JP3003155B2 - Method for producing high-strength high-modulus polyester fiber - Google Patents

Method for producing high-strength high-modulus polyester fiber

Info

Publication number
JP3003155B2
JP3003155B2 JP2092917A JP9291790A JP3003155B2 JP 3003155 B2 JP3003155 B2 JP 3003155B2 JP 2092917 A JP2092917 A JP 2092917A JP 9291790 A JP9291790 A JP 9291790A JP 3003155 B2 JP3003155 B2 JP 3003155B2
Authority
JP
Japan
Prior art keywords
polyester
spinning
compound
temperature
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2092917A
Other languages
Japanese (ja)
Other versions
JPH03294539A (en
Inventor
勝也 谷
和之 矢吹
英昭 石原
進 楯
修二 千葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=14067839&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3003155(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2092917A priority Critical patent/JP3003155B2/en
Publication of JPH03294539A publication Critical patent/JPH03294539A/en
Application granted granted Critical
Publication of JP3003155B2 publication Critical patent/JP3003155B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は従来にない高強度と高弾性特性とを有するポ
リエステル繊維を工業的に製造する方法に関するもので
ある。更に詳しくはタイヤ補強材、コンベアベルト補強
材あるいは熱可塑性コンポジット補強材、等の用途に有
用な高性能ポリエステル繊維の製造方法に関するもので
ある。
Description: TECHNICAL FIELD The present invention relates to a method for industrially producing a polyester fiber having unprecedented high strength and high elasticity. More particularly, the present invention relates to a method for producing a high-performance polyester fiber useful for a tire reinforcing material, a conveyor belt reinforcing material, a thermoplastic composite reinforcing material, and the like.

(従来の技術) 従来、高強度高弾性率ポリエステル繊維を得る方法と
しては例えば特開昭63−12715号公報、特開昭63−99322
号公報、特開昭63−196711号公報、特開昭63−196712号
公報、特開昭63−196713号公報、等が提案されている。
これらの特許に共通する高強度高弾性率のポリエステル
繊維を得るための手段として高重合度の原料ポリマーの
利用は原理的に正しい方向である。従来よりこの考え方
に基いた研究がなされており、最近の重合技術の進歩に
より極限粘度3.0を越える超高分子量ポリエチレンテレ
フタレートが工業的に得られるようにもなっている。
(Prior Art) Conventionally, methods for obtaining high-strength, high-modulus polyester fibers include, for example, JP-A-63-12715 and JP-A-63-99322.
JP-A-63-196711, JP-A-63-196712, JP-A-63-196713, and the like have been proposed.
Use of a raw material polymer having a high degree of polymerization as a means for obtaining a polyester fiber having a high strength and a high elastic modulus common to these patents is in principle the right direction. Research based on this concept has been conventionally performed, and recent advances in polymerization technology have made it possible to industrially obtain ultrahigh molecular weight polyethylene terephthalate having an intrinsic viscosity exceeding 3.0.

(発明が解決しようとする課題) しかしながら、上記従来技術を見ると、超高分子量ポ
リエチレンテレフタレートを用いて溶融紡糸法により高
性能繊維を得ようとすると、超高分子量体のために溶融
粘度が極めて高くなり溶融液の流動性が極端に低下する
ため従来の紡糸装置と方法および条件での紡糸は極めて
困難である。そのため特公昭47−3372号公報及びUSP384
6377に見られるように高圧に耐える紡糸装置を新たに設
計した高圧高温下での紡糸研究もなされているが耐圧性
付与の為、装置の設備投資が大きく、又かかる方法によ
っても生産性の低下は免れない為、十分に実用的とはい
えない。また特開昭61−207616号公報に記載された技術
によれば高重合のポリエステルを加工するために溶液を
用いて3〜10重量%といった希薄な濃度で紡糸を行なっ
ており湿式紡糸による生産性の低さ及び溶媒回収コス
ト、等を考えると実用的とはいえない。特開昭63−1271
5号公報では極限粘度が1.2以上のエチレンテレフタレー
ト系ポリエステルをトリフロロ酢酸/塩化メチレン混合
溶媒に溶解して紡糸原液となしこれから得た未延伸糸を
熱延伸することで高強度高弾性率ポリエステル繊維を製
造する技術が開示されているがこれも前記特許と同様に
生産性の点に問題がある。さらに特開昭63−196712号公
報に記載されている技術においてはノズルオリフィスに
おける剪断速度を極端に低下させる必要があり、このた
め紡速は高々20m/分と極めて低い紡糸速度を適用せねば
ならず生産性が低く実用性に欠ける。特開昭63−196711
号公報に記載の技術は、特開昭63−196712号公報に記載
された技術に、延伸前にアセトン、等の溶媒を用いて膨
潤させる技術を追加したものであり膨潤処理速度が律速
となり生産性の面で実用性に欠ける。このようにいずれ
の製造方法も十分な実用性を具備しているとはいえず現
状では工業的に高強度高弾性率を有する高性能ポリエス
テル繊維を得るには至っていない。
(Problems to be Solved by the Invention) However, looking at the above-mentioned prior art, when trying to obtain a high-performance fiber by a melt spinning method using ultrahigh molecular weight polyethylene terephthalate, the melt viscosity is extremely high because of the ultrahigh molecular weight material. The spinning with the conventional spinning apparatus, method and conditions is extremely difficult because the temperature becomes high and the fluidity of the melt is extremely reduced. Therefore, JP-B-47-3372 and USP384
As shown in 6377, a spinning device that can withstand high pressure has been newly designed.Spinning research under high pressure and high temperature has also been conducted, but the equipment investment of the device is large due to the application of pressure resistance, and the productivity is also reduced by such a method. Is unavoidable and is not sufficiently practical. According to the technique described in JP-A-61-207616, spinning is carried out at a dilute concentration of 3 to 10% by weight using a solution for processing a highly polymerized polyester. It is not practical considering the low cost and solvent recovery cost. JP-A-63-1271
No. 5 discloses a high-strength high-modulus polyester fiber obtained by dissolving an ethylene terephthalate-based polyester having an intrinsic viscosity of 1.2 or more in a mixed solvent of trifluoroacetic acid and methylene chloride to form a stock solution for spinning and thermally drawing an undrawn yarn obtained therefrom. Although a manufacturing technique is disclosed, this also has a problem in productivity as in the above patent. Further, in the technique described in JP-A-63-196712, it is necessary to extremely reduce the shearing speed at the nozzle orifice, and therefore, the spinning speed must be applied at a very low spinning speed of at most 20 m / min. Low productivity and lacks practicality. JP-A-63-196711
The technology described in JP-A-63-196712 is a technology obtained by adding a technology of swelling using a solvent such as acetone before stretching to the technology described in JP-A-63-196712. Lack of practicality in terms of sex. As described above, none of the production methods can be said to have sufficient practicality, and at present, high performance polyester fibers having high strength and high elastic modulus have not been industrially obtained.

高強度高弾性率ポリエステル繊維を得ようとする従来
技術はいずれも実用性が欠如しており工業的規模の生産
には採用し難い方法である。この発明はエチレンテレフ
タレート系ポリエステル繊維の高強度高弾性率化に関し
従来技術では欠如していた実用性、特に高速生産性の問
題を解決し、高強度高弾性率ポリエステル繊維の安定的
な紡糸・延伸の新規な製造方法を提供せんとするもので
ある。
All of the conventional techniques for obtaining high-strength, high-modulus polyester fibers lack practicality and are difficult to employ in industrial-scale production. This invention solves the problem of practicality, especially high-speed productivity, which was lacking in the prior art with respect to high strength and high elastic modulus of ethylene terephthalate-based polyester fiber, and enables stable spinning and drawing of high-strength high-modulus polyester fiber. To provide a new manufacturing method.

(課題を解決するための手段) 上記課題を解決するための手段、即ち本発明は、極限
粘度(IV)が1.0〜3.0のエチレンテレフタレート系ポリ
エステルに210℃以上の温度で該エチレンテレフタレー
ト系ポリエステルに相溶する化合物を該エチレンテレフ
タレート系ポリエステルに対して2〜50重量%を添加
し、溶融してノズルオリフィスより押出し、次いで紡出
糸条を冷却固化して引取り、紡糸に連続して又は一旦巻
取った後、延伸することを特徴とする高強度高弾性率ポ
リエステル繊維の製造方法である。
(Means for Solving the Problems) Means for solving the above-mentioned problems, that is, the present invention provides an ethylene terephthalate polyester having an intrinsic viscosity (IV) of 1.0 to 3.0 at a temperature of 210 ° C. or more. 2 to 50% by weight of the compatible compound is added to the ethylene terephthalate-based polyester, melted and extruded from a nozzle orifice, and then the spun yarn is cooled and solidified and taken off, continuously or once after spinning. This is a method for producing a high-strength, high-modulus polyester fiber, which comprises winding and then stretching.

本発明に使用するエチレンテレフタレート系ポリエス
テルは1.0以上3.0未満の極限粘度と少なくとも85mol%
のエチレンテレフタレート単位を有する。極限粘度が3.
0以上ポリエステルでは該ポリエステルと相溶性のある
前記化合物を添加しても溶融液の溶融粘度が高い為、溶
融紡糸法で繊維化するには高耐圧仕様の特殊な紡糸装置
と特殊な紡糸・延伸条件が必要となり、極限粘度が1.0
未満のポリエステルの場合には本発明の繊維の特徴であ
る高強度高弾性率が得られないからである。本発明のエ
チレンテレフタレート系ポリエステルは高強度高弾性率
繊維を得る目的の為、ポリエチレンテレフタレート単独
が最も好ましいが少なくとも85mol%のエチレンテレフ
タレートから成るポリエステルである必要がある。本発
明でエチレンテレフタレート系ポリエステルに添加する
該ポリエステルと相溶性のある化合物とはビフェニール
化合物またはナフタレン化合物またはフェニルエーテル
化合物の中より選ばれた少なくとも1種類以上の化合物
またはそれらの混合物である。該化合物をエチレンテレ
フタレート系ポリエステルに添加したことによる溶融状
態における溶融粘度の低下の大きさやポリエステルポリ
マーの熱的安定性(極限粘度の保持性)の向上の程度さ
らには該化合物及び該化合物を添加したポリエステルポ
リマーの取扱性、等を考慮すると特に好ましい化合物と
して、エチルビフェニール、1−メチルナフタレン、ジ
フェニルエーテル、等が挙げられる。これらの化合物の
ポリエステルポリマーに対する添加率は2重量%以上、
50重量%未満とすることであり、さらに好ましくは2〜
20重量%とすることである。ポリエステルポリマーに対
する該化合物の添加率が2重量%未満では本発明で満足
する溶融粘度が得られず、さらに後述するように該ポリ
エステルを紡糸して得た未延伸糸では高倍率の延伸が達
成できない。また、ポリエステルポリマーに対する該化
合物の添加率が50重量%を越えると該混合ポリマーをノ
ズルオリフィスから吐出した時に紡出糸条からの添加化
合物の揮発量が著しく増大し、発煙および臭気、等のた
め作業環境の面から溶媒回収装置が必要となる。このこ
とは溶融紡糸ではなく乾式紡糸と規定すべきであり、こ
のため装置の製造コストが飛躍的に増大することにな
る。本発明は安価に高強度高弾性率を達成する為に溶融
紡糸方法を採用しているのであり目的に合致しない。さ
らに又、紡糸口金汚れ、等の操業性の面で問題も派生す
る。エチレンテレフタレート系ポリエステルと相溶性の
ある前記化合物をポリエステルポリマーに添加する方法
に特に限定はないが、予めポリエステルポリマーと前記
化合物とを攪拌混装置内で混合する、ポリエステルポリ
マーと前記化合物の溶融混合物を冷却後にチップ化す
る、溶融紡糸装置の原料供給部から前記化合物を定量供
給しエクストルーダー内で混合する、等の方法が採用可
能である。前記化合物を添加したポリエステルポリマー
を相溶系化合物の示す融点以上、好しくは該混合物の融
点より少なくとも10℃高い温度で溶融し押し出す。特に
注目すべき点は前記化合物を含有するエチレンテレフタ
レート系ポリエステルは該化合物を添加していないエチ
レンテレフタレート系ポリエステルに比べて添加率にも
依るが10〜50℃の範囲の融点降下を示すことである。こ
のことは該化合物を添加しないポリエステルポリマーに
比べて融点降下に相当する分だけ低い温度で溶融押出し
が可能であり、分子鎖の熱的な切断が抑制できる。この
ように該化合物を添加することには溶融粘度を下げられ
そのため該ポリマーの加工性が向上するという利点、す
なわち減粘効果と同時に溶融押出温度を低くできること
による熱分解の抑制という利点がある。溶融押出し方法
に特に限定はないが、エクストルーダー型押出機、ピス
トン型押出機、2軸混練型押出機、等が用いられる。こ
のようにして溶融後ノズルオリフィスから吐出されたエ
チレンテレフタレート系ポリエステル紡出糸条を冷却固
化せしめ、必要に応じて適量の油剤を付与した後、糸条
の複屈折率Δnが0.0001〜0.0200となるように引取る。
引取った未延伸糸の複屈折率が0.0200以上となると前記
化合物を添加したことによる延伸性の増大効果が小さく
なり高強度高弾性率の達成は困難になる。一方、複屈折
率が0.0001未満となると紡糸状態が極めて不安定とな
り、紡糸過程で発生する糸条の長手方向の斑の抑制が困
難になる。引取られた糸条は一旦巻取った後、又は紡糸
に連続して該未延伸糸のガラス転移温度以上の温度で自
然延伸倍率以上の倍率で延伸する。ここで注目すべき点
は通常本発明の方法で溶融紡出された糸条には残留する
該化合物が存在し、このため該ポリエステル単独で示す
ガラス転移温度より低いことである。延伸温度がガラス
転移温度未満であると分子鎖のモビリティが十分でなく
延伸による分子鎖の配列性が低く、次の延伸工程での延
伸性の上昇が困難になる。第1段の延伸を自然延伸倍率
未満とした場合には該工程で糸斑の発生頻度が増大し、
次の延伸工程での延伸性の向上は期待できず、全延伸倍
率は増大しない。第1段の延伸に引き続き、150〜250℃
の温度範囲で次の段の延伸を行なう。必要に応じてさら
に多段延伸を行ってもよいが、最終延伸段の最大延伸応
力が3.0g/d以上で延伸することが肝要である。3.0g/d未
満の応力下で延伸した場合、本発明の目的とする高強度
高弾性率の達成は困難である。この延伸応力を得るため
の延伸条件は前記化合物の添加率及び糸条内部における
該化合物の拡散速度、さらには糸条表面からの蒸発速度
及び延伸時の糸温度、その温度における滞留時間、等を
勘案して決められる。前記化合物を添加することにより
該ポリエステルの分子鎖の絡み合い間距離を増大せしめ
自然延伸倍率が増大する効果をいかに全延伸倍率の増大
に反映させるかが技術上の要点の一つである。このよう
に前記化合物を含む未延伸糸を特定の条件で多段延伸す
ることにより該未延伸糸の全延伸倍率は飛躍的に増大
し、高強度高弾性率のエチレンテレフタレート系ポリエ
ステル繊維の実用的な製造が可能になる。
The ethylene terephthalate polyester used in the present invention has an intrinsic viscosity of 1.0 or more and less than 3.0 and at least 85 mol%
Of ethylene terephthalate unit. 3.Intrinsic viscosity is 3.
In the case of 0 or more polyesters, even if the compound compatible with the polyester is added, the melt viscosity of the melt is high. Therefore, in order to fiberize by the melt spinning method, a special spinning device with a high pressure resistance specification and a special spinning and drawing are used. Conditions are required, the limiting viscosity is 1.0
This is because if the polyester is less than the above, the high strength and high elastic modulus characteristic of the fiber of the present invention cannot be obtained. The ethylene terephthalate-based polyester of the present invention is most preferably polyethylene terephthalate alone for the purpose of obtaining high-strength, high-modulus fibers, but must be a polyester composed of at least 85 mol% of ethylene terephthalate. In the present invention, the compound which is added to the ethylene terephthalate-based polyester and is compatible with the polyester is at least one compound selected from a biphenyl compound, a naphthalene compound or a phenyl ether compound, or a mixture thereof. By adding the compound to the ethylene terephthalate-based polyester, the magnitude of the decrease in melt viscosity in the molten state and the degree of improvement in the thermal stability (retention of intrinsic viscosity) of the polyester polymer, and further, the compound and the compound were added. Particularly preferred compounds in consideration of the handleability of the polyester polymer and the like include ethyl biphenyl, 1-methylnaphthalene, diphenyl ether, and the like. The addition ratio of these compounds to the polyester polymer is 2% by weight or more,
Less than 50% by weight, more preferably 2 to
20% by weight. If the addition ratio of the compound to the polyester polymer is less than 2% by weight, a melt viscosity satisfactory in the present invention cannot be obtained. Further, as described later, high draw ratio cannot be achieved with an undrawn yarn obtained by spinning the polyester. . On the other hand, if the addition ratio of the compound to the polyester polymer exceeds 50% by weight, the amount of the added compound from the spun yarn is remarkably increased when the mixed polymer is discharged from the nozzle orifice. A solvent recovery device is required from the viewpoint of the working environment. This should be defined as dry spinning rather than melt spinning, which will dramatically increase the manufacturing costs of the device. Since the present invention employs a melt spinning method to achieve high strength and high modulus at low cost, it does not meet the purpose. Further, problems arise in terms of operability such as spinneret stains. There is no particular limitation on the method of adding the compound compatible with the ethylene terephthalate-based polyester to the polyester polymer, but the polyester polymer and the compound are mixed in advance in a stirring and mixing apparatus, and a molten mixture of the polyester polymer and the compound is mixed. A method of forming chips after cooling, a method of quantitatively supplying the compound from a raw material supply unit of a melt spinning device, and mixing in an extruder can be employed. The polyester polymer to which the compound has been added is melted and extruded at a temperature higher than the melting point of the compatible compound, preferably at least 10 ° C. higher than the melting point of the mixture. It is particularly noteworthy that the ethylene terephthalate-based polyester containing the compound exhibits a melting point drop in the range of 10 to 50 ° C., depending on the addition ratio, as compared to the ethylene terephthalate-based polyester not containing the compound. . This means that melt extrusion can be performed at a temperature lower than that of a polyester polymer to which the compound is not added by an amount corresponding to a decrease in melting point, and thermal breakage of molecular chains can be suppressed. Thus, the addition of the compound has the advantage of lowering the melt viscosity and thereby improving the processability of the polymer, that is, has the advantage of suppressing the thermal decomposition by lowering the melt extrusion temperature at the same time as the viscosity reducing effect. The melt extrusion method is not particularly limited, but an extruder type extruder, a piston type extruder, a twin-screw kneading type extruder, or the like is used. In this way, the ethylene terephthalate-based polyester spun yarn discharged from the nozzle orifice after melting is solidified by cooling, and an appropriate amount of an oil agent is applied as necessary, and the birefringence Δn of the yarn becomes 0.0001 to 0.0200. To take over.
When the birefringence of the drawn undrawn yarn is 0.0200 or more, the effect of increasing the drawability due to the addition of the compound becomes small, and it becomes difficult to achieve high strength and high elastic modulus. On the other hand, when the birefringence is less than 0.0001, the spinning state becomes extremely unstable, and it becomes difficult to suppress unevenness in the longitudinal direction of the yarn generated in the spinning process. After the wound yarn is wound once or continuously with the spinning, the yarn is drawn at a temperature higher than the glass transition temperature of the undrawn yarn at a draw ratio higher than the natural draw ratio. It should be noted here that the melt-spun yarn according to the present invention usually has the compound remaining in the yarn, and thus has a lower glass transition temperature than that of the polyester alone. When the stretching temperature is lower than the glass transition temperature, the mobility of the molecular chains is not sufficient, the alignment of the molecular chains by stretching is low, and it is difficult to increase the stretchability in the next stretching step. When the first-stage stretching is less than the natural stretching ratio, the frequency of yarn spots increases in the process,
No improvement in stretchability can be expected in the next stretching step, and the total draw ratio does not increase. Following the first stage stretching, 150-250 ° C
The next stage of stretching is carried out within the temperature range described above. If necessary, the film may be stretched in multiple stages, but it is important that the film is stretched at a maximum stretching stress of 3.0 g / d or more in the final stretching step. When the film is stretched under a stress of less than 3.0 g / d, it is difficult to achieve the high strength and high elastic modulus aimed at by the present invention. The drawing conditions for obtaining the drawing stress include the addition rate of the compound and the diffusion rate of the compound inside the yarn, the evaporation rate from the yarn surface and the yarn temperature during drawing, the residence time at that temperature, and the like. Determined by taking into account. One of the technical points is how to add the compound to increase the inter-entanglement distance between the molecular chains of the polyester and to reflect the effect of increasing the natural stretch ratio on the increase in the total stretch ratio. By multi-stretching the undrawn yarn containing the compound under specific conditions as described above, the total draw ratio of the undrawn yarn is dramatically increased, and the practical use of a high-strength high-modulus ethylene terephthalate-based polyester fiber is practical. Manufacturing becomes possible.

以下に本発明の評価に用いた各種特性値の測定方法を
述べる。
Hereinafter, methods for measuring various characteristic values used in the evaluation of the present invention will be described.

<溶融粘度の測定法> エクストルーダー型押出機を使用して一定温度に保っ
たノズルオリフィスからエチレンテレフタレート系ポリ
エステルを通過して溶融吐出し、該ノズルオリフィスの
孔径、孔長、単孔当りの吐出量及び吐出圧力とから剪断
応力と剪断速度を計算して該ポリマーの溶融粘度をもと
めた。剪断速度をゼロに外挿して得られる粘度を測定温
度におけるゼロ剪断粘度(η)と見なした。
<Measurement Method of Melt Viscosity> Using an extruder-type extruder, melt-discharge from a nozzle orifice maintained at a constant temperature through an ethylene terephthalate-based polyester, and discharge the hole diameter, hole length, and single hole of the nozzle orifice. Shear stress and shear rate were calculated from the amount and discharge pressure to determine the melt viscosity of the polymer. The viscosity obtained by extrapolating the shear rate to zero was regarded as zero shear viscosity (η o ) at the measurement temperature.

<極限粘度の測定法> 本発明において、エチレンテレフタレート系ポリエス
テルの極限粘度(IV)はP−クロロフェノール/テトラ
クロルエタン=3/1混合溶液を用い、30℃の温度で測定
した極限粘度[η]を次式によりフェノール/テトラク
ロルエタン=60/40の極限粘度(IV)に換算したもので
ある。
<Measurement Method of Intrinsic Viscosity> In the present invention, the intrinsic viscosity (IV) of the ethylene terephthalate-based polyester is measured by using a mixed solution of P-chlorophenol / tetrachloroethane = 3/1 at a temperature of 30 ° C. [η]. ] Is converted to the intrinsic viscosity (IV) of phenol / tetrachloroethane = 60/40 by the following formula.

IV=0.8325×[η]+0.005。 IV = 0.8325 x [η] + 0.005.

なお前記化合物を含有する糸条の極限粘度の測定には
予めソックスレー抽出器でアセトンで3.0時間の抽出を
行なった後、さらに120℃の温度で6時間の減圧乾燥を
した糸条を使用した。
The intrinsic viscosity of the yarn containing the compound was measured by using a Soxhlet extractor, which was previously extracted with acetone for 3.0 hours, and further dried at 120 ° C. for 6 hours under reduced pressure.

<糸条中の添加化合物の残留量の測定法> 理学電機社製・示差熱天秤TG−DTA高温型を用い、試
料重量5mgをアルゴンガス気流中で雰囲気試料昇温開始
温度20℃、試料昇温終了温度500℃、試料昇温速度20℃
/分にて昇温し、減量曲線から試料中に残留していた添
加化合物の量を求めた。
<Measurement method of residual amount of added compound in yarn> Using a differential thermal balance TG-DTA high temperature type manufactured by Rigaku Denki Co., Ltd., a sample weight of 5 mg was heated in an argon gas stream to an atmosphere sample at a temperature starting temperature of 20 ° C., and the sample was heated. Temperature end temperature 500 ° C, sample heating rate 20 ° C
/ Min, and the amount of the added compound remaining in the sample was determined from the weight loss curve.

<ガラス転移温度の測定法> 東洋ボールドウィン社製、レオバイブロン(Rheo Vib
ron)DDV−II EA型動的粘弾性測定装置を用い試料約0.1
mmg、測定周波数110Hz、昇温速度1℃/分において乾燥
空気中でtanδが立ち上る温度(℃)を求めて、該温度
をガラス転移温度の尺度として採用した。
<Measurement method of glass transition temperature> Toyo Baldwin Co., Ltd., Rheo Viblon (Rheo Viblon)
ron) Using a DDV-II EA type dynamic viscoelasticity measuring device, the sample
The temperature (° C.) at which tan δ rises in dry air at mmg, a measurement frequency of 110 Hz, and a temperature rising rate of 1 ° C./min was determined, and the temperature was adopted as a measure of the glass transition temperature.

<繊維の繊度の測定方法> 繊度はJIS L 1013(1981)の7.3に準拠した試験方法
と条件で測定した。
<Method of Measuring Fiber Fineness> The fineness was measured by a test method and conditions based on 7.3 of JIS L 1013 (1981).

<繊維の強度の測定方法> 繊維の引張強さ(強度)はJIS L 1013(1981)の7.5.
1に準じ、標準状態の実験室で、東洋ボールドウィン
(株)社製の定速伸長型万能引張試験装置Tensilon UTM
−IIIを使用して単繊維の引張強さを測定した。
<Measurement method of fiber strength> The tensile strength (strength) of the fiber is JIS L 1013 (1981) 7.5.
In accordance with 1), in a standard condition laboratory, a constant-speed elongation type universal tensile tester Tensilon UTM manufactured by Toyo Baldwin Co., Ltd.
-III was used to measure the tensile strength of the single fiber.

但し測定条件は5kgf、引張型ロードセルを用い、つか
み間隔10cm、引張速度10cm/分、記録用紙の送り速度100
cm/分で試料を引張り、該試料が切断した時の荷重
(g)を次式により引張強さ(g/d)を算出し、強度(g
/d)とした。
However, the measurement conditions were 5 kgf, using a tension type load cell, gripping interval 10 cm, pulling speed 10 cm / min, recording paper feed speed 100
The sample was pulled at a rate of cm / min, and the load (g) when the sample was cut was used to calculate the tensile strength (g / d) according to the following formula.
/ d).

引張強さ(g/d)=切断時の強さ(g)/試料の繊度(d) <繊維の初期引張弾性率の測定方法> 繊維の初期引張抵抗度(初期引張弾性率)は上記のJI
S L 1013(1981)の7.5.1に準じた繊維強度の試験方法
と同じ方法で試験を行ない、記録紙上に荷重の一伸長曲
線を描き、この図よりJIS L 1013(1981)の7.10に記載
の初期引張抵抗度計算式により初期引抵抗性度(g/d)
を算出し、初期引張弾性率(g/d)とした。
Tensile strength (g / d) = strength at cutting (g) / fineness of sample (d) <Method of measuring initial tensile modulus of fiber> The initial tensile resistance (initial tensile modulus) of the fiber is as described above. JI
The test was performed in the same manner as the fiber strength test method according to 7.5.1 of SL 1013 (1981), and a one-elongation curve of the load was drawn on the recording paper. Initial tensile resistance (g / d) by initial tensile resistance calculation formula
Was calculated as the initial tensile modulus (g / d).

<複屈折率(Δn)の測定方法> ニコン製偏光顕微鏡POH型とライツ製ベレックコンベ
ンセーターを用い、干渉縞と消光角度から繊維のリター
デーション(Γ)を、また測微マイクロメーターにより
繊維直径(D)測定し下記の式により複屈折率(Δn)
を求めた。光源としてはスペクタル光源用起動装置(東
芝SLS−8−B型Na光源)を使用した。
<Measurement method of birefringence (Δn)> Using a Nikon polarization microscope POH type and a Rights Berek concentrator, the retardation (Γ) of the fiber is measured from the interference fringe and the extinction angle, and the fiber diameter is measured using a micrometer. (D) Measured and birefringence index (Δn) according to the following equation
I asked. As a light source, a starter for a spectral light source (Toshiba SLS-8-B type Na light source) was used.

Δn=Γ/D (Γ:リターデーション) (作用) 本発明で得られるエチレンテレフタレート系ポリエス
テル繊維が高強度高弾性率という優れた物理的特性を有
することは該ポリマーと相溶性のある特定の化合物を該
ポリマーに対して特定の比率で添加することにより溶融
粘度を低下させ実用的な成形加工を可能とすると同時
に、さらに得られた未延伸糸の延伸においては該化合物
が該ポリマーの冷却固化時に分子鎖の絡み合い数を低下
させるため可塑剤的な役割を果たし、ポリエステル分子
鎖を高度に引き伸ばしが可能になったものと本発明者ら
は推察している。
Δn = Γ / D (Γ: retardation) (Action) The fact that the ethylene terephthalate-based polyester fiber obtained in the present invention has excellent physical properties such as high strength and high elastic modulus is a specific compound which is compatible with the polymer. Is added to the polymer in a specific ratio to reduce the melt viscosity and enable practical molding, and at the same time, in drawing the obtained undrawn yarn, the compound is cooled and solidified when the polymer is cooled. The present inventors speculate that it plays a role of a plasticizer to reduce the number of entanglements of the molecular chains, and enables the polyester molecular chains to be highly stretched.

(実施例) 次に実施例により、本発明の特徴を詳述する。(Examples) Next, the characteristics of the present invention will be described in detail with reference to examples.

実施例1 触媒として三酸化アンチモン(テレフタル酸に対し、
アンチモンとして0.05モル%含む)を使用したポリエチ
レンテレフタレートチップ(極限粘度0.6)を水素化ト
リフェニルの熱媒中、窒素ガスを吹き込みながら、237
℃に保ち、20時間加熱攪拌、熱媒重合を行ない極限粘度
2.0のポリエチレンテレフタレートを得た。このポリエ
ステルチップを120℃の温度で16時間減圧乾燥後、該ポ
リマー800重量部に対して1−メチルナフタレン(親日
鉄化学(株)製、蒸留品)200重量部を加えた後にこの
混合物を45℃に昇温して、1.0mmgの減圧下で2時間攪拌
を行った。所定時間の攪拌処理が終了した後、混合攪拌
容器からポリマーを取り出したが該容器中に1−メチル
ナフタレンは全く残存していなかった。また処理後のポ
リエステルチップの表面にも1−メチルナフタレンの付
着は認められなかった。このような処理を行うことで1
−メチルナフタレンを含浸したポリエチレンテレフタレ
ートが得られた。該ポリエステルチップを熱天秤装置で
加熱による重量変化を測定したところ19.8%の重量減少
を示した。なお、上記測定装置を用いて1−メチルナフ
タレンを添加しないポリエチレンテレフタレートチップ
を同一温度範囲で測定した重量減少は0.2%であった。
1−メチルナフタレンを添加した上記ポリエチレンテレ
フタレートチップをエクストルーダー型小型紡糸機を用
いてポリマー溶融温度270℃で溶融し、孔径がφ0.28mm
孔数が24の紡糸口金から紡糸口金温度310℃、該紡糸口
金の単孔当りの吐出量0.31g/分で溶融吐出を行ない、0.
3m/秒の速度の気流を吹き当てて冷却固化させた後、該
糸条に対して約0.5%の油剤を付与し、引取速度を15.2
〜250m/分の範囲で変更し、巻き取った。なお、該紡糸
口金温度における該ポリエステルの零剪断粘度は13,600
ポイズであった。引取速度100m/分で巻き取った未延伸
糸の複屈折率(Δn)は0.0002であり、22℃の温度にお
ける自然延伸倍率は3.78倍であった。また、未延伸糸中
に残留している1−メチルナフタレンの量は12.6重量%
であり、動的粘弾性測定から求めたガラス転移温度は4
4.5℃であった。次いで該未延伸糸を表面速度が50m/分
の供給ロールと第1延伸ロールの間で60℃の温度に加熱
した比接触式熱板間ヒーターを介して第1表に記載の第
1延伸倍率で第1段延伸した後、さらに245℃の温度に
加熱した非接触式熱板間ヒーターを介して第2延伸ロー
ルとの間で第1表に記載した第2延伸倍率で延伸を行な
い、ワインダーで巻き取った。得られた延伸繊維の性能
は第1表に示す通りである。未延伸糸の複屈折率が0.00
01未満(比較例No.1)の場合、また複屈折率が0.02を越
える場合(No.2)、等を除くといずれも高い引張速度と
初期引張弾性率を有していた。
Example 1 As a catalyst, antimony trioxide (for terephthalic acid,
A polyethylene terephthalate chip (intrinsic viscosity: 0.6) containing 0.05 mol% of antimony) was blown with nitrogen gas in a heat medium of triphenyl hydride while blowing nitrogen gas.
℃, heat and stir for 20 hours, heat medium polymerization is carried out, limiting viscosity
2.0 polyethylene terephthalate was obtained. The polyester chip was dried under reduced pressure at a temperature of 120 ° C. for 16 hours, and then 200 parts by weight of 1-methylnaphthalene (distilled product, manufactured by Nippon Steel Chemical Co., Ltd.) was added to 800 parts by weight of the polymer. The temperature was raised to 0 ° C., and the mixture was stirred under a reduced pressure of 1.0 mmg for 2 hours. After the stirring for a predetermined time was completed, the polymer was taken out of the mixing and stirring vessel, but no 1-methylnaphthalene remained in the vessel. Also, no adhesion of 1-methylnaphthalene was observed on the surface of the treated polyester chip. By performing such processing, 1
-Polyethylene terephthalate impregnated with -methylnaphthalene was obtained. A change in weight of the polyester chip due to heating was measured by a thermobalance device, and a weight reduction of 19.8% was shown. In addition, the weight reduction of the polyethylene terephthalate chip to which 1-methylnaphthalene was not added was measured in the same temperature range using the above measuring apparatus, and the weight loss was 0.2%.
The above polyethylene terephthalate chip to which 1-methylnaphthalene is added is melted at a polymer melting temperature of 270 ° C. using an extruder-type small spinning machine, and the pore diameter is φ0.28 mm.
Melting and discharging were performed at a spinneret temperature of 310 ° C from the spinneret having 24 holes and a discharge rate of 0.31 g / min per single hole of the spinneret.
After cooling and solidifying by blowing an air current at a speed of 3 m / sec, about 0.5% of an oil agent is applied to the yarn, and the take-up speed is 15.2%.
It was changed in the range of ~ 250m / min and wound up. The zero shear viscosity of the polyester at the spinneret temperature was 13,600.
Poise. The birefringence (Δn) of the undrawn yarn wound at a take-up speed of 100 m / min was 0.0002, and the natural stretching ratio at a temperature of 22 ° C. was 3.78. The amount of 1-methylnaphthalene remaining in the undrawn yarn was 12.6% by weight.
And the glass transition temperature determined from the dynamic viscoelasticity measurement is 4
4.5 ° C. Then, the undrawn yarn was heated to a temperature of 60 ° C. between a supply roll and a first draw roll having a surface speed of 50 m / min. After stretching in the first stage, the film is further stretched with a second stretching roll through a non-contact type hot plate heater heated to a temperature of 245 ° C. at a second stretching ratio shown in Table 1 and a winder. Rolled up. The performance of the obtained drawn fiber is as shown in Table 1. Birefringence of undrawn yarn is 0.00
Except when the value was less than 01 (Comparative Example No. 1) or when the birefringence exceeded 0.02 (No. 2), etc., each had a high tensile speed and an initial tensile elastic modulus, except for the cases.

実施例2 実施例1において熱媒重合時間を調節することで極限
粘度がそれぞれ0.9、1.3、3.0、3.5のポリエチレンテレ
フタレートポリマーを得た。各ポリマーに実施例1に記
載した装置・条件を使用して1−メチルナフタレンを混
合・含浸させた。このポリマーにつき実施例1で記載し
た紡糸装置を使用して溶融吐出を行なった。当然のこと
であるが溶融押出し時に紡糸口金にかかる圧力および紡
出糸の特性は紡糸に使用するポリエステルポリマーの極
限粘度に大きく依存して変化するため、紡糸温度や紡糸
口金寸法、さらに紡糸口金の単孔当りの吐出量、等は極
限粘度の異なるポリエステルポリマー毎に紡糸条件の適
正化をはかった。得られた未延伸糸を第2表に記載した
方法で延伸した。その他の条件は実施例1に合わせた。
結果を第2表に示す。第2表から明らかな様に本発明に
属するもの(No.2〜3)は比較的低い溶融粘度での溶融
押出しが可能であり、延伸して得られた繊維は強度、初
期弾性率ともに極めて高いことが分かる。一方、これに
対して極限粘度が0.9のポリエステルポリマーを使用し
た場合(No.1)の延伸糸の強度並びに初期弾性率の向上
効果は小さいものであった。また、極限粘度が3.0を越
えるポリエステルポリマーを使用した場合(No.4)の溶
融粘度は53200ポイズであり紡糸状態は極めて不安定の
ため、均質な未延伸糸は得られなかった。
Example 2 A polyethylene terephthalate polymer having intrinsic viscosities of 0.9, 1.3, 3.0, and 3.5, respectively, was obtained by adjusting the polymerization time of the heat medium in Example 1. Each polymer was mixed and impregnated with 1-methylnaphthalene using the apparatus and conditions described in Example 1. The polymer was melt-discharged using the spinning apparatus described in Example 1. Naturally, the pressure applied to the spinneret during melt extrusion and the characteristics of the spun yarn vary greatly depending on the intrinsic viscosity of the polyester polymer used for spinning. Regarding the discharge amount per single hole, etc., the spinning conditions were optimized for each polyester polymer having a different intrinsic viscosity. The obtained undrawn yarn was drawn by the method described in Table 2. Other conditions were the same as in Example 1.
The results are shown in Table 2. As is clear from Table 2, those belonging to the present invention (Nos. 2 to 3) can be melt-extruded with a relatively low melt viscosity, and the fibers obtained by drawing have extremely high strength and initial elastic modulus. It turns out that it is high. On the other hand, when the polyester polymer having the intrinsic viscosity of 0.9 was used (No. 1), the effect of improving the strength and the initial elastic modulus of the drawn yarn was small. When a polyester polymer having an intrinsic viscosity exceeding 3.0 (No. 4) was used, the melt viscosity was 53,200 poise, and the spinning state was extremely unstable, so that a homogeneous undrawn yarn could not be obtained.

実施例3 原料ポリエステル1000重量部に対する1−メチルナフ
タレンの混合比率を0〜1250重量部の範囲でそれぞれ変
更し、実施例1に記載した方法・条件で混合・含浸処理
を行なった。該混合物をそれぞれ実施例1に記載した紡
糸装置を用いて紡糸しさらに実施例1に記載した装置・
方法で延伸を行なった。第3表に結果を示した。第3表
から明らかなように本発明に属するもの(No.3〜6)は
溶融紡糸時における吐出圧力が実用レベルにあり、紡糸
の状態も安定であった。それぞれの未延伸糸を延伸して
得た糸は強度ならびに初期弾性率ともに高い値を示し
た。一方、1−メチルナフタレンを添加しない場合(N
o.1)は溶融吐出時の紡糸口金での背圧が極めて高く、
紡糸は不可能であった。本発明に属さないNo.2の場合、
紡糸は可能であるものの得られた未延伸糸は単繊維間お
よび糸長手方向のいずれにも糸斑が極めて大きいために
高倍率での延伸は無理であった。また、本発明に属さな
いNo.7ではエクストルーダー型紡糸装置を使用した場
合、バレル部からの化合物の洩れの発生や、さらには紡
糸口金直下における吐出糸条からの1−メチルナフタレ
ンガスによる多量の発煙が認められた。
Example 3 Mixing and impregnating treatments were performed under the method and conditions described in Example 1 by changing the mixing ratio of 1-methylnaphthalene to 1,000 parts by weight of the raw material polyester in the range of 0 to 1250 parts by weight. The mixture was spun using the spinning apparatus described in Example 1, respectively.
Stretching was performed by the method. Table 3 shows the results. As is clear from Table 3, those belonging to the present invention (Nos. 3 to 6) had a discharge pressure at the time of practical use at the time of melt spinning, and the spinning state was stable. The yarn obtained by drawing each undrawn yarn showed high values in both strength and initial elastic modulus. On the other hand, when 1-methylnaphthalene is not added (N
o.1) has extremely high back pressure at the spinneret during melt discharge,
Spinning was not possible. In the case of No. 2 which does not belong to the present invention,
Although spinning was possible, the resulting undrawn yarn had extremely large yarn spots both between single fibers and in the longitudinal direction of the yarn, so that drawing at a high magnification was impossible. In addition, in the case of No. 7 which does not belong to the present invention, when an extruder type spinning device was used, leakage of the compound from the barrel portion occurred, and furthermore, a large amount of 1-methylnaphthalene gas from the discharge yarn immediately below the spinneret was used. Smoke was observed.

実施例4 実施例1で記載したポリエステルポリマーに実施例1
に記載した装置・条件を基本にして、210℃以上の温度
で該ポリマーと相溶性のあるビフェニール、ジフェニル
ールエーテル、モノエチルビフェニール、また、210℃
以上の温度で該ポリマーと非相溶性の水素化ターフェニ
ールをそれぞれ独立に混合・含浸した。当然のことでは
あるが使用する化合物の種類に応じて混合する温度およ
び時間の適正化を図った。混合処理した後のポリエステ
ルチップを実施例1に記載した紡糸・延伸条件を基本に
し、使用した化合物の種類に応じて若干の条件修正を加
えながら延伸糸を作成した。結果を第4表に示した。第
4表から明らかなように本発明に属するもの(No.1〜
3)は紡糸における溶融粘度も装置的に対処が可能なレ
ベルにあり、また得られた延伸糸は強度並びに初期弾性
率に高い値を示した。これに対して本発明に属さないも
の(No.4)は紡糸状態、特に原料ポリマーの紡糸機への
供給が不安定であり連続した安定運転は困難であった。
得られた未延伸糸は延伸性が極端に低く目的とする高物
性の繊維は得られなかった。
Example 4 Example 1 was applied to the polyester polymer described in Example 1.
Based on the apparatus and conditions described in the above, biphenyl, diphenylyl ether, monoethyl biphenyl, which is compatible with the polymer at a temperature of 210 ° C. or more, and 210 ° C.
At the above temperature, the hydrogenated terphenyl incompatible with the polymer was independently mixed and impregnated. Naturally, the mixing temperature and time were adjusted in accordance with the type of compound used. Based on the spinning and drawing conditions described in Example 1, the polyester chips after the mixing treatment were used to prepare drawn yarns while slightly modifying the conditions according to the type of compound used. The results are shown in Table 4. As is clear from Table 4, those belonging to the present invention (No.
In the case of 3), the melt viscosity in spinning was at a level that could be dealt with in terms of equipment, and the obtained drawn yarn showed high values in strength and initial elastic modulus. On the other hand, in the case of No. 4 which does not belong to the present invention, the spinning state, particularly the supply of the raw material polymer to the spinning machine was unstable, and continuous stable operation was difficult.
The obtained undrawn yarn had extremely low drawability, and the desired high-performance fiber could not be obtained.

実施例5 実施例1で記載したポリエステルポリマー800重量部
に対して100重量部の1−メチルナフタレンと100重量部
のジフェニールエーテルを加えて実施例1に記載した装
置・条件で混合・含浸処理を行なった。該混合化合部を
含むポリエステルを実施例1に記載した装置・条件によ
り紡糸、さらには延伸を行った。結果を第5表の通りで
ある。得られた延伸糸は高い強度と初期引張弾性率とを
示した。
Example 5 100 parts by weight of 1-methylnaphthalene and 100 parts by weight of diphenyl ether were added to 800 parts by weight of the polyester polymer described in Example 1 and mixed and impregnated with the apparatus and conditions described in Example 1. Was performed. The polyester containing the mixed compound was spun and stretched by the apparatus and conditions described in Example 1. Table 5 shows the results. The obtained drawn yarn exhibited high strength and initial tensile modulus.

(発明の効果) 本発明によれば特に溶融粘度が高すぎて従来公知の紡
糸、延伸方法では高強度・高初期弾性率化が困難とされ
てきた高分子量エチレンテレフタレート系ポリエステル
の紡速50m/分以上での高速生産性と安定な紡糸と延伸が
可能にならしめた。つまり、ポリエステルと高温下で相
溶性を有する特定の化合物を添加することで現実的なレ
ベルまで溶融粘度が低下し、そのため既存の紡糸ならび
に延伸装置による安定な製糸が可能になった。また、従
来、エチレンテレフタレート系ポリエステルでは考えら
れなかったような低い温度での溶融紡糸が可能であり、
これにより繊維化の過程で生じる極限粘度の低下を抑制
できる。さらに上記した未延伸糸は高い延伸性を有して
おり、高倍率延伸が可能であることから強度・初期弾性
率ともに優れたポリエステル繊維を安定に得ることが出
来、産業界に寄与すること大である。
(Effects of the Invention) According to the present invention, the spinning speed of a high-molecular-weight ethylene terephthalate-based polyester, which has been particularly difficult to achieve a high strength and a high initial elastic modulus by a conventionally known spinning and drawing method because the melt viscosity is too high, is 50 m / High speed productivity in more than a minute and stable spinning and drawing have become possible. That is, by adding a specific compound having compatibility with polyester at high temperature, the melt viscosity was reduced to a practical level, and thus stable spinning by existing spinning and drawing equipment became possible. In addition, conventionally, melt spinning at a low temperature, which could not be considered with ethylene terephthalate-based polyester, is possible,
As a result, a decrease in the intrinsic viscosity that occurs during the fiberization process can be suppressed. Furthermore, the above-mentioned undrawn yarn has high drawability, and since it can be drawn at a high magnification, it is possible to stably obtain a polyester fiber excellent in both strength and initial elastic modulus, contributing to the industry. It is.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 千葉 修二 滋賀県大津市堅田2丁目1番1号 東洋 紡績株式会社総合研究所内 審査官 高木 茂樹 (56)参考文献 特開 平2−216218(JP,A) 特開 平1−162820(JP,A) (58)調査した分野(Int.Cl.7,DB名) D01F 6/92,6/62 Fタームテーマコード4L036──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Shuji Chiba 2-1-1 Katata, Otsu City, Shiga Prefecture Examiner, Toyo Spinning Co., Ltd. General Research Laboratory Shigeki Takagi (56) References JP-A-2-216218 (JP, A) JP-A-1-162820 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) D01F 6/92, 6/62 F term theme code 4L036

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】極限粘度(IV)が1.0〜3.0のエチレンテレ
フタレート系ポリエステルに210℃以上の温度で該エチ
レンテレフタレート系ポリエステルに相溶する化合物を
該エチレンテレフタレート系ポリエステルに対して2〜
50重量%添加し、溶融してノズルオリフィスより押出
し、次いで紡出糸条を冷却固化して引取り、紡糸に連続
して又は一旦巻取った後、延伸することを特徴とする高
強度高弾性率ポリエステル繊維の製造方法。
An ethylene terephthalate-based polyester having an intrinsic viscosity (IV) of 1.0 to 3.0 is mixed with a compound compatible with the ethylene terephthalate-based polyester at a temperature of 210 ° C. or more with respect to the ethylene terephthalate-based polyester.
50% by weight, melted and extruded from the nozzle orifice, then cooled and solidified and taken out of the spun yarn, stretched continuously or once after spinning, and then stretched. Method for producing high-density polyester fiber.
JP2092917A 1990-04-06 1990-04-06 Method for producing high-strength high-modulus polyester fiber Expired - Lifetime JP3003155B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2092917A JP3003155B2 (en) 1990-04-06 1990-04-06 Method for producing high-strength high-modulus polyester fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2092917A JP3003155B2 (en) 1990-04-06 1990-04-06 Method for producing high-strength high-modulus polyester fiber

Publications (2)

Publication Number Publication Date
JPH03294539A JPH03294539A (en) 1991-12-25
JP3003155B2 true JP3003155B2 (en) 2000-01-24

Family

ID=14067839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2092917A Expired - Lifetime JP3003155B2 (en) 1990-04-06 1990-04-06 Method for producing high-strength high-modulus polyester fiber

Country Status (1)

Country Link
JP (1) JP3003155B2 (en)

Also Published As

Publication number Publication date
JPH03294539A (en) 1991-12-25

Similar Documents

Publication Publication Date Title
US4159365A (en) Polyphenyl-1,4-phenylene terephthalates and fibers therefrom
JPH07504717A (en) Polyester fiber and its manufacturing method
JP2000178829A (en) Polyphenylene sulfide fiber and its production
US4968778A (en) Elastomeric polymers
JP3003155B2 (en) Method for producing high-strength high-modulus polyester fiber
JPS6128015A (en) Production of poly(p-phenylenebenzo-bis-thiazole fiber
JP2945130B2 (en) Naphthalate polyester fiber for reinforcing tire cord or belt material and method for producing the same
JP3161546B2 (en) Method for producing high strength, low shrinkage polyester fiber
CA2004942C (en) Process for dimensionally stable polyester yarn
JP2001172821A (en) Production of polyoxymethylene fiber
US5085818A (en) Process for dimensionally stable polyester yarn
JPS6221817A (en) Ultra-high speed spinning of polyester fiber
JP2861335B2 (en) Method for producing naphthalate polyester fiber
JP3161549B2 (en) Method for producing high-strength high-modulus polyester fiber
JPH0376810A (en) Polyester finer having high toughness and low shrinkage and its production
JPH0156164B2 (en)
JPH0617317A (en) Production of polyester fiber
GB1590551A (en) Phenylhydroquinone-terephthalate polyesters
JP2002146637A (en) Method for producing polyoxymethylene fiber
JPS63101416A (en) Wholly aromatic polyester polymer
JP2000248428A (en) Production of polyester filament yarn
JPH0319913A (en) Production of polyether ketone fiber
EP1520066A1 (en) A process for making stable polytrimethylene terephthalate packages
JPH04361610A (en) Production of polyester fiber
JP2994701B2 (en) Melt viscosity-reducing agent for polyester resin, and polyester fiber

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071119

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081119

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081119

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091119

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091119

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101119

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101119

Year of fee payment: 11