生じ
るなど完成された材料となつていない。 問題点を解決するための手段 本発明者らは、このような実情に勘案して、半
水石膏の短時間における凝結硬化特性を利用し、
耐水性向上のために、高炉水枠スラグ粉末、およ
び、ポルトランドセメントを組み合わせた水硬性
材料をマトリツクスとした水中寸法安定性の良好
で、耐水性にすぐれた複合材を連続的に製造する
ための広範な試験を行い、本発明を完成するに至
つたもので、本発明の第1の発明は、半水石膏40
〜75重量%、高炉水枠スラグ粉末20〜50重量%、
および、ポルトランドセメント5〜20重量%から
なる水硬性材料に、適量の水を加えて混練りする
際に、適量の気泡と繊維を混入してスラリーとし
て成型し、50〜150℃の温度で加熱養生乾燥する
ことを特徴とする気泡混入スラグ石膏系複合材の
製造方法に関するものであり、第2の発明は、上
記発明の組成をもつ複合材の成型養生工程におい
てスラリーを一定速度で移動しているベルトコン
ベア上で連続的に流し込み成型し、10〜40分で凝
結させ、これを50〜150℃の温度の熱風乾燥炉に
入れて12〜48時間養生乾燥させて、気乾比重が
1.0〜0.6の硬化体を連続的に生産することを特徴
とするものである。 作 用 半水石膏、高炉スラグ粉末、および、ポルトラ
ンドセメントからなる本発明の範囲内の水硬性材
料を用いて、水を加えてスラリーとして得た硬化
体は、気乾状態に置いた場合には問題がないが、
長期間水中に置くと、石膏(CaSO4・2H2O)は
スラグやセメント中のカルシウムアルミネート
(3CaO・Al2O3)と反応し、エトリンジヤイト
(3CaO・Al2O3・3CaSO4・32H2O)が生成する
が、このエトリンジヤイトの生成が持続すること
による成長圧で硬化体に膨張ひびわれが生じるこ
とがある。しかし、この硬化体に気泡を混入する
ことによつてこの気泡が緩衝材となつてエトリン
ジヤイトの生成による成長圧を緩和する効果が期
待できるとともに、気泡と気泡の間にエトリンジ
ヤイトの針状結晶が生成し、気泡の回りが密実な
水和組織層で覆われ、硬化体組織全体が強固にな
つていることが走査型電子顕微鏡観察の結果明ら
かとなつた。 また、気泡中にも一部エトリンジヤイトが生成
しているのが観察され、このことは気泡がエトリ
ンジヤイトの成長圧を緩衝する役割を担つている
ことを裏付けるものと推察される。 この効果によつて、本発明による複合材は、長
期間水中に置いても寸法変化はなく、かつ、強度
の劣化もほとんど起こらない。 ここで、混入する気泡の量は、硬化体の加熱養
生乾燥後の気乾比重を1.0〜0.6にするのに必要な
気泡量とすることが肝要である。 すなわち、気乾比重が、1.0以上となると、水
中安定性が悪く、気乾比重が0.6以下では強度が
低く、かつ、吸水量の多い硬化体となるためであ
る。 気泡の混入方法は、一般に空気連行法といわれ
る、気泡を予め作つておくプレフオーミング法、
あるいは、スラリー作製時に気泡剤を同時に投入
して発泡させるミツクスフオーミング法のいずれ
の方法でも良い。 また気泡剤は、市販の気泡剤ならいずれのもの
でも使用可能であり特に限定するものではない。 しかし、アルミ粉系の無機系気泡剤は、石膏と
の反応がみられるために好ましくない。また、必
要に応じて、ポリビニルアルコール(PVA)等
の気泡安定剤も使用できる。 本発明で、半水石膏、高炉水枠スラグ粉末、お
よび、ポルトランドセメントの配合量を限定した
理由は、半水石膏の量が40%重量以下では、30〜
40分以内に凝結させるのが困難で生産性に劣るた
めであり、また、半水石膏の量が75重量%以上に
すると、耐水性に問題が生じるからである。ま
た、ポルトランドセメントは、半水石膏の凝結促
進剤の作用があると同時に高炉水枠スラグのアル
カリ刺激剤の作用をしており、5重量%以下では
上記の2つの作用効果が小さく、20重量%以上に
すると、気乾比重を1.0〜0.6に制御しても水中で
の安定性が悪くなるためである。したがつて、本
発明に使用する水硬性材料は、半水石膏40〜75
%、高炉水枠スラグ粉末20〜50重量%、ポルトラ
ンドセメント5〜20重量%と限定した。また、半
水石膏には、α型と一般の焼石膏のβ型の2種類
があるが、これらはどちらでも適用できる。 高炉水枠スラグ粉末は、プレーン比重面積で
2750cm2/g以上のものならすべて使用できるが、
好ましくは、4000cm2/g以上の反応性の高い高炉
水枠スラグ粉末が適している。 次に、本発明に使用する補強繊維としては、ビ
ニロン繊維に代表される合成繊維、炭素繊維、耐
アルカリ性ガラス繊維あるいは、ロツクウール等
を使用することができる。 本発明による気泡混入スラグ石膏系複合材の製
造には、スラリーが10〜30分で凝結するが故に連
続的な成型法が採用できる。これにより連続的に
ベルトコンベア上に流し出された低強度の硬化体
を50〜150℃の乾燥炉へ入れて12〜48時間、内部
の湿度をコントロールしながら養生乾燥すること
によつて、エトリンジヤイトやカルシウムシリケ
ート水和物の生成を助長し、目的とする強度を有
した耐水性にすぐれた壁材を製造することができ
る。 実施例 実施例 1 β−半水石膏45〜84重量%、高炉水枠スラグ13
〜44重量%、および、普通ポルトランドセメント
3〜11重量%からなる水硬性材料に補強用繊維
(ビニロン繊維)、気泡剤、気泡安定剤および混練
水を用いて第1表に示す7種試料No.1〜No.7を作
り、100℃、15時間の乾燥後、これら試料No.1〜
No.7の物性値を求め、これらを第2表に示す。第
1表および第2表に示すように、本発明の範囲外
である試料No.1およびNo.2は、本発明品である試
料No.3〜7に比べてスラリーの凝結時間が長く、
かつ硬化体の曲げ、圧縮強度とも低いことがわか
る。
INDUSTRIAL APPLICATION FIELD The present invention relates to a method for producing an aerated slag-gypsum composite material, which is used as an exterior wall material and an interior wall material for buildings, by a dry construction method and has excellent fire resistance performance. Conventional technology Conventional methods of using plaster or slag include:
Hemihydrate gypsum, which is typified by plasterboard, and molded anhydrite gypsum are used. This hardened gypsum body has the disadvantage of not being water resistant at all. Other methods include molding hemihydrate gypsum and glass fiber using the spray suction method. In addition, the combination of hemihydrate gypsum and portland cement has been studied as a method to improve the water resistance of gypsum, but when combining hemihydrate gypsum and portland cement, it shows rapid setting and is difficult to work with. There were problems such as the need to add a retarder due to the lack of Regarding the use of dihydrate gypsum and slag, a method has been proposed in which the water resistance of gypsum is improved by forming ettringite, but this method has problems such as the curing time required. Problems to be Solved by the Invention Conventional gypsum-based wall covering materials have problems with water resistance because they are mainly made of gypsum. In addition, some gypsum/slag-based or gypsum/slag/cement-based composite materials with improved water resistance have been commercialized, but gypsum (CaSO 4 2H 2 O) It reacts with calcium aluminate (3CaO・Al 2 O 3 ) in cement, producing ettringite (3CaO・Al 2 O 3・3CaSO 4・32H 2 O),
It is not a perfect material as it lacks dimensional stability underwater and develops expansion cracks. Means for Solving the Problems Taking these circumstances into account, the present inventors utilized the short-time setting and hardening properties of gypsum hemihydrate,
In order to improve water resistance, a composite material with good underwater dimensional stability and excellent water resistance is continuously manufactured using a matrix of hydraulic material combining blast furnace water frame slag powder and Portland cement. The present invention was completed after conducting extensive tests, and the first invention is based on hemihydrate gypsum 40
~75% by weight, blast furnace water frame slag powder 20~50% by weight,
Then, when adding an appropriate amount of water to a hydraulic material consisting of 5 to 20% by weight of Portland cement and kneading it, an appropriate amount of air bubbles and fibers are mixed in and formed into a slurry, which is then heated at a temperature of 50 to 150 degrees Celsius. The second invention relates to a method for producing an aerated slag gypsum composite material characterized by curing and drying. Continuously poured and molded on a conveyor belt, solidified in 10 to 40 minutes, placed in a hot air drying oven at a temperature of 50 to 150°C, and cured and dried for 12 to 48 hours until the air-dried specific gravity
It is characterized by continuously producing a cured product with a particle size of 1.0 to 0.6. Effect A hardened body obtained as a slurry by adding water using a hydraulic material within the scope of the present invention consisting of gypsum hemihydrate, blast furnace slag powder, and Portland cement will not be cured when left in an air-dry state. There is no problem, but
When placed in water for a long period of time, gypsum ( CaSO4.2H2O ) reacts with calcium aluminate ( 3CaO.Al2O3 ) in slag and cement, forming ettringite ( 3CaO.Al2O3.3CaSO4.32H ). 2 O) is formed, but the growth pressure caused by the continued formation of this ettringite may cause expansion cracks in the hardened material. However, by mixing air bubbles into this hardened material, the air bubbles will act as a buffer material and can be expected to have the effect of alleviating the growth pressure caused by the formation of ettringite, and acicular crystals of ettringite will form between the air bubbles. However, scanning electron microscopy revealed that the air bubbles were covered with a dense layer of hydrated structure, and the entire structure of the cured product was strengthened. Furthermore, it was observed that some ettringite was formed in the bubbles, which is inferred to support that the bubbles play a role in buffering the growth pressure of ettringite. Due to this effect, the composite material according to the present invention shows no dimensional change even when placed in water for a long period of time, and almost no deterioration in strength occurs. Here, it is important that the amount of air bubbles mixed is the amount necessary to make the air-dried specific gravity of the cured product after heat curing and drying to 1.0 to 0.6. That is, when the air-dried specific gravity is 1.0 or more, the stability in water is poor, and when the air-dried specific gravity is 0.6 or less, the cured product has low strength and a large amount of water absorption. The method of mixing air bubbles is generally called the air entrainment method, which is a preforming method in which air bubbles are created in advance.
Alternatively, any mix forming method may be used, in which a foaming agent is added at the same time as the slurry is prepared to cause foaming. Further, the foaming agent is not particularly limited, and any commercially available foaming agent can be used. However, aluminum powder-based inorganic foaming agents are not preferred because they react with gypsum. Moreover, a bubble stabilizer such as polyvinyl alcohol (PVA) can also be used if necessary. The reason for limiting the blending amounts of gypsum hemihydrate, blast furnace water frame slag powder, and portland cement in the present invention is that if the amount of gypsum hemihydrate is less than 40% by weight,
This is because it is difficult to set the gypsum within 40 minutes, resulting in poor productivity, and if the amount of gypsum hemihydrate exceeds 75% by weight, a problem will arise in water resistance. In addition, Portland cement acts as a setting accelerator for gypsum hemihydrate and as an alkaline stimulant for blast furnace water frame slag, and if it is less than 5% by weight, the above two effects are small; % or more, stability in water deteriorates even if the air-dried specific gravity is controlled to 1.0 to 0.6. Therefore, the hydraulic material used in the present invention is gypsum hemihydrate 40 to 75
%, blast furnace water frame slag powder 20-50% by weight, and Portland cement 5-20% by weight. Furthermore, there are two types of gypsum hemihydrate, the α type and the β type of general calcined gypsum, and either of these can be applied. Blast furnace water frame slag powder has a plain specific gravity area.
Anything over 2750cm 2 /g can be used, but
Preferably, highly reactive blast furnace water frame slag powder of 4000 cm 2 /g or more is suitable. Next, as the reinforcing fibers used in the present invention, synthetic fibers such as vinylon fibers, carbon fibers, alkali-resistant glass fibers, rock wool, etc. can be used. In producing the aerated slag gypsum composite according to the present invention, a continuous molding method can be employed since the slurry sets in 10 to 30 minutes. As a result, the low-strength hardened material that is continuously poured out onto the belt conveyor is placed in a drying oven at 50 to 150 degrees Celsius and cured and dried for 12 to 48 hours while controlling the internal humidity. By promoting the formation of calcium silicate hydrate and calcium silicate hydrate, it is possible to produce a wall material with excellent water resistance and the desired strength. Examples Example 1 β-hemihydrate gypsum 45-84% by weight, blast furnace water frame slag 13
~44% by weight and 3 to 11% by weight of ordinary Portland cement, reinforcing fiber (vinylon fiber), foaming agent, foaming stabilizer, and kneading water were used to prepare the 7 types of sample No. shown in Table 1. .1 to No. 7 were prepared, and after drying at 100℃ for 15 hours, these samples No. 1 to No. 7 were prepared.
The physical property values of No. 7 were determined and are shown in Table 2. As shown in Tables 1 and 2, Samples No. 1 and No. 2, which are outside the scope of the present invention, have a longer slurry coagulation time than Samples No. 3 to 7, which are products of the present invention.
It can also be seen that both the bending and compressive strengths of the cured product are low.

【表】【table】

【表】 実施例 2 β−半水石膏55重量%、高炉水枠スラグ36重量
%、および、普通ポルトランドセメントの9重量
%からなる水硬性材料に補強用繊維(ビニロン繊
維)、気泡安定剤と各種の比重の供試体を作製す
るために気泡剤の使用量を変えて、第3表に示す
5種試料No.8〜No.12を作り、100℃、15時間の乾
燥後、これら試料の物性値を求め第4表に示すと
ともに、これら試料の水中浸漬の長さ変化率を第
1図に示す。
[Table] Example 2 A hydraulic material consisting of 55% by weight of β-hemihydrate gypsum, 36% by weight of blast furnace water frame slag, and 9% by weight of ordinary Portland cement, reinforcing fiber (vinylon fiber), and a bubble stabilizer. In order to prepare specimens with various specific gravity, the amount of foaming agent used was changed to make five types of samples No. 8 to No. 12 shown in Table 3. After drying at 100°C for 15 hours, these samples were The physical property values were determined and shown in Table 4, and the rate of change in length of these samples when immersed in water is shown in FIG.

【表】【table】

【表】 第1図に示すように、気泡混入の寸法安定性に
与える効果は非常に大きく、試料No.10(気乾比重
0.82)では、上記の配合にかかわらず長さ変化率
を30×10-4程度とすることができる。 試料No.9(気乾比重1.11)では、変化率は、100
×10-4以上となつてエトリンジヤイトの成長圧に
よる膨張ひびわれが認められた。この実験結果に
基づいて、本発明では硬化体の気乾比重を1.0〜
0.6の範囲に限定した。 発明の効果 このような組成で作られた気泡混入スラグ石膏
複合材は、石膏系材料の最大の特色である連続生
産性を維持しながら、その鉱物組成はエトリンジ
ヤイトであるといつた極めて耐水性にすぐれた性
質を示す画期的な材料である。 また、エトリンジヤイト生成時に生ずる膨張ひ
びわれを適正に気泡を混入することによつて防止
でき、安価でしかも耐水性にすぐれた壁装材を得
られる。
[Table] As shown in Figure 1, the effect of air bubbles on the dimensional stability is very large, and sample No. 10 (air-dried specific gravity
0.82), the length change rate can be approximately 30×10 -4 regardless of the above composition. For sample No. 9 (air-dried specific gravity 1.11), the rate of change is 100
Expansion cracks due to the growth pressure of ettringite were observed when the temperature exceeded ×10 -4 . Based on this experimental result, in the present invention, the air dry specific gravity of the cured product is 1.0 to 1.0.
It was limited to a range of 0.6. Effects of the invention The aerated slag gypsum composite material made with this composition maintains continuous productivity, which is the most distinctive feature of gypsum-based materials, and is extremely water resistant due to its mineral composition of ettringite. It is an epoch-making material that exhibits excellent properties. In addition, expansion cracks that occur during the formation of ettringite can be prevented by appropriately incorporating air bubbles, and an inexpensive wall covering material with excellent water resistance can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は試料の水中浸漬時の長さ変化率を示す
図面である。
FIG. 1 is a diagram showing the rate of change in length of a sample when immersed in water.

Claims (1)

【特許請求の範囲】 1 半水石膏40〜75重量%、高炉水枠スラグ粉末
20〜50重量%、および、ポルトランドセメント5
〜20重量%からなる水硬性材料に、適量の水を加
えて混練する際に、適量の気泡と繊維を混入して
スラリーとして成型し、50〜150℃の温度で加熱
養生乾燥することを特徴とする気泡混入スラグ石
膏複合材の製造方法。 2 半水石膏40〜75重量%、高炉水枠スラグ粉末
20〜50重量%、および、ポルトランドセメント5
〜20重量%からなる水硬性材料に、適量の水を加
えて混練する際に、適量の気泡と繊維を混入して
スラリーとし、該スラリーを一定速度で移動して
いるベルトコンベア上で連続的に流し込み成型
し、これを50〜150℃の温度で加熱養生乾燥して、
気乾比重が1.0〜0.6の硬化体を連続生産すること
を特徴とする気泡混入スラグ石膏複合材の製造方
法。
[Claims] 1. 40-75% by weight of gypsum hemihydrate, blast furnace water frame slag powder
20-50% by weight and Portland cement 5
A hydraulic material consisting of ~20% by weight is mixed with an appropriate amount of water, mixed with an appropriate amount of air bubbles and fibers, formed into a slurry, and then heated and cured at a temperature of 50 to 150°C to dry. A method for producing an aerated slag gypsum composite material. 2. Hemihydrate gypsum 40-75% by weight, blast furnace water frame slag powder
20-50% by weight and Portland cement 5
When adding an appropriate amount of water to a hydraulic material consisting of ~20% by weight and kneading it, an appropriate amount of air bubbles and fibers are mixed in to form a slurry, and the slurry is continuously conveyed on a belt conveyor moving at a constant speed. This is then heated and cured at a temperature of 50 to 150℃ and dried.
A method for producing an aerated slag-gypsum composite material, characterized by continuously producing a hardened material having an air-dry specific gravity of 1.0 to 0.6.
JP31491087A 1987-12-11 1987-12-11 Production of slag gypsum composite material containing cell Granted JPH01157476A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31491087A JPH01157476A (en) 1987-12-11 1987-12-11 Production of slag gypsum composite material containing cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31491087A JPH01157476A (en) 1987-12-11 1987-12-11 Production of slag gypsum composite material containing cell

Publications (2)

Publication Number Publication Date
JPH01157476A JPH01157476A (en) 1989-06-20
JPH0518788B2 true JPH0518788B2 (en) 1993-03-12

Family

ID=18059112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31491087A Granted JPH01157476A (en) 1987-12-11 1987-12-11 Production of slag gypsum composite material containing cell

Country Status (1)

Country Link
JP (1) JPH01157476A (en)

Also Published As

Publication number Publication date
JPH01157476A (en) 1989-06-20

Similar Documents

Publication Publication Date Title
JP3025906B2 (en) Gypsum-containing cementitious composition and production material therefrom
WO2013048351A1 (en) Gypsum-based composition for construction material and system
WO2015095778A1 (en) Improved fire core compositions and methods
JPH0665618B2 (en) Non-expanding, high hardening speed cement
Liguori et al. Fiber-reinforced lime-based mortars: Effect of zeolite addition
CN108484204A (en) Lightweight concrete wall with self-insurance temp effect
KR100853754B1 (en) The refractory material of high strength for construction and the making method thereof
CN108484035A (en) The preparation method of lightweight concrete wall with self-insurance temp effect
CN115215606B (en) Mortar suitable for negative temperature environment and preparation method thereof
JPH0476941B2 (en)
EP4134355A1 (en) Self-foaming gypsum compositions
JPH0518788B2 (en)
EP4242189A1 (en) Reactive binder mixture for cementitious article
JPH04193783A (en) Production of lightweight hardened body
JPH0231027B2 (en)
EP4242191A1 (en) Reactive binder mixture for cementitious article
EP4242190A1 (en) Reactive binder mixture for cementitious article
KR0118678B1 (en) Process for the preparation of mortars
KR950008589B1 (en) Process for producing lightweight concrete
EP4025546B1 (en) Water repellent composition
JPH0242784B2 (en)
JPH0248504B2 (en)
RU2520330C1 (en) Building material
BG109905A (en) Heat-insulating material
RU2253637C1 (en) Mixture for producing cellular concrete

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees