JPH024692B2 - - Google Patents

Info

Publication number
JPH024692B2
JPH024692B2 JP24057985A JP24057985A JPH024692B2 JP H024692 B2 JPH024692 B2 JP H024692B2 JP 24057985 A JP24057985 A JP 24057985A JP 24057985 A JP24057985 A JP 24057985A JP H024692 B2 JPH024692 B2 JP H024692B2
Authority
JP
Japan
Prior art keywords
fibers
solution
polyethylene terephthalate
solvent
mixed solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP24057985A
Other languages
Japanese (ja)
Other versions
JPS62104915A (en
Inventor
Katsuji Hikasa
Kazuhiko Shimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP24057985A priority Critical patent/JPS62104915A/en
Publication of JPS62104915A publication Critical patent/JPS62104915A/en
Publication of JPH024692B2 publication Critical patent/JPH024692B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

<産業上の利用分野> 本発明はポリエチレンテレフタレート繊維の製
造方法に関する。更に詳しくは、ポリエチレンテ
レフタレートと塩化メチレン/1,1,2−トリ
クロロ−1,2,2−トリフルオロエタン(以
下、単に「トリクロロトリフルオロエタン」とい
う。)混合溶媒とから成る溶液を用いて極細のポ
リエチレンテレフタレート繊維を製造する方法に
関する。 <従来の技術> 極細繊維を製造する方法として、ポリマーの融
液を紡糸ノズルから押出し、それを加熱流体ジエ
ツトで牽引細化させる謂ゆるメルトブロー法;或
いは多成分フイラメント(例えば繊維断面が海−
島構造となつている)を紡糸した後、一部のポリ
マー成分(例えば繊維断面構造での海成分)を溶
媒で除去する方法;更には特公昭40−28125号及
び特公昭41−6215号等に記載されている如き低沸
点溶媒とポリマーの溶液を紡糸ノズルから押出
し、瞬間的に溶媒を気化させる謂ゆるフラツシユ
紡糸法などがある。 <発明が解決しようとする問題点> 極細のポリエチレンテレフタレート繊維をそれ
らの方法で製造するとき、メルトブロー法は確か
に極めて細い繊維が得られるものの、繊維の細化
をポリマーの融液状態で行つているため繊維の延
伸配向及び結晶化が不充分で、得られた繊維の強
度が極めて弱いという問題を有している。また、
多成分フイラメントの一部成分ポリマーを除去す
る方法ではポリマーを溶出させるという面倒な工
程が必要となる。特公昭40−28125号及び特公昭
41−6215号に記載されている方法ではポリエチレ
ンでは細くて強度的に満足のいくものが得られて
いるもののポリエチレンテレフタレートに関して
は極めて弱い繊維しか得られていない。以上の如
く、極細で強度的にも満足のいくポリエチレンテ
レフタレート繊維の製造方法が工業的に十分確立
されていないのが現状である。 本発明の目的は、極細で高強力のポリエチレン
テレフタレート繊維を能率的かつ工業的有利に製
造する方法を提供することにある。 <問題点を解決するための手段> 本発明者等は、極細高強力のポリエチレンテレ
フタレート繊維を製造するに当り、フラツシユ紡
糸法に着目し鋭意研究を続けてきた。その結果、
特定の溶媒で調製したポリエチレンテレフタレー
トの溶液を用いることにより極細高強力のポリエ
チレンテレフタレート繊維が得られることを発見
した。即ち、本発明は、ポリエチレンテレフタレ
ートと塩化メチレン/トリクロロトルフルオロエ
タン混合溶媒とから成る溶液を紡糸ノズルから押
出し、瞬間的に溶媒を気化させ繊維を形成するこ
とを特徴とするポリエチレンテレフタレート繊維
の製造方法である。 本発明で使用されるポリエチレンテレフタレー
トとは、フエノール/1,1,2,2−テトラク
ロルエタンの60/40重量%の混合溶媒で、35℃で
濃度1%で測定したηSP/Cが0.6〜4.5程度の繊
維グレードから固相重合によつて作られた高粘度
樹脂までのものである。主鎖に他の共重合成分、
例えば酸成分として、イソフタル酸、フタール
酸、グルタール酸、アジピン酸等、グリコール成
分として、ジエチレングリコール、プロピレング
リコール、1,4−ブタンジオール、2,2−ビ
ス(4−ヒドロキシエトキシフエニル)プロパン
等を15モル%までの範囲で含むものも同等に用い
ることができる。 本発明で用いる溶液の濃度範囲はポリマーの重
合度、混合溶媒組成等により一概に限定されない
が、通常5重量%〜20重量%が好ましい。5重量
%未満の低濃度では連続フイラメントの製造が困
難となり20重量%を超える高濃度ではスポンジ
状、発泡状フイラメントとなり極細繊維となら
ず、かつ極めて強度が弱くなる。 本発明で用いる塩化メチレン/トリクロロトリ
フルオロエタン混合溶媒の組成はポリマーの重合
度、溶液の濃度、溶液の温度等により一概に限定
されないが、通常塩化メチレン/トリクロロトリ
フルオロエタンの組成が重量比で4:6〜9:1
であることが好ましい。トリクロロトリフルオロ
エタンの組成が60重量%を超えるとポリエチレン
テレフタレートの溶解が困難となり、10重量%未
満になると混合溶媒の気化ガス温度が低くなり過
ぎるためか生成するポリエチレンテレフタレート
繊維の延伸が充分でなくなつて強度の高い繊維と
なり難い。 本発明で用いる溶液の温度は混合溶媒の組成ポ
リマー濃度等により一概に限定されないが、通常
220℃〜280℃の範囲が好ましい。溶液の温度が
280℃を越えるとポリマーの熱劣化が生じやすく
なる。また、220℃より低くなると生成繊維の冷
却固化が早くなつて十分に繊維が延伸されなくな
り、高強力を示さなくなつたり、繊維形成が困難
になつたりする。 溶液の圧力は、混合溶媒の組成、ポリマー濃
度、溶液の温度等により一概に限定されないが、
通常80Kg/cm2G以上が好ましい。80Kg/cm2G未満
では、繊維の配向性が低いためか高強度の繊維が
得難いとか、均一に溶液が吐出されない為か、生
成する繊維の形態が発泡状のフイラメントから繊
維が破断した不連続なフイブリル繊維までと不均
一となつてくる。 本発明の最大の特徴はポリエチレンテレフタレ
ートの塩化メチレン/トリクロロトリフルオロエ
タン混合溶媒の溶液を用いて極細高強力繊維を製
造することにあるが、この混合溶媒を用いること
が極めて重要な意味をもつている。先づ、極細繊
維形成能を充分高めるためには、溶解が充分行わ
れなければならない。塩化メチレンとトリクロロ
トリフルオロエタンの混合溶媒が必要な第1の理
由はこの点にある。次いで、本発明においては、
繊維の延伸及び配向は溶媒の気化に伴う膨張力に
よつてなされ、繊維の強度はその繊維が十分に延
伸され配向しているかどうかでほぼ決定される。
フラツシユ紡糸法においては、0.1秒以下の極め
て短かい時間内での溶液の相分離、溶媒の脱離に
伴なうポリマー濃度の増加が起こり、そして最終
的にほぼ完全に溶媒が脱離してポリマーの析出が
起こる。従つて、この極めて短かい時間内に繊維
の形成及び同時に十分な延伸をかける必要があ
る。加えて、結晶化も起こることが望ましい。推
定ではあるが最初の繊維状物は溶媒を含んだ濃厚
溶液で形成され、ある程度の延伸に必要な流動性
及び繊維形態保持性を有し、次いで更に脱溶媒と
冷却による流動性の消失が起こる。この流動性
(脱溶媒及び冷却により変化する)と溶媒の気化
に伴う膨張力の兼ねあいで延伸配向の程度が決ま
ると考えられる。即ち、極めて短かい時間内で最
初に形成された繊維状物が延伸配向されやすい流
動性をもち、かつ結晶化するに必要な条件下にあ
るかどうかが重要となつてくる。即ち、流動性を
支配すると考えられる溶媒とポリマーの親和性、
溶媒ガスの噴出力及び溶媒ガスの気化温度などが
重要な役割を演ずる。溶媒とポリマーの親和力が
大きければ初期の溶液の相分離が極めて短時間で
起こらず、本発明の極細繊維の生成がなされない
ようである。以上のような極細繊維の形成過程が
考えられ、溶媒種、溶媒組成、ポリマー濃度、溶
液温度、溶液圧力の適正値が定まつてくると考え
られる。 <発明の効果> 本発明によれば、極細フイブリル繊維から成る
高強力のポリエチレンテレフタレート繊維が高速
で得られ、工業的に非常に有利である。 次に、実施例を示す。 <実施例> 実施例 1 フエノール/1,1,2,2−テトラクロルエ
タンの60/40重量%混合溶媒を用い35℃で1%濃
度で測定した粘度数(ηSP/C)が1.28のポリエ
チレンテレフタレート49gと塩化メチレン/1,
1,2−トリクロロ−1,2,2−トリフルオロ
エタン(重量比50/50)混合溶媒501gとを内容
積550mlのオートクレーブに仕込み、加熱し、255
℃、192Kg/cm2Gの溶液を調製した。オートクレ
ーブ内圧を窒素ガスで200Kg/cm2Gに保ちながら、
その溶液を0.9mmφ、5mmのオリフイスを通し
8mmφ、40mmの導管に導き、1.0mmφ(L/D=
1)の紡口を通して大気中に一気に放出させた。
その結果、極めて細かい直径1〜4μのフイブリ
ルから成る繊度710dの連続フイラメントが得ら
れた。このフイラメントの強度は1.1g/dで、
伸度は48%であつた。 実施例 2〜7 実施例1と同様のポリエチレンテレフタレート
及び混合溶媒を用い、実施例1と同様な装置によ
り、ポリエチレンテレフタレート濃度を種々変化
させて実施例1と同様な操作を行い<表−>に
示す結果を得た。
<Industrial Application Field> The present invention relates to a method for producing polyethylene terephthalate fiber. More specifically, a solution consisting of polyethylene terephthalate and a mixed solvent of methylene chloride/1,1,2-trichloro-1,2,2-trifluoroethane (hereinafter simply referred to as "trichlorotrifluoroethane") is used to form ultrafine particles. The present invention relates to a method for producing polyethylene terephthalate fibers. <Prior art> As a method for producing ultrafine fibers, a so-called melt blowing method is used in which a polymer melt is extruded from a spinning nozzle and then pulled and thinned by a heated fluid jet;
A method of removing some polymer components (for example, sea components in the fiber cross-sectional structure) with a solvent after spinning a fiber (which has an island structure); There is a so-called flash spinning method in which a solution of a low boiling point solvent and a polymer is extruded from a spinning nozzle and the solvent is instantaneously vaporized as described in . <Problems to be Solved by the Invention> When producing ultra-fine polyethylene terephthalate fibers using these methods, the melt-blowing method does yield extremely thin fibers, but the fibers are thinned in the polymer melt state. Therefore, there is a problem that the stretching orientation and crystallization of the fibers are insufficient, and the strength of the obtained fibers is extremely low. Also,
The method of removing some component polymers of a multicomponent filament requires a troublesome step of eluting the polymers. Special Publication No. 40-28125 and Special Publication No.
In the method described in No. 41-6215, thin fibers with satisfactory strength are obtained from polyethylene, but only extremely weak fibers are obtained from polyethylene terephthalate. As described above, at present, a method for producing polyethylene terephthalate fibers that are extremely fine and have satisfactory strength has not been sufficiently established industrially. An object of the present invention is to provide an efficient and industrially advantageous method for producing ultra-fine, high-strength polyethylene terephthalate fibers. <Means for Solving the Problems> The present inventors have focused on the flash spinning method and have continued intensive research in producing ultra-fine, high-strength polyethylene terephthalate fibers. the result,
We have discovered that ultrafine, high-strength polyethylene terephthalate fibers can be obtained by using a solution of polyethylene terephthalate prepared in a specific solvent. That is, the present invention provides a method for producing polyethylene terephthalate fibers, which comprises extruding a solution consisting of polyethylene terephthalate and a mixed solvent of methylene chloride/trichlorotrifluoroethane through a spinning nozzle, instantaneously vaporizing the solvent, and forming fibers. It is. The polyethylene terephthalate used in the present invention is a mixed solvent of 60/40% by weight of phenol/1,1,2,2-tetrachloroethane, and has an ηSP/C of 0.6 to 0.6 when measured at a concentration of 1% at 35°C. They range from fiber grades of about 4.5 to high viscosity resins made by solid state polymerization. Other copolymerized components in the main chain,
For example, acid components include isophthalic acid, phthalic acid, glutaric acid, adipic acid, etc.; glycol components include diethylene glycol, propylene glycol, 1,4-butanediol, 2,2-bis(4-hydroxyethoxyphenyl)propane, etc. Those containing up to 15 mol% can equally be used. Although the concentration range of the solution used in the present invention is not necessarily limited depending on the degree of polymerization of the polymer, the composition of the mixed solvent, etc., it is usually preferably 5% by weight to 20% by weight. At a low concentration of less than 5% by weight, it is difficult to manufacture a continuous filament, and at a high concentration of more than 20% by weight, the filament becomes spongy or foamed, not ultrafine fibers, and has extremely low strength. The composition of the methylene chloride/trichlorotrifluoroethane mixed solvent used in the present invention is not necessarily limited depending on the degree of polymerization of the polymer, the concentration of the solution, the temperature of the solution, etc., but the composition of methylene chloride/trichlorotrifluoroethane is usually the weight ratio. 4:6~9:1
It is preferable that When the composition of trichlorotrifluoroethane exceeds 60% by weight, it becomes difficult to dissolve polyethylene terephthalate, and when it becomes less than 10% by weight, the resulting polyethylene terephthalate fibers are not drawn sufficiently, probably because the vaporized gas temperature of the mixed solvent becomes too low. It is difficult to become a fiber with high strength. The temperature of the solution used in the present invention is not necessarily limited depending on the composition of the mixed solvent, polymer concentration, etc., but usually
A range of 220°C to 280°C is preferred. The temperature of the solution is
If the temperature exceeds 280°C, thermal deterioration of the polymer tends to occur. Furthermore, if the temperature is lower than 220°C, the resulting fibers cool and solidify quickly, and the fibers cannot be drawn sufficiently, resulting in a failure to exhibit high strength or difficulty in forming fibers. The pressure of the solution is not necessarily limited depending on the composition of the mixed solvent, polymer concentration, temperature of the solution, etc.
Generally, 80 kg/cm 2 G or more is preferable. If it is less than 80Kg/cm 2 G, it may be difficult to obtain high-strength fibers due to low fiber orientation, or the solution may not be discharged uniformly, or the form of the generated fibers may be discontinuous due to fiber breakage from foamed filament. The fibers become non-uniform, even fibrillar fibers. The most important feature of the present invention is that ultrafine, high-strength fibers are produced using a solution of polyethylene terephthalate in a methylene chloride/trichlorotrifluoroethane mixed solvent. There is. First, in order to sufficiently enhance the ability to form ultrafine fibers, sufficient dissolution must be achieved. This is the first reason why a mixed solvent of methylene chloride and trichlorotrifluoroethane is necessary. Next, in the present invention,
The stretching and orientation of the fibers is achieved by the expansion force associated with the vaporization of the solvent, and the strength of the fibers is approximately determined by whether the fibers are sufficiently stretched and oriented.
In the flash spinning method, phase separation of the solution occurs within an extremely short time of 0.1 seconds or less, the polymer concentration increases as the solvent is eliminated, and finally the solvent is almost completely eliminated and the polymer is formed. precipitation occurs. Therefore, it is necessary to form fibers and simultaneously apply sufficient stretching within this extremely short period of time. In addition, it is desirable that crystallization also occur. Although it is presumed, the initial fibrous material is formed from a concentrated solution containing a solvent and has the fluidity and fiber shape retention necessary for stretching to a certain extent, and then further loss of fluidity occurs due to desolvation and cooling. . It is thought that the degree of stretching orientation is determined by the balance between this fluidity (which changes due to solvent removal and cooling) and the expansion force accompanying vaporization of the solvent. That is, it is important whether the fibrous material initially formed within an extremely short period of time has fluidity that allows it to be easily drawn and oriented, and whether it is under the conditions necessary for crystallization. In other words, the affinity between the solvent and polymer, which is thought to control fluidity,
The ejection power of the solvent gas and the vaporization temperature of the solvent gas play important roles. It seems that if the affinity between the solvent and the polymer is high, phase separation of the initial solution will not occur in a very short time, and the ultrafine fibers of the present invention will not be produced. Considering the process of forming ultrafine fibers as described above, it is thought that appropriate values for the solvent type, solvent composition, polymer concentration, solution temperature, and solution pressure are determined. <Effects of the Invention> According to the present invention, highly strong polyethylene terephthalate fibers made of ultrafine fibrillar fibers can be obtained at high speed, which is very advantageous industrially. Next, examples will be shown. <Example> Example 1 Polyethylene with a viscosity number (ηSP/C) of 1.28 measured at 1% concentration at 35°C using a 60/40 wt% mixed solvent of phenol/1,1,2,2-tetrachloroethane Terephthalate 49g and methylene chloride/1,
501 g of 1,2-trichloro-1,2,2-trifluoroethane (weight ratio 50/50) mixed solvent was charged into an autoclave with an internal volume of 550 ml, heated, and 255
A solution was prepared at 192 Kg/cm 2 G at ℃. While maintaining the autoclave internal pressure at 200Kg/cm 2 G with nitrogen gas,
The solution was introduced into a 8mmφ, 40mm conduit through a 0.9mmφ, 5mm orifice, and was introduced into a 1.0mmφ (L/D=
1) was released all at once into the atmosphere through the spinneret.
As a result, a continuous filament with a fineness of 710 d consisting of extremely fine fibrils with a diameter of 1 to 4 μm was obtained. The strength of this filament is 1.1g/d,
The elongation was 48%. Examples 2 to 7 Using the same polyethylene terephthalate and mixed solvent as in Example 1, and using the same apparatus as in Example 1, the same operations as in Example 1 were carried out while varying the polyethylene terephthalate concentration. We obtained the results shown below.

【表】 実施例8〜10、比較例3〜5 実施例1と同様のポリエチレンテレフタレート
を用いポリエチレンテレフタレート濃度を9重量
%とし、混合溶媒組成を種々変化させて実施例1
と同様な装置を用い、同様な操作を行い<表−
>に示す結果を得た。
[Table] Examples 8 to 10, Comparative Examples 3 to 5 Example 1 was prepared by using the same polyethylene terephthalate as in Example 1, setting the polyethylene terephthalate concentration to 9% by weight, and varying the mixed solvent composition.
Using the same equipment and performing the same operations <Table-
The results shown in > were obtained.

【表】 実施例11〜14、比較例6〜7 実施例1と同様のポリエチレンテレフタレート
及び混合溶媒を用い、ポリエチレンテレフタレー
ト濃度を9重量%とし、255℃に加熱して溶液を
調製した後、溶液の温度を冷却及び加熱により
種々変化させて、実施例1と同様な装置及び操作
により<表−>に示す結果を得た。
[Table] Examples 11 to 14, Comparative Examples 6 to 7 Using the same polyethylene terephthalate and mixed solvent as in Example 1, the polyethylene terephthalate concentration was adjusted to 9% by weight, and a solution was prepared by heating to 255°C. Using the same apparatus and operation as in Example 1, the results shown in Table 1 were obtained by varying the temperature of the sample by cooling and heating.

【表】 実施例15〜17、比較例8、 実施例1と同様のポリエチレンテレフタレート
及び混合溶媒を用い、ポリエチレンテレフタレー
ト濃度を9重量%とし、溶液の温度を255℃で、
溶液の圧力を種々変化させ、実施例1の装置を用
い溶液の圧力より約5Kg/cm2G高い圧力に窒素ガ
スによりオートクレーブ内を加圧した後大気中へ
溶液を放出し<表−>に示す結果を得た。
[Table] Using the same polyethylene terephthalate and mixed solvent as in Examples 15 to 17, Comparative Example 8, and Example 1, the polyethylene terephthalate concentration was 9% by weight, and the temperature of the solution was 255°C.
The pressure of the solution was varied variously, and the inside of the autoclave was pressurized with nitrogen gas to a pressure approximately 5 kg/cm 2 G higher than the pressure of the solution using the apparatus of Example 1, and then the solution was released into the atmosphere. The following results were obtained.

【表】【table】

Claims (1)

【特許請求の範囲】 1 ポリエチレンテレフタレートと塩化メチレ
ン/1,1,2−トリクロロ−1,2,2−トリ
フルオロエタン混合溶媒とから成る溶液を紡糸ノ
ズルから押出し、瞬間的に溶媒を気化させ、繊維
を形成することを特徴とするポリエチレンテレフ
タレート繊維の製造方法。 2 溶液中のポリエチレンテレフタレート濃度が
5〜20重量%である特許請求の範囲第1項記載の
方法。 3 塩化メチレン/1,1,2−トリクロロ−
1,2,2−トリフルオロエタン混合溶媒の組成
が重量比で4:6〜9:1である特許請求の範囲
第1項記載の方法。 4 溶液の温度が220℃〜280℃の範囲である特許
請求の範囲第1項記載の方法。 5 溶液の圧力が80Kg/cm2G以上である特許請求
の範囲第1項記載の方法。
[Claims] 1. A solution consisting of polyethylene terephthalate and a mixed solvent of methylene chloride/1,1,2-trichloro-1,2,2-trifluoroethane is extruded from a spinning nozzle, and the solvent is instantaneously vaporized, A method for producing polyethylene terephthalate fiber, the method comprising forming a fiber. 2. The method according to claim 1, wherein the concentration of polyethylene terephthalate in the solution is 5 to 20% by weight. 3 Methylene chloride/1,1,2-trichloro-
2. The method according to claim 1, wherein the composition of the 1,2,2-trifluoroethane mixed solvent is in a weight ratio of 4:6 to 9:1. 4. The method according to claim 1, wherein the temperature of the solution is in the range of 220°C to 280°C. 5. The method according to claim 1, wherein the pressure of the solution is 80 kg/cm 2 G or more.
JP24057985A 1985-10-29 1985-10-29 Production of polyethylene terephthalate fiber Granted JPS62104915A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24057985A JPS62104915A (en) 1985-10-29 1985-10-29 Production of polyethylene terephthalate fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24057985A JPS62104915A (en) 1985-10-29 1985-10-29 Production of polyethylene terephthalate fiber

Publications (2)

Publication Number Publication Date
JPS62104915A JPS62104915A (en) 1987-05-15
JPH024692B2 true JPH024692B2 (en) 1990-01-30

Family

ID=17061614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24057985A Granted JPS62104915A (en) 1985-10-29 1985-10-29 Production of polyethylene terephthalate fiber

Country Status (1)

Country Link
JP (1) JPS62104915A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2637425B2 (en) * 1987-05-07 1997-08-06 キヤノン株式会社 Light receiving member
US5032326A (en) * 1988-08-31 1991-07-16 E. I. Du Pont De Nemours And Company Flash-spinning of polymeric plexifilaments
DE112021001337T5 (en) 2020-02-28 2022-12-15 Sumitomo Heavy Industries, Ltd. PREHEATING DEVICE AND INJECTION DEVICE

Also Published As

Publication number Publication date
JPS62104915A (en) 1987-05-15

Similar Documents

Publication Publication Date Title
JP2763932B2 (en) Method for producing thermoplastic polymer fiber
JPS6366316A (en) Filament high in both of modulus and tensile strength
JPH024692B2 (en)
JPS62250220A (en) Production of polyethylene terephthalate fiber
US5695695A (en) Manufacture of polymer fibrids
JPH07138364A (en) Molded poly-gamma-glutamic acid and method for molding poly-gamma-glutamic acid
JPS62243642A (en) Method for preparing polyethylene terephthalate solution
US3074901A (en) Composition comprising polytetrafluoroethylene particles admixed with polystyrene containing dimethyl phthalate
Nichols et al. Preparation of small poly (butylene terephthalate) spheres by crystallization from solution
JPS6233816A (en) Production of fibrillated fiber
JPH07238416A (en) Production of high-strength polyethylene fiber
JPS62184112A (en) Production of high-tenacity high-modulus polyethylene fiber
JPS62106931A (en) Polyethylene terephthalate solution and its production
JPH06257012A (en) Production of polyester-based grid fiber
JPH08127951A (en) Network fiber nonwoven fabric and its production
JPH03279413A (en) Molecularly oriented molded body of high-molecular weight polyethylene
JPS61207616A (en) Production of formed polyester having high strength
JPS61132323A (en) Manufacture of constituted foamed thin sheet and product thereof
JP3148386B2 (en) Dry spinning method
JPH0284531A (en) Production of polyolefin fiber
JPS61611A (en) Preparation of polyolefinic yarn having high strength and high modulus
JPH0368127B2 (en)
JPH0357964B2 (en)
JPS6147809A (en) Production of high-strength and high-modulus polyolefin based fiber
JPS60199028A (en) Novel polyester