JPS62250220A - Production of polyethylene terephthalate fiber - Google Patents

Production of polyethylene terephthalate fiber

Info

Publication number
JPS62250220A
JPS62250220A JP9010886A JP9010886A JPS62250220A JP S62250220 A JPS62250220 A JP S62250220A JP 9010886 A JP9010886 A JP 9010886A JP 9010886 A JP9010886 A JP 9010886A JP S62250220 A JPS62250220 A JP S62250220A
Authority
JP
Japan
Prior art keywords
polyethylene terephthalate
pressure
temperature
methylene chloride
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9010886A
Other languages
Japanese (ja)
Inventor
Kazuhiko Shimura
和彦 志村
Tetsuo Uchimura
哲郎 内村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP9010886A priority Critical patent/JPS62250220A/en
Publication of JPS62250220A publication Critical patent/JPS62250220A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Artificial Filaments (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

PURPOSE:To obtain the titled ultra-fine fiber having high strength in high stability, suppressing the decomposition of polymer, by extruding a dope composed of a polyethylene terephthalate and a specific mixed solution through a spinning nozzle under a specific condition and instantaneously evaporating the solvent to form fibers. CONSTITUTION:A solution having a specific volume of <=1.0cc/g and composed of 5-20wt% polyethylene terephthalate and a mixed solvent consisting of methylene chloride and 1,1,2-trichloro-1,2,2-trifluoroethane at a weight ratio of 4:6-9:1 is heated at 240-280 deg.C, passed through an orifice under a pressure (P1, kg/cm<2>G) and a temperature (T1, deg.C) condition satisfying the formula I, introduced into a pipe having a pressure P2 and a temperature T2 satisfying the formula II (P2 is higher than the vapor-liquid equilibrium pressure and P1>P2) and abruptly released through a spinning nozzle into atmosphere to effect the instantaneous vaporization of the solvent and obtain the objective fiber.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はポリエチレンテレフタレート繊維の製造方法に
関する。更に詳しくは、ポリエチレンテレフタレートと
塩化メチレン/1,1.2−1−リクロロー1.2.2
−トリフルオロエタン(以下、単に「トリクロロトリフ
ルオロエタン」という。)混合溶媒とから成る溶液を用
いて極細のポリエチレンテレフタレート繊維を製造する
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing polyethylene terephthalate fibers. More specifically, polyethylene terephthalate and methylene chloride/1,1.2-1-lichloro 1.2.2
- Trifluoroethane (hereinafter simply referred to as "trichlorotrifluoroethane") and a mixed solvent.

〔従来の技術〕[Conventional technology]

極細繊維を製造する方法として、ポリマーの融液を紡糸
ノズルから押出塩化メチレン/1,1,それを加熱流体
ジェットで牽引細化させる謂ゆるメルブロート法;或い
は多成分フィラメント(例えば繊維断面が海−島構造と
なっている)を紡糸した後、一部のポリマー成分(例え
ば繊維断面構造での海成分)を溶媒で除去する方法;更
には特公昭40−28125号及び特公昭41−621
5号等に記載されている如き低沸点溶媒とポリマーの溶
液を紡糸ノズルから押出塩化メチレン/1,1,瞬間的
に溶媒を気化させる謂ゆるフラッシュ紡糸法などがある
As a method for producing ultrafine fibers, a polymer melt is extruded from a spinning nozzle using methylene chloride/1,1, and then pulled with a jet of heated fluid to make it thinner. A method in which a part of the polymer component (for example, a sea component in the fiber cross-sectional structure) is removed using a solvent after spinning a fiber (which has an island structure);
Examples include methylene chloride/1,1 extruding a solution of a low boiling point solvent and polymer from a spinning nozzle, as described in No. 5, and the so-called flash spinning method in which the solvent is instantaneously vaporized.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

極細のポリエチレンテレフタレート繊維をそれらの方法
で製造するとき、メルトブロー法は確かに極めて細い繊
維が得られるものの、繊維の細化をポリマーの融液状態
で行っているため繊維の延伸配向及び結晶化が不充分で
、得られた繊維の強度が極めて弱いという問題を有して
いる。また、多成分フィラメントの一部成分ボリマーを
除去する方法ではポリマーを溶出させるという面倒な工
程が必要となる。特公昭40−28125号及び特公昭
41−6215号に記載されている方法ではポリエチレ
ンでは細くて強度的に満足のいくものが得られているも
ののポリエチレンテレフタレートに関しては極めて弱い
繊維しか得られていない。以上の如(、極細で強度的に
も満足のいくポリエチレンテレフタレート繊維の製造方
法が工業的に十分確立されていないのが現状である。
When ultra-fine polyethylene terephthalate fibers are produced using these methods, although the melt-blowing method does yield extremely thin fibers, since the fibers are thinned in the polymer melt state, the drawing orientation and crystallization of the fibers are difficult. The problem is that the strength of the obtained fibers is extremely low. In addition, the method of removing some component polymers of a multicomponent filament requires a troublesome step of eluting the polymer. The methods described in Japanese Patent Publication No. 40-28125 and Japanese Patent Publication No. 41-6215 yield polyethylene fibers that are thin and have satisfactory strength, but polyethylene terephthalate fibers yield only extremely weak fibers. As described above, at present, a method for producing polyethylene terephthalate fibers that are extremely fine and have satisfactory strength has not been sufficiently established industrially.

本発明の目的は、極細で高強力のポリエチレンテレフタ
レート繊維を能率的かつ工業的有利に製造する方法を提
供することにある。
An object of the present invention is to provide an efficient and industrially advantageous method for producing ultra-fine, high-strength polyethylene terephthalate fibers.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者等は、極細高強力のポリエチレンテレフタレー
ト繊維を製造するに当り、フラッシュ紡糸法に着目し鋭
意研究を続けてきた。その結果、特定の溶媒で調製した
ポリエチレンテレフタレートの溶液を用いることにより
極細高強力のポリエチレンテレフタレート繊維が得られ
ることを発見した。即ち、ポリエチレンテレフタレート
と塩化メチレン/トリクロロトリフルオロエタン混合溶
媒とから成る溶液を紡糸ノズルから押出塩化メチレン/
1,1,瞬間的に溶媒を気化させ繊維を形成することを
特徴とするポリエチレンテレフタレート繊維の製造方法
を見い出塩化メチレン/1,1,特願昭60−2405
79とした。しかるに、先願の方法では安定して極細の
高強力ポリエチレンテレフタレート繊維を得ることが難
しいことが分った。これを解決するために更に研究を重
ね、本発明を完成した。即ち、極細高強力のポリエチレ
ンテレフタレート繊維を得るには特定の比容。
The present inventors have focused on the flash spinning method and have continued intensive research in producing ultra-fine, high-strength polyethylene terephthalate fibers. As a result, they discovered that ultrafine, high-strength polyethylene terephthalate fibers can be obtained by using a solution of polyethylene terephthalate prepared in a specific solvent. That is, a solution consisting of polyethylene terephthalate and a methylene chloride/trichlorotrifluoroethane mixed solvent is extruded from a spinning nozzle.
1,1, Discovery of a method for producing polyethylene terephthalate fibers characterized by instantaneous vaporization of the solvent to form fibers Methylene chloride/1,1, Patent application 1986-2405
It was set at 79. However, it was found that it was difficult to stably obtain ultrafine, high-strength polyethylene terephthalate fibers using the method of the prior application. In order to solve this problem, we conducted further research and completed the present invention. That is, a specific specific volume is required to obtain ultra-fine, high-strength polyethylene terephthalate fibers.

温度、圧力でポリエチレンテレフタレートを溶か塩化メ
チレン/1,1,しかる後前記比容、温度、圧力に合致
した条件で紡糸しなければならない、以下本発明の詳細
な説明する。
Polyethylene terephthalate is dissolved in methylene chloride/1.1 at temperature and pressure, and then spun under conditions that match the specific volume, temperature and pressure mentioned above.The present invention will now be described in detail.

本発明で使用されるポリエチレンテレフタレートとはフ
ェノール/1.1.2.2−テトラクロルエタンの60
/40重量%の混合溶媒で、35℃で濃度1%で測定し
たηSP/Cが0.6〜4.5(100cc/g )程
度の繊維グレードから固相重合によって作られた高粘度
樹脂までのものである。
The polyethylene terephthalate used in the present invention is 60% of phenol/1.1.2.2-tetrachloroethane.
/40% by weight mixed solvent, from fiber grades with ηSP/C of about 0.6 to 4.5 (100cc/g) measured at 35°C and 1% concentration to high viscosity resins made by solid phase polymerization. belongs to.

主鎖に他の共重合成分、例えば酸成分として、イソフタ
ル酸、フタール酸、ゲルタール酸、アジピン酸等、グリ
コール成分として、ジエチレングリコール、プロピレン
グリコール、1.4−7’タンジオール、2.2−ビス
(4−ヒドロキシエトキシフェニル)プロパン等を15
モル%までの範囲で含むものも同等に用いることができ
る。
The main chain contains other copolymerized components, such as acid components such as isophthalic acid, phthalic acid, geltaric acid, adipic acid, etc., and glycol components such as diethylene glycol, propylene glycol, 1.4-7'tanediol, and 2.2-bis( 15 4-hydroxyethoxyphenyl)propane, etc.
Those containing up to mol % can equally be used.

本発明で用りる溶液のポリエチレンテレフタレート濃度
及び塩化メチレン/トリクロロトリフルオロエタン混合
溶媒の組成は、先願の特願昭60−240579に記載
の通りであるが、次に示しておく。
The polyethylene terephthalate concentration of the solution used in the present invention and the composition of the methylene chloride/trichlorotrifluoroethane mixed solvent are as described in the earlier Japanese Patent Application No. 60-240579, and are shown below.

即ち、本発明で用いる溶液の濃度範囲はポリマーの重合
度、混合溶媒組成等により一概に限定されないが、通常
5重量%〜20重量%が好ましい。
That is, the concentration range of the solution used in the present invention is not necessarily limited depending on the degree of polymerization of the polymer, the composition of the mixed solvent, etc., but it is usually preferably 5% by weight to 20% by weight.

5重量%未満の低濃度では連続フィラメントの製造が困
難となり20重量%を超えると高濃度ではスポンジ状、
発泡状フィラメントとなり極細繊維とならず、かつ極め
て強度が弱くなる。
At a low concentration of less than 5% by weight, it is difficult to produce a continuous filament, and at a high concentration of more than 20% by weight, it becomes spongy,
It becomes a foamed filament and does not become an ultra-fine fiber, and its strength becomes extremely weak.

本発明で用いる塩化メチレン/トリクロロトリフルオロ
エタン混合溶媒の組成はポリマーの重合度、溶液の濃度
、溶液の温度等により一概に限定されないが、通常塩化
メチレン/トリクロロトリフルオロエタンの組成が重量
比で4=6〜9:1であることが好ましい。トリクロロ
トリフルオロエタンの組成が60重量%を超えるとポリ
エチレンテレフタレートの溶解が困難となり、10重量
%未満になると混合溶媒の気化ガス温度が低くなり過ぎ
るためか生成するポリエチレンテレフタレート繊維の延
伸が充分でなくなって強度の高い繊維となり難い。
The composition of the methylene chloride/trichlorotrifluoroethane mixed solvent used in the present invention is not necessarily limited depending on the degree of polymerization of the polymer, the concentration of the solution, the temperature of the solution, etc., but the composition of methylene chloride/trichlorotrifluoroethane is usually the weight ratio. It is preferable that 4=6 to 9:1. When the composition of trichlorotrifluoroethane exceeds 60% by weight, it becomes difficult to dissolve polyethylene terephthalate, and when it becomes less than 10% by weight, the resulting polyethylene terephthalate fibers are not sufficiently stretched, probably because the vaporized gas temperature of the mixed solvent becomes too low. Therefore, it is difficult to form fibers with high strength.

本発明において、ポリエチレンテレフタレートと塩化メ
チレン/トリクロロトリフルオロエタンとの混合物の比
容を1.0cc/g以下と塩化メチレン/1,1,24
0℃以上280°C以下に加熱して、その溶液を、圧力
P + (kg/ciG)と温度T+(’c)が、P1
≧2.8 T +  532 (kg / cj G 
)好ましくは P1≧2.8T1471(kg/cjG)を満足する条
件からオリフィスを通じて、圧力P z (kg/ c
rA G ) 、温度Tz(’C)がP z < 2.
8 Tt  471 好ましくはpi <2.8TZ −532(但塩化メチ
レン/1,1,P2は気液平衡圧力以 上かつP+>Pz)を満足する導管へ導き、紡口を通じ
て一気に大気中に放出させることを特徴とする。
In the present invention, the specific volume of the mixture of polyethylene terephthalate and methylene chloride/trichlorotrifluoroethane is set to 1.0 cc/g or less and methylene chloride/1,1,24
The solution is heated to 0°C or more and 280°C or less, and the pressure P + (kg/ciG) and temperature T + ('c) are P1
≧2.8 T + 532 (kg / cj G
) Preferably, the pressure P z (kg/c
rA G ), the temperature Tz ('C) is P z < 2.
8 Tt 471 Preferably pi <2.8TZ -532 (However, methylene chloride/1,1, P2 is above the vapor-liquid equilibrium pressure and P+>Pz) and led to a conduit that satisfies pi <2.8TZ -532 (methylene chloride/1,1, P2 is above the vapor-liquid equilibrium pressure and P+>Pz) and released into the atmosphere at once through the spinneret. It is characterized by

ポリエチレンテレフタレートと塩化メチレン/トリクロ
ロトリフルオロエタン混合溶媒との混合物の比容を1.
0cc / gとすることによって、溶液圧力を十分高
く塩化メチレン/1,1,ポリエチレンテレフタレート
の溶解を極めて速くすることができる。また、ポリマー
≠溶解の温度が下げられ、ポリマーの分解が抑制できる
。たとえば、第1図を用いて説明すると、ηSP/Cが
1.28のポリエチレンテレフタレート(PET)と塩
化メチレン(MCと略す)/トリクロロトリフルオロエ
タン(F−113と略す)の混合系(PET15wt%
、 MC/F−113=515)の場合、温度250℃
で比容]、2cc/gでは圧力約90kg/c4Gを示
すのに対して、比容1.0cc/gとすれば、150 
kg / cd Gを示塩化メチレン/1,1,溶解性
は極めて向上する。また比容1.2cc/gでは、圧力
150kg / cal Gを得るのに295℃にしな
ければならないが、比容1.0cc/gとすれば、25
0°Cでよい。また、塩化メチレン/トリクロロトリフ
ルオロエタンが重量比で9/1の混合溶媒と、ηSP/
Cが0.73のポリエチレンテレフタレート7.0wt
%の混合物は、比容0.93cc / gで242℃で
260kg/cdGを示塩化メチレン/1,1,極めて
速やかにポリエチレンテレフタレートが溶解する。ポリ
エチレンテレフタレートの溶解を短時間に行わせること
は、ポリエチレンテレフタレートの分解が抑制でき、紡
糸後の繊維の高強度化に極めて有効であることが分った
のである。
The specific volume of the mixture of polyethylene terephthalate and methylene chloride/trichlorotrifluoroethane mixed solvent is 1.
By setting it to 0 cc/g, the solution pressure can be made sufficiently high and the dissolution of methylene chloride/1,1, polyethylene terephthalate can be made extremely fast. Furthermore, the temperature at which polymer≠dissolution is lowered, and decomposition of the polymer can be suppressed. For example, to explain using FIG. 1, a mixed system (PET 15 wt%
, MC/F-113=515), the temperature is 250℃
Specific volume], 2 cc/g shows a pressure of about 90 kg/c4G, whereas if the specific volume is 1.0 cc/g, the pressure is 150
kg/cd G in methylene chloride/1,1, the solubility is greatly improved. Also, with a specific volume of 1.2 cc/g, the temperature must be 295°C to obtain a pressure of 150 kg/cal G, but with a specific volume of 1.0 cc/g, the temperature must be 295°C.
0°C is sufficient. In addition, a mixed solvent of methylene chloride/trichlorotrifluoroethane in a weight ratio of 9/1 and ηSP/
7.0wt of polyethylene terephthalate with C of 0.73
% mixture shows 260 kg/cdG at 242°C with a specific volume of 0.93 cc/g, methylene chloride/1,1, polyethylene terephthalate dissolves very quickly. It has been found that dissolving polyethylene terephthalate in a short time can suppress the decomposition of polyethylene terephthalate and is extremely effective in increasing the strength of the fiber after spinning.

溶液の温度を240℃以上で280℃以下にすることも
、ポリエチレンテレフタレートの溶解を短時間で終了さ
せ、ポリエチレンテレフタレートの分解を抑えるためで
ある。280℃を超える温度は、ポリエチレンテレフタ
レートの分解を著しく促進塩化メチレン/1,1,不適
である。240℃より低温では、ポリマーの溶解が遅く
なり、ポリマーの分解につながる。
The temperature of the solution is set to 240° C. or higher and 280° C. or lower in order to finish dissolving the polyethylene terephthalate in a short time and suppress the decomposition of the polyethylene terephthalate. Temperatures exceeding 280°C are unsuitable for methylene chloride/1,1, which significantly accelerates the decomposition of polyethylene terephthalate. At temperatures below 240° C., polymer dissolution slows down, leading to polymer decomposition.

また、繊維の強度が低下する。Additionally, the strength of the fibers decreases.

本発明の製造方法において、あらかじめ溶融させたポリ
マーと加熱した溶媒を合流させて溶解させてもよい。こ
の方法は溶液形成に対して有効である。特に連続的にポ
リマーの溶解から紡糸に至る製造方式においてはそのよ
うな方法が好ましい。
In the production method of the present invention, a pre-melted polymer and a heated solvent may be combined and dissolved. This method is effective for solution formation. Such a method is particularly preferred in a manufacturing method that continuously involves dissolving the polymer and spinning it.

溶液を、圧力P1(kg/crAG)、温度Tl (’
c)の関係が P1≧2.8.T、 −532 好ましくは P、上2゜8T、 −471 を満足する条件から、オリフィスを通じて、オリフィス
と紡口の間の導管を圧力P z  (kg / cnl
 G )、温度72(’C)が P z < 2.8 Tz  471 好ましくは P2 <2.8T2 532  (但しP2は気液平衡
圧力以上かつP+>Pg) を満足する条件にして、紡口を通じて一気に大気中に放
出すれば、極めて細い、均一なフィブリルから成る高強
度の繊維が得られる。PI<2.8丁。
The solution is heated at a pressure P1 (kg/crAG) and a temperature Tl ('
The relationship c) is P1≧2.8. T, -532 Preferably, from the conditions satisfying P, upper 2°8T, -471, the conduit between the orifice and the spindle is heated through the orifice to a pressure Pz (kg/cnl
G), temperature 72 ('C) satisfies Pz < 2.8 Tz 471, preferably P2 < 2.8T2 532 (however, P2 is equal to or higher than the vapor-liquid equilibrium pressure and P+>Pg), and is passed through the spinneret. If released all at once into the atmosphere, a high-strength fiber consisting of extremely thin, uniform fibrils can be obtained. PI<2.8 guns.

−I=F532 (kg / csA G )の範囲か
らの導管への溶液の放出では、太さが不均一なフィブリ
ルの強度の低い繊維となる。また導管内が、P2≧2.
8T471  (kg/cnlG)の範囲では、フィブ
リルが密着塩化メチレン/1,1,フィルム状を呈する
繊維となり易く、強度も低下する。極端な場合では、破
断した不連続のフィラメントとなる。前述のように導管
内の圧力P2は Pt < 2.8 T2 471 好ましくは Pt <2.87g  532 であることが必要であるが、しかも気液平衡圧力以上で
なければならない。気液平衡圧力以下では、太い、不均
一なフィブリルから成る低強度の繊維となる。
Release of the solution into the conduit from the range -I=F532 (kg/csA G ) results in weaker fibers of fibrils with non-uniform thickness. In addition, if the inside of the conduit is P2≧2.
In the range of 8T471 (kg/cnlG), the fibrils tend to form a film-like fiber with adhesive methylene chloride/1,1, and the strength also decreases. In extreme cases, broken and discontinuous filaments result. As mentioned above, the pressure P2 in the conduit needs to be Pt < 2.8 T2 471 preferably Pt < 2.87g 532 and must be equal to or higher than the gas-liquid equilibrium pressure. Below the vapor-liquid equilibrium pressure, the result is a low-strength fiber consisting of thick, non-uniform fibrils.

本発明においては、ポリエチレンテレフタレートの溶解
が適正になされるようになったこと、フラッシュ紡糸前
により均一な溶液化が達成されるようになったこと、更
に繊維形成に必要な過程と考えられている相分離の条件
が適正化されたこと等が、極細の高強力のポリエチレン
テレフタレート繊維が安定に製造できるようになった理
由として考えられる。
In the present invention, polyethylene terephthalate is now properly dissolved, a more uniform solution is achieved before flash spinning, and this is considered to be a necessary process for fiber formation. Optimization of phase separation conditions is thought to be the reason why ultrafine, high-strength polyethylene terephthalate fibers can now be stably produced.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、ポリマーの分解を抑制して紡糸を得る
ことができるようになったことから、繊維の高強度化が
達成できるようになり、また、より低い分子量のポリマ
ー原料を使えるようになった。また、紡糸前の溶液をよ
り均一にしたこと、紡糸工程の条件を厳密にとることに
よって、極細の繊維が得られるようになった。以上のこ
とから、極細のフィブリルから成る高強力のポリエチレ
ンテレフタレート繊維が安定に得られるようになり、工
業的製造法として利用価値が高い。
According to the present invention, it has become possible to obtain a spun fiber by suppressing the decomposition of the polymer, which has made it possible to achieve high strength fibers and to use polymer raw materials with lower molecular weights. became. Furthermore, by making the solution more uniform before spinning and by strictly controlling the conditions of the spinning process, it has become possible to obtain ultra-fine fibers. From the above, it has become possible to stably obtain high-strength polyethylene terephthalate fibers consisting of ultra-fine fibrils, and the method has high utility as an industrial production method.

〔実施例1,2、比較例1〜5〕 フェノール/1,1,2.2−テトラクロロエタンの6
0/40重量%混合溶媒を用いて、35℃、濃度1%で
測定した粘度数(ηSP/C)が1.28のポリエチレ
ンテレフタレート49.9gと塩化メチレン/1,1.
2−)リクロロl、2.2−トリフルオロエタン(重量
比9/1)の混合溶媒504gを内容積532ccのオ
ートクレーブに仕込んだ。(ポリマー濃度は9.0%1
t%、比溶は0.96cc / gとなる。)プロペラ
型攪拌機を回転させながらオートクレーブを加熱塩化メ
チレン/1,1,内容物を250℃、235kg/cJ
Gの状態にした。
[Examples 1 and 2, Comparative Examples 1 to 5] Phenol/1,1,2.2-tetrachloroethane 6
Using a 0/40% by weight mixed solvent, 49.9g of polyethylene terephthalate having a viscosity number (ηSP/C) of 1.28 measured at 35°C and a concentration of 1% and methylene chloride/1,1.
2-) 504 g of a mixed solvent of dichlorol and 2,2-trifluoroethane (9/1 weight ratio) was charged into an autoclave having an internal volume of 532 cc. (Polymer concentration is 9.0%1
t%, the specific solubility is 0.96 cc/g. ) Heating the autoclave while rotating the propeller type stirrer, methylene chloride/1,1, contents at 250℃, 235kg/cJ
I put it in the state of G.

オートクレーブ内を窒素ガスで235 kg / ct
A Gに加圧塩化メチレン/1,1,その圧力を保持し
ながら、その溶液をQ、 7 mmφ、5palのオリ
フィスに通塩化メチレン/1,1,8mφ。
235 kg/ct with nitrogen gas inside the autoclave
Pressure methylene chloride/1,1 in A G, and while maintaining the pressure, pass the solution through a Q, 7 mmφ, 5 pal orifice with methylene chloride/1,1,8 mφ.

4Qwlの導管に導き、0.8mφ、孔長/孔径(L/
D)=1の紡口を通して大気中に一気に放出した。導管
内の圧力と温度はそれぞれ130kg/cnlG、  
240℃であった(P2は適正条件内に入っている。p
、 =130 < 2.8 x240−471 =20
1(kg / cJ G )。その結果、極めて細かい
直径0.5〜4μのフィブリルから成る繊度680dの
連続フィラメントが得られた。このフィラメントの強度
は1.0g/d 、伸度は57%であった。(実施例1
)ポリマーと混合溶媒の仕込量をそれぞれ51.4g。
4Qwl conduit, 0.8mφ, hole length/hole diameter (L/
D) was released into the atmosphere at once through a spinneret of 1. The pressure and temperature inside the conduit are each 130 kg/cnlG,
The temperature was 240°C (P2 is within the appropriate conditions.p
, =130 < 2.8 x240-471 =20
1 (kg/cJG). As a result, a continuous filament with a fineness of 680 d consisting of extremely fine fibrils with a diameter of 0.5 to 4 μm was obtained. This filament had a strength of 1.0 g/d and an elongation of 57%. (Example 1
) The amount of polymer and mixed solvent charged was 51.4 g each.

521gに増加塩化メチレン/1,1,(比容0.93
cc / g )オリフィスの孔径を0.65mmφに
した以外は実施例1と同様に操作した。結果を第1表に
示した。(実施例2)原料仕込量を517g(比容1.
03cc/g )で同様に(ポリマー濃度9.0wt%
、同混合溶液使用)溶液を調製しく250℃、 155
 kg/colG) 、窒素ガスで155 kg / 
aa Gに加圧塩化メチレン/1,1,その圧力を保ち
ながら同様にフラッシュ紡糸した結果、フィブリルの大
きさが不均一のフィラメントとなり、強度は0.5g/
dと低下した。(比較例1:圧力P、が適正値に入って
いない。P 、 = 155< 2.8 X250−5
32=168)フィラメントの強伸度の測定はインスト
ロン型の引張試験機を用い、フィラメントに300回/
360龍の撚りをかけて測定した。
Increased to 521g methylene chloride/1,1, (specific volume 0.93
cc/g) The same procedure as in Example 1 was performed except that the orifice diameter was set to 0.65 mmφ. The results are shown in Table 1. (Example 2) The amount of raw material charged was 517g (specific volume 1.
03cc/g) and similarly (polymer concentration 9.0wt%
, use the same mixed solution) Prepare the solution at 250℃, 155
kg/colG), 155 kg/ with nitrogen gas
Pressurized methylene chloride/1,1 was applied to aa G, and as a result of flash spinning in the same manner while maintaining the pressure, filaments with non-uniform fibril sizes were obtained, and the strength was 0.5 g/1.
It decreased to d. (Comparative example 1: Pressure P is not within the appropriate value. P, = 155 < 2.8 X250-5
32=168) The strength and elongation of the filament was measured using an Instron type tensile tester, and the filament was tested 300 times/
Measurements were made with 360 dragon twists applied.

同様にしてポリマー及び溶媒の仕込量、溶液温度、溶液
圧力、オリフィス後の導管の温度及び圧力を変更して行
った比較例2〜5を第1表に示した。オリフィス後の導
管の圧力及び温度は、オリフィス孔径及び紡口孔の組合
せの変更、導管部の加熱の程度で変えた。
Table 1 shows Comparative Examples 2 to 5, which were carried out in the same manner by changing the amounts of polymer and solvent charged, solution temperature, solution pressure, and temperature and pressure of the conduit after the orifice. The pressure and temperature of the conduit after the orifice were varied by changing the orifice hole diameter and the combination of spinnerets, and by heating the conduit section.

比較例2は導管圧力が高過ぎて連続したフィラメントに
ならなかった。(Pg =220 > 2.8 X24
5−471  =215  ) 比較例3は溶液温度が低過ぎて、不均一なフィブリルか
ら成るフィラメントになり、引張強度は0.4g/dと
低くなった。
In Comparative Example 2, the conduit pressure was too high to form a continuous filament. (Pg = 220 > 2.8 X24
5-471 = 215) In Comparative Example 3, the solution temperature was too low, resulting in a filament consisting of non-uniform fibrils, and the tensile strength was as low as 0.4 g/d.

比較例4は、比容が大き過ぎ、また溶液圧力が低過ぎで
、極細のフィブリルを形成せず、発泡状態の太い繊維と
なった。
In Comparative Example 4, the specific volume was too large and the solution pressure was too low, so very fine fibrils were not formed and thick fibers were formed in a foamed state.

比較例5は溶液温度が高過ぎ、ポリマーの熱分解が起っ
たと考えられ、生成フィラメントは黄褐色に着色塩化メ
チレン/1,1,フィブリルが密着した状態のものとな
った。
In Comparative Example 5, it is thought that the solution temperature was too high and thermal decomposition of the polymer occurred, and the filaments produced were yellowish brown colored methylene chloride/1,1 fibrils in close contact.

以下余白 〔実施例3、比較例6.7〕 実施例1で用いたのと同じポリエチレンテレフタレート
73.6gと塩化メチレン/1,1.2−)リクロロー
1.2.2−トリフルオロエタン(重量比713)の混
合溶媒492gを内容積532ccのオートクレーブに
仕込んだ。(ポリマー濃度は13.〇−t%、比容は0
.94cc/gとなる)プロペラ型攪拌機を回転させな
がらオートクレーブを加熱塩化メチレン/1,1,内容
物を268℃、  310kg/calGの状態にした
。溶液の温度を260℃と塩化メチレン/1,1,溶液
をオートクレーブから僅かに抜いて、圧力270 kg
 / cd Gとした。温度。
The following blank space [Example 3, Comparative Example 6.7] 73.6 g of the same polyethylene terephthalate used in Example 1 and methylene chloride/1,1.2-)lichloro-1,2,2-trifluoroethane (weight 492 g of a mixed solvent with a ratio of 713) was charged into an autoclave having an internal volume of 532 cc. (Polymer concentration is 13.0-t%, specific volume is 0
.. While rotating the propeller type stirrer, the autoclave was heated to methylene chloride/1,1 and the contents were brought to 268° C. and 310 kg/calG. The temperature of the solution was set to 260℃ and methylene chloride/1,1, the solution was slightly removed from the autoclave and the pressure was 270 kg.
/ cd G. temperature.

圧力、比容の関係から溶液の比容は1.0cc/g以下
である。次にオートクレーブ内を窒素ガスで270kg
/cJに加圧塩化メチレン/1,1,その圧力を保ちな
がら、溶液を0.8鶴φ、51■lのオリフィスに通じ
、81sφ。
Due to the relationship between pressure and specific volume, the specific volume of the solution is 1.0 cc/g or less. Next, the inside of the autoclave was filled with 270 kg of nitrogen gas.
Pressurize methylene chloride/1,1 to /cJ, and while maintaining the pressure, pass the solution through a 0.8 φ, 51 μl orifice, and 81 sφ.

40龍lの導管に導き、0.9酊φ、孔長/孔径=1の
紡口を通して大気中に一気に放出した。導管内の圧力と
温度はそれぞれ、140kg/cnlG、 251℃で
あった。  (pg =140<2.8X251−47
1干232)その結果、極めて細いフィブリルから成る
繊度790dの連続フィラメントが得られた。このフィ
ラメントの強度は0.9 g/d  、伸度は62%で
あった。
The mixture was introduced into a 40 liter conduit and discharged all at once into the atmosphere through a spinneret with a diameter of 0.9 and a hole length/hole diameter of 1. The pressure and temperature inside the conduit were 140 kg/cnlG and 251°C, respectively. (pg = 140<2.8X251-47
1.232) As a result, a continuous filament with a fineness of 790 d consisting of extremely thin fibrils was obtained. This filament had a strength of 0.9 g/d and an elongation of 62%.

同様にしてポリマー溶液を調整した後、(260℃。After preparing a polymer solution in the same manner, (260°C.

270 kg / cnl r)、の状B)、311φ
、L/D=1のオリフィスに通塩化メチレン/1,1,
同様にフラッシュ紡糸した結果、破断した不連続の繊維
となった。導管内は圧力257 kg / cal G
 、温度258℃であった。(比較例2:圧力P2が適
正値でない。Pg =257 >2.8 X258−4
71 =251 ”) また同様にしてポリマー溶液と調製した後、溶液をオー
トクレーブから抜いて、温度260℃で175kg/c
dGにして、窒素′ガスで175kg/cjGに加圧塩
化メチレン/1,1,実施例2と同じオリフィス、紡孔
を用いてフラッシュ紡糸した結果、フィブリルの太さが
不均一なフィラメントとなり、強度は0.4g/dと低
下した。(比較例3:圧力P、が適正でない。
270 kg/cnl r), shape B), 311φ
, Methylene chloride/1,1, passed through an orifice with L/D=1.
Similarly, flash spinning resulted in broken, discontinuous fibers. Pressure inside the conduit is 257 kg/cal G
, the temperature was 258°C. (Comparative example 2: Pressure P2 is not an appropriate value. Pg = 257 > 2.8 X258-4
71 = 251 ”) After preparing a polymer solution in the same manner, the solution was taken out of the autoclave and was heated to 175 kg/c at a temperature of 260°C.
dG and pressurized methylene chloride/1,1 with nitrogen' gas to 175 kg/cjG. As a result of flash spinning using the same orifice and spinning hole as in Example 2, the fibril thickness became filaments with uneven thickness, and the strength decreased to 0.4 g/d. (Comparative Example 3: Pressure P is not appropriate.

P 、  =  175< 2.8 X260 −53
2  =196 )
P, = 175< 2.8 X260 -53
2 = 196)

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、ηSP/C= 1.28 (100cc/g
 )のポリエチレンテレフタレートと塩化メチレン/ト
リクロロトリフルオロエタンの混合系(PE77771
度15wt%、 MC/F−113−515)の温度、
比容。 圧力の関係を示すグラフである。
In Figure 1, ηSP/C= 1.28 (100cc/g
) mixed system of polyethylene terephthalate and methylene chloride/trichlorotrifluoroethane (PE77771
15 wt%, MC/F-113-515) temperature,
Specific volume. It is a graph showing the relationship between pressures.

Claims (1)

【特許請求の範囲】 1、ポリエチレンテレフタレート5〜20重量%と塩化
メチレン/1,1,2−トリクロロ−1,2,2−トリ
フルオロエタンが重量比で4:6〜9:1である混合溶
媒とから成る溶液を紡糸ノズルから押出し、瞬間的に溶
媒を気化させ、繊維を形成することを特徴とするポリエ
チレンテレフタレート繊維の製造法において、ポリエチ
レンテレフタレートと塩化メチレン/1,1,2−トリ
クロロ−1,2,2−トリフルオロエタンとの混合物の
比溶を1.0cc/g以下とし、240℃以上280℃
以下に加熱して、その溶液を圧力P_1(kg/cm^
3G)と温度T_1(℃)が P_1≧2.8T_1−532(kg/cm^2G)を
満足する条件からオリフィスを通じて、圧力P_2、温
度T_2が、 P_2<2.8T_2−471(kg/cm^2G)(
但しP_2は気液平衡圧力以上かつP_1>P_2) を満足する導管へ導き、紡口を通じて一気に大気中に放
出させることを特徴とするポリエチレンテレフタレート
繊維の製造法。
[Claims] 1. A mixture of 5 to 20% by weight of polyethylene terephthalate and methylene chloride/1,1,2-trichloro-1,2,2-trifluoroethane in a weight ratio of 4:6 to 9:1. A method for producing polyethylene terephthalate fibers, which comprises extruding a solution consisting of a solvent from a spinning nozzle, instantaneously vaporizing the solvent, and forming fibers. The specific solubility of the mixture with 1,2,2-trifluoroethane is 1.0 cc/g or less, and the temperature is 240°C or higher and 280°C.
The solution is heated to a pressure of P_1 (kg/cm^
3G) and temperature T_1 (℃) satisfy P_1≧2.8T_1-532 (kg/cm^2G), through the orifice, pressure P_2 and temperature T_2 become P_2<2.8T_2-471 (kg/cm^ 2G)(
However, the method for producing polyethylene terephthalate fibers is characterized in that P_2 is higher than the vapor-liquid equilibrium pressure and P_1>P_2) is guided into a conduit and discharged into the atmosphere at once through a spinneret.
JP9010886A 1986-04-21 1986-04-21 Production of polyethylene terephthalate fiber Pending JPS62250220A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9010886A JPS62250220A (en) 1986-04-21 1986-04-21 Production of polyethylene terephthalate fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9010886A JPS62250220A (en) 1986-04-21 1986-04-21 Production of polyethylene terephthalate fiber

Publications (1)

Publication Number Publication Date
JPS62250220A true JPS62250220A (en) 1987-10-31

Family

ID=13989323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9010886A Pending JPS62250220A (en) 1986-04-21 1986-04-21 Production of polyethylene terephthalate fiber

Country Status (1)

Country Link
JP (1) JPS62250220A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5023025A (en) * 1989-07-18 1991-06-11 E. I. Du Pont De Nemours And Company Halocarbons for flash-spinning polymeric plexifilaments
US5032326A (en) * 1988-08-31 1991-07-16 E. I. Du Pont De Nemours And Company Flash-spinning of polymeric plexifilaments
US5081177A (en) * 1988-08-30 1992-01-14 E. I. Du Pont De Nemours And Company Halocarbons for flash-spinning polymeric plexifilaments

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5081177A (en) * 1988-08-30 1992-01-14 E. I. Du Pont De Nemours And Company Halocarbons for flash-spinning polymeric plexifilaments
US5032326A (en) * 1988-08-31 1991-07-16 E. I. Du Pont De Nemours And Company Flash-spinning of polymeric plexifilaments
US5023025A (en) * 1989-07-18 1991-06-11 E. I. Du Pont De Nemours And Company Halocarbons for flash-spinning polymeric plexifilaments

Similar Documents

Publication Publication Date Title
US4422993A (en) Process for the preparation of filaments of high tensile strength and modulus
US3048465A (en) Polyolefin wet spinning process
JPS59130314A (en) High strength elastic polyvinyl alcohol fiber andproduction thereof
DE69213474T2 (en) POLYESTER THREADS WITH A HIGH MODULE FOR TIRE CORDS AND COMPOSITE MATERIALS
US2692875A (en) Methacrylonitrile-acrylonitrile copolymers and fibers thereof
JPS62250220A (en) Production of polyethylene terephthalate fiber
JPS6128015A (en) Production of poly(p-phenylenebenzo-bis-thiazole fiber
US3032384A (en) Production of filamentary material
JPH03104920A (en) Production of fiber of polybenzothiazoles, polybenzoxazoles or polybenzimidazoles
JPS62104915A (en) Production of polyethylene terephthalate fiber
JPS62243642A (en) Method for preparing polyethylene terephthalate solution
US3074901A (en) Composition comprising polytetrafluoroethylene particles admixed with polystyrene containing dimethyl phthalate
JP2004513248A (en) Method for producing synthetic yarn from polymer mixture
JP3161546B2 (en) Method for producing high strength, low shrinkage polyester fiber
JP3265579B2 (en) Method for producing low-denier polybenzazole fiber
JPS61108713A (en) Polyvinyl alcohol fiber having good fiber properties and its production
JP2003506587A (en) HMLS polyester filament and winding and stretching method for producing the same
JPS62184112A (en) Production of high-tenacity high-modulus polyethylene fiber
JPH04119119A (en) Production of naphthalate polyester fiber
JPH0617317A (en) Production of polyester fiber
JPS5966508A (en) Method for melt spinning
JP3003155B2 (en) Method for producing high-strength high-modulus polyester fiber
JPS5930909A (en) Spinneret for spinning
JPS62106931A (en) Polyethylene terephthalate solution and its production
JPH0357964B2 (en)