JPH0247454Y2 - - Google Patents

Info

Publication number
JPH0247454Y2
JPH0247454Y2 JP4979989U JP4979989U JPH0247454Y2 JP H0247454 Y2 JPH0247454 Y2 JP H0247454Y2 JP 4979989 U JP4979989 U JP 4979989U JP 4979989 U JP4979989 U JP 4979989U JP H0247454 Y2 JPH0247454 Y2 JP H0247454Y2
Authority
JP
Japan
Prior art keywords
light
pulse
light receiving
signal
rotation shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4979989U
Other languages
Japanese (ja)
Other versions
JPH0227511U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP4979989U priority Critical patent/JPH0247454Y2/ja
Publication of JPH0227511U publication Critical patent/JPH0227511U/ja
Application granted granted Critical
Publication of JPH0247454Y2 publication Critical patent/JPH0247454Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Optical Transform (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Description

【考案の詳細な説明】 本考案は、角変位を光電的に測定する装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a device for photoelectrically measuring angular displacement.

例えば、圧力、重量等はブルドン管、テコ等の
一次変換器をを介して角変位に変換可能である。
したがつて、この角変位を測定すれば、これら圧
力等の機械量が求められる。
For example, pressure, weight, etc. can be converted into angular displacement via a primary transducer such as a Bourdon tube or lever.
Therefore, by measuring this angular displacement, mechanical quantities such as these pressures can be determined.

本出願人は、先に、光電的に角変位を測定する
装置として特公昭47−48425号「角変位測定装置」
を提案している。
The present applicant previously published the patent publication No. 47-48425 "Angular Displacement Measuring Device" as a device for photoelectrically measuring angular displacement.
is proposed.

これは、第4図に示すようにモータ70の回転
軸71に固着されたスリツト円板72を挾んで2
対の光源と受光素子の対80,81と90,91
を配置し、角変位を各光源と受光素子の間の相対
的なスリツト円板上の円周方向のずれにかえるよ
うにしたものである。こうすると、回転するスリ
ツト円板72により光源80,90から受光素子
81,91に達する光量が断続的に変化させら
れ、受光素子には周期的に変化する電圧信号が発
生し、両光源と受光素子の対の相対ずれに対応し
て二つの周期的電圧信号の位相差が変化すること
になる。したがつて、この位相差を測定すること
により角変位が求められることになる。
As shown in FIG.
Pairs of light sources and light receiving elements 80, 81 and 90, 91
are arranged so that the angular displacement is converted into a relative deviation in the circumferential direction on the slit disk between each light source and the light receiving element. In this way, the amount of light reaching the light receiving elements 81, 91 from the light sources 80, 90 is intermittently changed by the rotating slit disk 72, and a periodically changing voltage signal is generated in the light receiving element, which connects both light sources and the light receiving element. The phase difference between the two periodic voltage signals will change in response to the relative shift between the pair of elements. Therefore, by measuring this phase difference, the angular displacement can be determined.

さて、この種の光電的な測定装置においては、
外部光変化等に伴うノイズ成分の影響を軽減する
必要上、光源の発光量をできる限り大にし、結局
S/N比を大にしなければならない。しかし、そ
れには光源の大きさと容量との関係および寿命と
の兼ね合いがあり、あまり発光量を大にすること
はできない。尚、これは直流点灯の場合であつ
て、光源をパルス点灯光源とした場合には、点滅
が交互に操返されるので、その点灯時ごとの発光
量は比較的大にすることが可能である。ただし、
パルス点灯光源とした場合は、それとスリツト円
板を介して対向する受光素子に発生する電圧もパ
ルス状となつてしまう。すなわち、第1図イに示
すように、光源と受光素子がスリツトと対向する
透光時のみパルス出力が発生し、他の遮光時は無
出力となるパルス群の列が受光素子から取出さ
れ、位相差0の同相の際には、他の受光素子の出
力も前記イと全く同じロのようになり、角変位に
よつて位相差が生じた場合には、例えばイを基準
にとると、ロはハのようにパルス群の発生位置が
遅れることになる。この両パルス群の列イ,ハの
位相差を求めるには、再び、このパルス群の一つ
を新らたなパルスに整形後、その整形パルス間の
位相差を求めることが孝えられるが、整形過程で
の信号劣化は避けられない。
Now, in this type of photoelectric measuring device,
In order to reduce the influence of noise components due to changes in external light, etc., it is necessary to increase the amount of light emitted by the light source as much as possible, and ultimately to increase the S/N ratio. However, there is a trade-off between the size and capacity of the light source and the lifespan of the light source, so it is not possible to increase the amount of light emitted very much. Note that this applies to direct current lighting, and if the light source is a pulsed lighting source, the flashing will be repeated alternately, so the amount of light emitted each time it is lit can be relatively large. . however,
If a pulse lighting light source is used, the voltage generated in the light receiving element facing the light source through the slit disk will also be pulsed. That is, as shown in FIG. 1A, a pulse group is extracted from the light receiving element, in which a pulse output is generated only when light is transmitted when the light source and the light receiving element face the slit, and there is no output when other light is blocked. In the case of the same phase with a phase difference of 0, the output of the other light-receiving elements will also be exactly like B, which is the same as A above, and if a phase difference occurs due to angular displacement, for example, if A is taken as a reference, In case (b), the generation position of the pulse group is delayed as in case (c). In order to find the phase difference between trains A and C of these two pulse groups, it is best to shape one of these pulse groups into a new pulse and then find the phase difference between the shaped pulses. , signal degradation during the shaping process is inevitable.

ところで、このパルス群の列イとハを用いて、
パルスの数により位相差を表してみると、位相差
はイのパルス群の発生が完了した後においても発
生しているハのパルスの数、すなわち、両方のパ
ルス群を比較した場合に、一方のみが発生してい
る状態におけるパルスの数と対応したものとな
る。とすれば、位相差を求めるには、結局、イの
パルス群の発生中にはハのパルス群の通過を遮断
し、イのパルス群の存在しない間はハのパルス群
を通過させればよいことになる。
By the way, using trains A and C of this pulse group,
Expressing the phase difference in terms of the number of pulses, the phase difference is the number of pulses C that are occurring even after the generation of the pulse group A is completed, that is, when comparing both pulse groups, one The number of pulses corresponds to the number of pulses in a state in which only one pulse is generated. Then, in order to find the phase difference, we need to block the passage of the pulse group C while the pulse group A is occurring, and allow the pulse group C to pass while the pulse group A is not present. It will be a good thing.

本考案は、上記考えに基づき、角変位を二つの
パルス群の列の位相差に変換し、それから位相差
に対応したパルスを取出せる角変位測定装置を提
供することを目的としたものであり、第2図およ
び第4図に示すように、回転可能な変位回転軸を
設け、前記変位回転軸と同じ軸心状態の別の一定
角速度で回転せしめられる回転軸を設け、前記回
転軸には円板の周辺に半径方向のスリツトが等間
隔に設けられその回転軸と一体に回転するスリツ
ト円板72を取り付け、前記スリツトを挾んで対
向する2対の光源と受光素子10,11と20,
21をその1対10,11を固定に他の1対2
0,21を前記変位回転軸に取り付けられた回転
体に装架し、前記2対の光源と受光素子の各光源
10,20は前記スリツト円板72の隣合うスリ
ツト間の回動周期よりも周期が短くかつ互いの周
期は同一で幅が互いに異なり、広幅の信号の発生
中に狭幅の信号の発生がある二つのパルス点灯制
御信号a,bを送出するパルス信号発生器30の
各パルス点灯制御信号送出端と各別に結線し、前
記2対の光源と受光素子の各受光素子11,21
はそのパルス幅が大のパルス点灯制御信号aの供
給されている光源10と対向する受光素子11の
出力を反転させ、、その反転させた信号Co(C)と他
方の受光素子21の出力do(do)との論理積信号
eを形成する論理回路40と結線し、前記論理回
路40から送出される論理積信号eをカウンタ5
0により計数するようにし、前記変位回転軸の角
変位により生じる前記2対の光源と受光素子のス
リツトに対する相対的なずれを計数値に変換する
ようにしたものである。
Based on the above idea, the present invention aims to provide an angular displacement measuring device that can convert angular displacement into a phase difference between two trains of pulse groups and then extract a pulse corresponding to the phase difference. , as shown in FIGS. 2 and 4, a rotatable displacement rotation shaft is provided, and another rotation shaft that is rotated at a constant angular velocity and has the same axis as the displacement rotation shaft is provided, and the rotation shaft has a A slit disk 72 having radial slits provided at equal intervals around the disk and rotating integrally with its rotation axis is attached, and two pairs of light sources and light receiving elements 10, 11 and 20, facing each other with the slits in between, are attached.
21 to that 1 to 10, 11 to the other 1 to 2
0 and 21 are mounted on a rotating body attached to the displacement rotation shaft, and each of the light sources 10 and 20 of the two pairs of light sources and the light receiving element has a rotating period shorter than the rotation period between adjacent slits of the slit disk 72. Each pulse of a pulse signal generator 30 that sends out two pulse lighting control signals a and b that have short periods, the same period, and different widths, and in which a narrow signal is generated while a wide signal is generated. The light receiving elements 11 and 21 of the two pairs of light sources and light receiving elements are individually connected to the lighting control signal sending end.
Inverts the output of the light receiving element 11 facing the light source 10 to which the pulse lighting control signal a with a large pulse width is supplied, and outputs the inverted signal Co(C) and the output do of the other light receiving element 21. (do) and a logic circuit 40 that forms an AND signal e, and the AND signal e sent from the logic circuit 40 is sent to a counter 5.
0, and the relative deviation of the two pairs of light sources and light receiving element with respect to the slit, which is caused by the angular displacement of the displacement rotation axis, is converted into a count value.

以下、本考案を上記第4図の「角偏位測定装
置」において実施した例に基づき詳細に説明す
る。
Hereinafter, the present invention will be explained in detail based on an example implemented in the "angular deviation measuring device" shown in FIG. 4 above.

第2図において、光源と受光素子の対10と1
1,20と21は上記第4図の同番号を付したも
のと同様のものであり、その光源10,20の点
灯制御信号入力端は、パルス信号発生器30の異
なる出力端と結線されている。そのパルス信号発
生器30は、等微少時間間隔ごとに繰り返しクロ
ツクパルスを発生する。クロツクパルス発生部3
2とそのクロツクパルスを導入し、第3図a,b
のような同じ周期を有し、かつ幅が互に異なり、
その広幅の信号aの発生中に狭幅の信号bの発生
がある二つのパルス点灯制御信号を形成する波形
処理部31とからなり、それぞれパルス点灯制御
信号a,bを光源10,20に送出する。40は
インヒビツトアンドゲートよりなる論理回路であ
り、前記のパルス幅の大きな制御信号aが導入さ
れる光源10と対向する受光素子11の出力端が
その反転入力端と結線され、他方の入力端には受
光素子21の出力端が結線され、その出力端はカ
ウンタ50の入力端と結線されている。
In FIG. 2, pairs 10 and 1 of a light source and a light receiving element are shown.
1, 20 and 21 are the same as those with the same numbers in FIG. There is. The pulse signal generator 30 repeatedly generates clock pulses at equal minute time intervals. Clock pulse generator 3
2 and its clock pulse, Figure 3 a, b
have the same period and different widths, such as
It consists of a waveform processing unit 31 that forms two pulse lighting control signals in which a narrow signal b is generated while the wide signal a is generated, and sends the pulse lighting control signals a and b to the light sources 10 and 20, respectively. do. 40 is a logic circuit consisting of an inhibit and gate, in which the output end of the light receiving element 11 facing the light source 10 into which the control signal a with a large pulse width is introduced is connected to its inverting input end; The output end of the light receiving element 21 is connected to the input end of the counter 50 .

以上のものにおいて、いま、スリツトに対して
両光源と受光素子の対10,11と20,21の
位置関係が同相関係にある場合は、スリツト円板
72(第4図参照)が回転すると、光源10,2
0から放射されている前記パルス点灯制御信号
a,bに対応して変化する光量は、スリツトと対
向する際には透光し、他の場合は遮光されること
になる。この結果、受光素子11,21には、透
光時にはそれぞれ制御信号a,bに対応したパル
ス状出力が発生し、前者は論理回路40の反転入
力端に加えられて第3図coのように反転され、
後者はそのまま他方の入力端に加えられてdoの
ようになる。したがつて、coとdoのアンド出力
は送出されず、カウンタ50の計数値は0であ
る。
In the above system, if the pairs of light sources and light receiving elements 10, 11 and 20, 21 are in phase with respect to the slit, then when the slit disk 72 (see FIG. 4) rotates, Light sources 10, 2
The amount of light emitted from the slit, which changes in accordance with the pulse lighting control signals a and b, is transmitted when facing the slit, and is blocked otherwise. As a result, the light receiving elements 11 and 21 generate pulse-like outputs corresponding to the control signals a and b, respectively, when light is transmitted, and the former is added to the inverting input terminal of the logic circuit 40, as shown in FIG. reversed,
The latter is added as is to the other input end, making it look like do. Therefore, the AND output of co and do is not sent out, and the count value of the counter 50 is zero.

次に、光源と受光素子の対20,21が回動す
ると、2対の光源と受光素子の対10,11と2
0,21の間に相対角変位が生じる。そうする
と、前記受光素子11の反転出力coを基準にと
ると、他方の受光素子21の出力doは、その発
生位置が角変位に対応してずれ、dのように遅れ
を生じる。この結果、論理回路40の出力は、そ
の遅れ時間の間だけアンドがとれ、その間dを通
過させたeのようになり、これがカウンタ50に
より計数される。以上により、角変位が計数値に
変換される。
Next, when the light source and light receiving element pairs 20 and 21 are rotated, the two light source and light receiving element pairs 10 and 11 and 2 are rotated.
A relative angular displacement occurs between 0 and 21. Then, when the inverted output co of the light receiving element 11 is taken as a reference, the generation position of the output do of the other light receiving element 21 shifts in accordance with the angular displacement, causing a delay as shown in d. As a result, the output of the logic circuit 40 is ANDed only during the delay time, and becomes e, which is obtained by passing d, and is counted by the counter 50. As described above, the angular displacement is converted into a count value.

しかして、光線10と20の点灯制御信号は、
周期が同じで、その点灯幅を異にしてあるので、
その点灯タイミング、光電変換タイミングのわず
かなずれに伴う両信号coとdの波形歪は、アン
ド出力の形成に際し、影響しない。
Therefore, the lighting control signals for light beams 10 and 20 are:
The period is the same, but the lighting width is different, so
Waveform distortion of both signals co and d due to slight deviations in the lighting timing and photoelectric conversion timing does not affect the formation of the AND output.

以上とおりであり、本考案は、光源を同じ周期
で、かつ、異なる幅でパルス点灯させ、それによ
り発生させた二つのパルス群の列の位相差を直接
パルスとして取出せるようにしたものであり、
S/N比が高くでき、その結果、測定精度が向上
する。
As described above, in the present invention, the light source is lit in pulses at the same period but with different widths, and the phase difference between the two pulse groups generated thereby can be directly extracted as pulses. ,
The S/N ratio can be increased, resulting in improved measurement accuracy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、パルス点灯光源を用いた角変位測定
装置の出力波形図、第2図は本考案の実施例の機
構部と回路を示すブロツク線図、第3図は第2図
の各部の出力波形図、第4図は従来技術の機構部
であり、かつ本考案の一部でもある機構部を示す
正面図である。 10,20……光源、30……パルス信号発生
器、40……論理回路、50……カウンタ。
Fig. 1 is an output waveform diagram of an angular displacement measuring device using a pulse lighting light source, Fig. 2 is a block diagram showing the mechanical parts and circuits of the embodiment of the present invention, and Fig. 3 shows the various parts of Fig. 2. The output waveform diagram, FIG. 4, is a front view showing a mechanism part of the prior art and also a part of the present invention. 10, 20...Light source, 30...Pulse signal generator, 40...Logic circuit, 50...Counter.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 回転可能な変位回転軸を設け、前記変位回転軸
と同じ軸心状態の別の一定角速度で回転せしめら
れる回転軸を設け、前記回転軸には円板の周辺に
半径方向のスリツトが等間隔に設けられその回転
軸と一体に回転するスリツト円板72を取り付
け、前記スリツトを挾んで対向する2対の光源と
受光素子10,11と20,21をその1対1
0,11を固定に他の1対20,21を前記変位
回転軸に取り付けられた回転体に装架し、前記2
対の光源と受光素子の各光源10,20は前記ス
リツト円板72の隣合うスリツト間の回動周期よ
りも周期が短くかつ互いの周期は同一で幅が互い
に異なり、広幅の信号の発生中に狭幅の信号の発
生がある二つのパルス点灯制御信号a,bを送出
するパルス信号発生器30の各パルス点灯制御信
号送出端と各別に結線し、前記2対の光源と受光
素子の各受光素子11,21はそのパルス幅が大
のパルス点灯制御信号aの供給されている光源1
0と対向する受光素子11の出力を反転させ、そ
の反転させた信号C0と他方の受光素子21の出
力d0との論理積信号eを形成する論理回路40と
結線し、前記論理回路40から送出される論理積
信号eをカウンタ50により計数するようにし、
前記変位回転軸の角変位により生じる前記2対の
光源と受光素子のスリツトに対する相対的なずれ
を計数値に変換するところの角変位測定装置。
A rotatable displacement rotation shaft is provided, and another rotation shaft that is rotated at a constant angular velocity is provided in the same axis state as the displacement rotation shaft, and the rotation shaft has radial slits arranged at equal intervals around a disk. A slit disk 72 is provided and rotates integrally with the rotation axis thereof, and two pairs of light sources and light receiving elements 10, 11 and 20, 21 facing each other with the slit sandwiched therebetween are connected one to one.
0 and 11 are fixed, and the other pair 20 and 21 are mounted on a rotating body attached to the displacement rotation shaft, and
Each of the light sources 10 and 20 of the pair of light sources and light receiving element has a rotation period shorter than the rotation period between adjacent slits of the slit disk 72, and has the same period and different widths, and is generating a wide signal. Each of the two pairs of light sources and light receiving elements is separately connected to each pulse lighting control signal sending end of a pulse signal generator 30 that sends out two pulse lighting control signals a and b that generate narrow width signals. The light receiving elements 11 and 21 are connected to the light source 1 to which a pulse lighting control signal a having a large pulse width is supplied.
The output of the light-receiving element 11 facing 0 is inverted and connected to a logic circuit 40 that forms an AND signal e of the inverted signal C 0 and the output d 0 of the other light-receiving element 21. A counter 50 counts the AND signal e sent from the
An angular displacement measuring device that converts the relative deviation of the two pairs of light sources and light receiving elements with respect to the slit caused by the angular displacement of the displacement rotation axis into a counted value.
JP4979989U 1989-04-27 1989-04-27 Expired JPH0247454Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4979989U JPH0247454Y2 (en) 1989-04-27 1989-04-27

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4979989U JPH0247454Y2 (en) 1989-04-27 1989-04-27

Publications (2)

Publication Number Publication Date
JPH0227511U JPH0227511U (en) 1990-02-22
JPH0247454Y2 true JPH0247454Y2 (en) 1990-12-13

Family

ID=31275882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4979989U Expired JPH0247454Y2 (en) 1989-04-27 1989-04-27

Country Status (1)

Country Link
JP (1) JPH0247454Y2 (en)

Also Published As

Publication number Publication date
JPH0227511U (en) 1990-02-22

Similar Documents

Publication Publication Date Title
US4050747A (en) Digital wheel speed circuit arranged to compensate for dimensional irregularities of sensor rotor member
JPH0247454Y2 (en)
DK158982A (en) UTILIZATION CIRCUIT FOR A DIGITAL REVERSE SPEAKER
JP3166496B2 (en) Eccentric error correction device for rotary encoder
JPH0138482Y2 (en)
GB1404133A (en) Anemometers
SU1126995A1 (en) Device for checking shaft turn angle encoders
AU2006228061A1 (en) Improvements in oval rotor flowmeters having direct pulse generation
SU1636791A1 (en) Digital phase meter
JP3035751B2 (en) Optical encoder
SU1553918A2 (en) Digital phase meter
SU849096A1 (en) Phase-meter
SU643940A1 (en) Shaft angular position-to-code converter
SU1059422A1 (en) Photo pulse meter of hot-rolled sheet width
SU1645901A1 (en) Speed variation meter
SU1219982A1 (en) Digital averaging phase meter
SU920815A1 (en) Device for monitoring shaft angular position-to-code converter
SU1406515A1 (en) Digital phase-meter
SU892326A1 (en) Frequency pickup with discrete output
SU1467220A1 (en) Device for sensing turbomachine shaft stoppage
SU1566215A1 (en) Angle-measuring device
SU1042056A1 (en) Angular speed digital meter
SU983576A1 (en) Phase inverter phase error measuring device
SU1221613A1 (en) Digital phase meter for measuring instantaneous value of phase shift angle
SU834927A1 (en) Counter testing de