JPH06257012A - Production of polyester-based grid fiber - Google Patents
Production of polyester-based grid fiberInfo
- Publication number
- JPH06257012A JPH06257012A JP6344793A JP6344793A JPH06257012A JP H06257012 A JPH06257012 A JP H06257012A JP 6344793 A JP6344793 A JP 6344793A JP 6344793 A JP6344793 A JP 6344793A JP H06257012 A JPH06257012 A JP H06257012A
- Authority
- JP
- Japan
- Prior art keywords
- spinning
- polymer
- fiber
- temperature
- solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Artificial Filaments (AREA)
- Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は,極細かつ高強度のポリ
エステル系網状繊維を製造する方法に関するものであ
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing ultrafine and high strength polyester reticulated fiber.
【0002】[0002]
【従来の技術】従来から,極細繊維の製造方法として,
相異なる複数の重合体が海島型に配置された多成分系フ
イラメントを溶融紡糸し一部の重合体を溶媒で除去する
方法,溶融重合体を紡糸孔から押し出し高温空気流によ
り高速で牽引するいわゆるメルトブローン法が知られて
いる。しかしながら,前者の多成分系フイラメントを用
いる方法では,重合体を溶解除去するための種々の複雑
な工程を要し,また,後者の方法では,確かに極細繊維
を得ることはできるものの,吐出直後の溶融状態のまま
で重合体を牽引・細化するため延伸配向と結晶化が十分
に進行せず,強度の高い繊維を得ることが困難である。2. Description of the Related Art Conventionally, as a method for producing ultrafine fibers,
A method of melt spinning a multi-component filament in which a plurality of different polymers are arranged in a sea-island shape and removing a part of the polymer with a solvent, a method of extruding the molten polymer from a spinning hole and pulling it at high speed by a high temperature air flow The melt blown method is known. However, the former method using a multi-component filament requires various complicated steps to dissolve and remove the polymer, and the latter method can certainly obtain ultrafine fibers, but immediately after discharge. Since the polymer is pulled / thinned in the molten state, the stretch orientation and crystallization do not proceed sufficiently, and it is difficult to obtain a fiber having high strength.
【0003】一方,前記の方法に代わる極細繊維の製造
方法として,重合体を特定の溶媒に高温高圧下で溶解し
て得た溶液を自生圧以上にさらに加圧し大気中に紡出す
るいわゆるフラツシユ紡糸法が知られている。例えば,
米国特許第3081519号公報には,重合体と低沸点
溶媒との溶液を紡糸液とし,この溶液を紡糸孔を通して
紡出し,紡出直後に溶媒を瞬間的に気化させ極細繊維を
得る方法が開示されている。しかしながら,この方法で
は,ポリエチレン系重合体の場合は確かに高強度の繊維
が得られるものの,ポリエステル系重合体では強度的に
極めて弱い繊維しか得ることができない。このポリエス
テル系重合体を用いたフラツシユ紡糸技術に関して,特
開昭62−104915号公報には,高強度のポリエス
テル系極細繊維の製造方法が開示されている。すなわ
ち,前記公報に記載の方法は,ポリエステル系重合体を
溶質とし,1,1,2−トリクロロ−1,2,2−トリ
フルオロエタンと塩化メチレンとの混合液を溶媒とする
溶液を紡糸液とし,この紡糸液を紡糸孔を通してポリエ
スル系重合体の融点前後の高温度で紡出し,紡出直後に
溶媒を瞬間的に気化させ極細繊維を得るというものであ
る。しかしながら,この方法では,ポリエスル系重合体
の融点前後の高温度で紡出するため重合体の熱劣化が促
進され,高強度の繊維を得ることが困難となる,また溶
剤が変質し易く操業上問題を生じる,あるいは前記2種
の有機溶媒を用いるため溶媒の回収工程が増加し不経済
である等の問題を有している。On the other hand, as a method for producing ultrafine fibers, which is an alternative to the above-mentioned method, a solution obtained by dissolving a polymer in a specific solvent under high temperature and high pressure is further pressurized to above the autogenous pressure and spun into the air. The spinning method is known. For example,
U.S. Pat. No. 30,815,19 discloses a method in which a solution of a polymer and a low boiling point solvent is used as a spinning solution, the solution is spun through a spinning hole, and the solvent is instantaneously vaporized immediately after spinning to obtain ultrafine fibers. Has been done. However, by this method, although fibers of high strength are certainly obtained in the case of polyethylene polymers, fibers of extremely weak strength can be obtained in the case of polyester polymers. Regarding the flash spinning technique using this polyester polymer, Japanese Patent Application Laid-Open No. 62-104915 discloses a method for producing a polyester ultrafine fiber having high strength. That is, in the method described in the above publication, a solution containing a polyester polymer as a solute and a mixed solution of 1,1,2-trichloro-1,2,2-trifluoroethane and methylene chloride as a solvent is a spinning solution. The spinning solution is spun through a spinning hole at a high temperature around the melting point of the polyester polymer, and the solvent is instantaneously vaporized immediately after spinning to obtain ultrafine fibers. However, in this method, since the polymer is spun at a high temperature around the melting point of the polymer, thermal deterioration of the polymer is accelerated, it becomes difficult to obtain high-strength fiber, and the solvent is liable to be deteriorated in operation. There is a problem in that it causes a problem, or the use of the above-mentioned two kinds of organic solvents increases the number of solvent recovery steps, which is uneconomical.
【0004】[0004]
【発明が解決しようとする課題】本発明は,前記問題を
解決し,極細かつ高強度のポリエステル系網状繊維を安
定して製造する方法を提供しようとするものである。SUMMARY OF THE INVENTION The present invention is intended to solve the above problems and to provide a method for stably producing ultrafine and high strength polyester reticulated fibers.
【0005】[0005]
【課題を解決するための手段】本発明者らは,前記問題
を解決すべく鋭意検討の結果,本発明に到達した。すな
わち,本発明は,ポリエステル系重合体を溶質としかつ
塩化メチレンを溶媒とする溶液を窒素加圧下で昇温・混
練しながら作成して紡糸液とし,この紡糸液を窒素によ
り加圧しながら圧力降下室を有する紡糸孔を通して紡出
し,紡出直後に溶媒を瞬間的に気化させて網状の繊維構
造を形成することを特徴とするポリエステル系網状繊維
の製造方法,を要旨とするものである。The present inventors have arrived at the present invention as a result of extensive studies to solve the above problems. That is, the present invention is to prepare a spinning solution by heating and kneading a solution containing a polyester polymer as a solute and methylene chloride as a solvent under nitrogen pressurization, and pressurizing the spinning solution with nitrogen to reduce the pressure. A method for producing a polyester reticulated fiber is characterized in that the solvent is instantaneously vaporized immediately after spinning through a spinning hole having a chamber to form a reticulated fiber structure.
【0006】次に,本発明を詳細に説明する。本発明に
おいて用いるポリエステル系重合体とは,ポリエチレン
テレフタレート,ポリブチレンテレフタレート,あるい
はこれらを主成分としフタル酸,イソフタル酸,グルタ
ール酸,アジピン酸,スルホイソフタル酸等の酸成分,
ジエチレングリコール,プロピレングリコール,1,4
−ブタンジオール,2,2−ビス(4−ヒドロキシエー
トキシフエニル)プロパン,ビスフエノールA,ポリア
ルキレングリコール等のジオール成分が15モル%まで
の範囲で共重合されたポリエステル系共重合体である。
この重合体としては,繊維形成性を有しテトラクロール
エタンとフエノールとの等重量混合液を溶媒として重合
体濃度0.5重量%かつ温度20℃で測定したときの相
対粘度が1.3〜1.4のものから,固相重合により作
成され相対粘度が1.7程度の高粘度のものまで用いる
ことができる。しかしながら,重合体が相対粘度1.3
未満の低粘度のものであると,重合度が低過ぎてフラツ
シユ紡糸時の紡糸速度に追随できず,紡出された繊維が
短繊維状あるいは略粉体状の形態を有するものとなるた
め好ましくない。なお,本発明においては,前記重合体
あるいはこれを溶媒に溶解して作成した紡糸液中には,
通常,繊維に用いられる艶消し剤,耐光剤,耐熱剤,顔
料,開繊剤,紫外線吸収剤,畜熱剤,安定剤等を本発明
の効果を損なわない範囲内であれば添加することができ
る。Next, the present invention will be described in detail. The polyester polymer used in the present invention includes polyethylene terephthalate, polybutylene terephthalate, or acid components such as phthalic acid, isophthalic acid, glutaric acid, adipic acid, sulfoisophthalic acid, etc.
Diethylene glycol, propylene glycol, 1,4
A polyester copolymer obtained by copolymerizing a diol component such as butanediol, 2,2-bis (4-hydroxyateoxyphenyl) propane, bisphenol A, and polyalkylene glycol in an amount of up to 15 mol%. .
This polymer has a fiber-forming property and a relative viscosity of 1.3-0.5 when measured at a polymer concentration of 0.5% by weight and a temperature of 20 ° C. using an equal weight mixture of tetrachloroethane and phenol as a solvent. It is possible to use from 1.4 to those having a high relative viscosity of about 1.7, which are prepared by solid phase polymerization. However, the polymer has a relative viscosity of 1.3.
If the viscosity is less than 1, the degree of polymerization is too low to keep up with the spinning speed during flash spinning, and the spun fiber has a form of short fibers or substantially powder, which is preferable. Absent. In the present invention, the polymer or the spinning solution prepared by dissolving the polymer in a solvent,
Usually, a matting agent, a light-proofing agent, a heat-resistant agent, a pigment, a fiber-spreading agent, a UV absorber, a heat storage agent, a stabilizer and the like used for fibers may be added as long as the effects of the present invention are not impaired. it can.
【0007】本発明においては,前記ポリエステル系重
合体を溶質とし,塩化メチレンを溶媒とする溶液を紡糸
液として用いる。本発明において,この紡糸液を用いて
フラツシユ紡糸するに際しての紡出性と得られた繊維の
特性を勘案すると,これらがこの紡糸液における重合体
の重合度や溶媒の温度に対する自生圧力あるいは窒素の
加圧状態等により左右されるため溶質である前記ポリエ
ステル系重合体の濃度を一概に特定することは困難であ
るが,敢えて特定すれば,溶質である前記ポリエステル
系重合体を5重量%以上30重量%以下,溶媒である塩
化メチレンを95重量%以下70重量%以上とするのが
好ましい。この重合体の濃度が5重量%未満であると,
フイブリルが連続した構造の繊維を得ることが困難とな
り,一方,重合体の濃度が30重量%を超えると,紡出
された繊維はそのフイブリルがその側面で相互に接合
し,かつ内部に空洞を有する中空構造の繊維となって,
高強度の繊維を得ることができず,いずれも好ましくな
い。したがって,本発明では,この重合体の濃度を5重
量%以上30重量%以下とし,好ましくは10重量%以
上28重量%以下,特に好ましくは15重量%以上25
重量%以下とする。本発明において用いる塩化メチレン
とは,その沸点が40.2℃,臨界温度が237℃のも
のである。本発明では,このような塩化メチレンを溶媒
として用いるので,従来のフロンを溶媒として用いる場
合にみられたような地球環境を害するということがな
い。In the present invention, a solution containing the polyester polymer as a solute and methylene chloride as a solvent is used as a spinning solution. In the present invention, taking into consideration the spinnability in flash-spinning using this spinning solution and the properties of the obtained fiber, these are the degree of polymerization of the polymer in this spinning solution, the autogenous pressure with respect to the temperature of the solvent, or the nitrogen content. It is difficult to unambiguously specify the concentration of the solute polyester-based polymer because it depends on the pressurization state and the like. It is preferable that the amount of methylene chloride as a solvent is 95% by weight or less and 70% by weight or more. If the concentration of this polymer is less than 5% by weight,
It becomes difficult to obtain fibers having a continuous structure of fibrils, while when the concentration of the polymer exceeds 30% by weight, the spun fibers have fibrils bonded to each other on their side faces and voids inside. It has a hollow structure of fibers,
High strength fibers cannot be obtained, which is not preferable. Therefore, in the present invention, the concentration of this polymer is set to 5% by weight or more and 30% by weight or less, preferably 10% by weight or more and 28% by weight or less, particularly preferably 15% by weight or more and 25% by weight or less.
It should be less than or equal to weight%. The methylene chloride used in the present invention has a boiling point of 40.2 ° C and a critical temperature of 237 ° C. In the present invention, since such methylene chloride is used as a solvent, it does not harm the global environment, which has been observed when conventional CFCs are used as a solvent.
【0008】本発明においては,前記ポリエステル系重
合体を溶質とし,塩化メチレンを溶媒として用い,これ
らを溶解装置に充填し窒素加圧下で昇温・混練しながら
溶液を作成し,得られた溶液を紡糸液として用いる。溶
解装置としては,従来から最も広範に用いられているオ
ートクレーブや,例えばエクストルーダとこれに連続し
て配設された混練装置とからなる連続溶解装置等を用い
ることができる。本発明において,溶解装置内でこの紡
糸液を加圧する窒素は,その純度が99重量%以上であ
って酸素を含有しないものであるのが好ましい。窒素は
不活性気体であるため紡糸液中に殆ど溶解せず,重合体
に対して悪影響を及ぼさないため実質的な圧力を印加す
ることができる。一方,同じ不活性気体の二酸化炭素は
紡糸液中に溶解し易く,紡糸液中にその溶解が進行する
にしたがって溶解装置内の圧力が低下するため好ましく
ない。この窒素を溶解装置内に注入・加圧するに際して
は,紡糸液中の前記ポリエステル系重合体の劣化を防止
するために60℃以下の低温状態で行うのがよい。本発
明では,不活性気体である窒素を60℃以下の低温状態
から昇温後まで溶解装置内に存在させるため,紡糸液中
の重合体の分解や溶媒の変質を防止することができ,溶
媒に重合体を溶解させて溶液を作成する工程やフラツシ
ユ紡糸時に重合体の粘度低下を防止し,したがって繊維
の強度を向上させることができる。この窒素による溶解
装置内の加圧状態は,その圧力を少なくとも1kg/c
m2 Gとし,特に短時間に均一な昇温・溶解をさせたい
ときには10kg/cm2G以上とするのが好ましい。
この圧力が高いほど昇温性と重合体の溶解性が高くな
り,また紡糸液の実質的な圧力を高くすることができる
ため,この紡糸液を用いてフラツシユ紡糸するに際して
の安定性を向上させることができる。しかしながら,こ
の圧力は,高くとも100kg/cm2 Gとするのが好
ましく,100kg/cm2 Gを超えると紡糸液を用い
てフラツシユ紡糸して得た繊維の形状は圧力100kg
/cm2 G以下時と大差はないものの繊維の粘度が低下
するため繊維強度を向上させることができず,また,高
圧窒素用の重設備を必要とするため,好ましくない。In the present invention, the above polyester polymer is used as a solute, and methylene chloride is used as a solvent. These are filled in a dissolution apparatus and a solution is prepared by heating and kneading under nitrogen pressure, and the obtained solution is obtained. Is used as a spinning solution. As the melting device, an autoclave which has been used most widely in the past, or a continuous melting device including, for example, an extruder and a kneading device arranged continuously with the extruder can be used. In the present invention, it is preferable that the nitrogen which pressurizes the spinning solution in the dissolving device has a purity of 99% by weight or more and does not contain oxygen. Since nitrogen is an inert gas, it is hardly dissolved in the spinning solution and does not adversely affect the polymer, so that substantial pressure can be applied. On the other hand, carbon dioxide, which is the same inert gas, is easily dissolved in the spinning solution, and the pressure in the dissolution apparatus decreases as the dissolution progresses in the spinning solution, which is not preferable. When injecting and pressurizing this nitrogen into the dissolution apparatus, it is preferable to perform it at a low temperature of 60 ° C. or lower in order to prevent deterioration of the polyester polymer in the spinning solution. In the present invention, nitrogen, which is an inert gas, is allowed to exist in the dissolution apparatus from a low temperature state of 60 ° C. or lower to after the temperature is raised, so that the decomposition of the polymer in the spinning solution and the alteration of the solvent can be prevented. It is possible to prevent a decrease in the viscosity of the polymer during the step of preparing the solution by dissolving the polymer in the solution or during the flash spinning, and thus to improve the strength of the fiber. The pressure inside the melting device with nitrogen is at least 1 kg / c.
It is preferably m 2 G, and particularly preferably 10 kg / cm 2 G or more when it is desired to uniformly raise the temperature and dissolve the material in a short time.
The higher this pressure is, the higher the temperature rising property and the higher the solubility of the polymer, and the higher the substantial pressure of the spinning solution can be. Therefore, the stability of the flash spinning using this spinning solution is improved. be able to. However, this pressure is at most it is preferable to be 100kg / cm 2 G, 100kg / cm 2 greater than G the shape of the fiber obtained by flushed spun using the spinning solution pressure 100kg
Although it is not so different from the case of less than / cm 2 G or less, the fiber strength cannot be improved because the viscosity of the fiber is lowered, and heavy equipment for high pressure nitrogen is required, which is not preferable.
【0009】本発明において,溶解装置内で前記重合体
を溶媒に溶解するに際しての溶解時間は,5分以上60
分以下とするのが好ましい。ポリエステル系重合体は熱
分解し易いものであり,溶媒として用いる塩化メチレン
との加温・混合状態下では特に溶解時間が溶液を紡糸液
として用いフラツシユ紡糸するに際しての製糸性のみな
らず繊維物性中,特に繊維強度に大きく影響し,得られ
た繊維を用いて布帛としたときにその強度や伸度あるい
は耐磨耗性に影響する。この溶解時間が60分を超える
と,紡糸液中の重合体の熱分解が激しくなって繊維の強
度が向上せず,一方,溶解時間が5分未満であると,重
合体の溶解が不十分となって均一な繊維を得ることが困
難となったり,あるいは紡糸時にフイルタの目詰まりを
生じたりするため,好ましくない。したがって,本発明
では,この溶解時間を5分以上60分以下とし,好まし
くは7分以上45分以下,特に好ましくは10分以上3
0分以下とする。In the present invention, the dissolution time for dissolving the polymer in the solvent in the dissolution apparatus is 5 minutes or more and 60 minutes or more.
It is preferably not more than minutes. Polyester-based polymers are easily decomposed by heat, and especially when heated and mixed with methylene chloride used as a solvent, the dissolution time is not only the spinnability but also the fiber physical properties during the flash-spinning when the solution is used as the spinning solution. Especially, the fiber strength is greatly affected, and when the obtained fiber is used as a cloth, the strength, the elongation, or the abrasion resistance is affected. If the dissolution time exceeds 60 minutes, the thermal decomposition of the polymer in the spinning solution becomes severe and the strength of the fiber is not improved. On the other hand, if the dissolution time is less than 5 minutes, the dissolution of the polymer is insufficient. Therefore, it is difficult to obtain uniform fibers, or the filter is clogged during spinning, which is not preferable. Therefore, in the present invention, this dissolution time is set to 5 minutes or more and 60 minutes or less, preferably 7 minutes or more and 45 minutes or less, and particularly preferably 10 minutes or more and 3 minutes or less.
0 minutes or less.
【0010】本発明において,紡糸液を溶解するに際し
ての温度すなわち溶解温度とフラツシユ紡糸するに際し
ての温度すなわち紡糸温度は,いずれも重合体が溶媒に
十分に溶解しかつ紡糸液をフラツシユ紡糸して極細のフ
イブリルが集合し網状に広がった構造を有する繊維を得
ることができるような温度であれば特に限定されるもの
ではないが,敢えて特定すれば,溶媒として用いる塩化
メチレンの臨界温度237℃を勘案して170℃以上2
40℃以下とするのが好ましい。溶解温度や紡糸温度が
用いる溶媒の臨界温度より高くなると圧力が異常に上昇
し重合体の溶解が一層進行するが,このとき溶媒自身の
分解あるいは変質が進行して特に紡糸温度が変動したり
するため,好ましくない。したがって,本発明では,こ
の溶解温度と紡糸温度を170℃以上240℃以下と
し,好ましくは180℃以上かつ溶媒の臨界温度以下と
する。In the present invention, the temperature at which the spinning solution is dissolved, that is, the melting temperature, and the temperature at which the spinning is performed, that is, the spinning temperature, are all such that the polymer is sufficiently dissolved in the solvent and the spinning solution is flash-spun to obtain an extremely fine particle. The temperature is not particularly limited as long as it is a temperature at which fibers having a structure in which the fibrils are aggregated and spread in a reticulated structure can be obtained, but if it is intentionally specified, the critical temperature of methylene chloride used as a solvent, 237 ° C, is taken into consideration. Over 170 ℃ 2
The temperature is preferably 40 ° C or lower. If the melting temperature or spinning temperature becomes higher than the critical temperature of the solvent used, the pressure will rise abnormally and the dissolution of the polymer will progress further, but at this time, the decomposition or alteration of the solvent itself will progress, and especially the spinning temperature will fluctuate Therefore, it is not preferable. Therefore, in the present invention, the melting temperature and the spinning temperature are set to 170 ° C or higher and 240 ° C or lower, preferably 180 ° C or higher and lower than the critical temperature of the solvent.
【0011】本発明において,紡糸液をフラツシユ紡糸
するに際しての圧力は,重合体濃度と溶媒量そして窒素
の注入量等により左右されるため一概に限定されない
が,通常,40kg/cm2 以上120kg/cm2 以
下とするのが好ましい。紡糸圧力が40kg/cm2 未
満であると,紡糸液を用いてフラツシユ紡糸するに際し
ての爆発力が低下し繊維の配向が不十分となって繊維強
度が向上せず,また,紡出状態が不均一なものとなって
高度にフイブリル化した繊維を安定して得ることが困難
となり,一方,圧力が120kg/cm2 を超えると,
紡糸液中の重合体の粘度が低下して繊維強度が向上せ
ず,いずれも好ましくない。In the present invention, the pressure for flash-spinning the spinning solution is not particularly limited because it depends on the polymer concentration, the amount of solvent, the amount of nitrogen injected, etc., but is usually 40 kg / cm 2 or more and 120 kg / cm 2 or more. It is preferably not more than cm 2 . If the spinning pressure is less than 40 kg / cm 2 , the explosive force at the time of flash-spinning using a spinning solution is reduced, the orientation of the fibers is insufficient, the fiber strength is not improved, and the spinning state is unsatisfactory. It becomes difficult to stably obtain highly fibrillated fibers which are uniform, while when the pressure exceeds 120 kg / cm 2 ,
The viscosity of the polymer in the spinning solution is lowered and the fiber strength is not improved, either of which is not preferable.
【0012】[0012]
【作用】本発明では,ポリエステル系重合体を溶質とし
かつ塩化メチレンを溶媒とする溶液を窒素加圧下で昇温
・混練しながら作成して紡糸液とするが,この溶液を作
成するに際して昇温前から窒素を注入し,次いで得られ
た紡糸液を窒素により加圧しながらフラツシユ紡糸する
ことにより,極細のフイブリルが集合し網状に広がった
構造を有する高強度の繊維を得ることができるのであ
る。すなわち,このような極細のフイブリルからなる繊
維を形成するためには溶質であるポリエステル系重合体
を溶媒である塩化メチレンに対し十分かつ均一に溶解す
る必要があるが,本発明では,溶解に際して昇温前から
溶媒に対して不活性の窒素を注入し加圧するため溶解性
を向上させることができ,不活性気体を用いるため重合
体と溶媒の熱劣化を防止することができ,しかも前記溶
解性の向上により溶解温度と紡糸温度を低下させること
が可能となるためさらに重合体の熱劣化を防止すること
ができる。そして,このような従来より低温度の溶解温
度で重合体が溶解されかつ重合体が溶媒に均一かつ熱劣
化することなく溶解した溶液を紡糸液として用いること
によって,しかもフラツシユ紡糸するに際して従来より
低温度の紡糸温度で紡糸することによって良好なフイブ
リル化と繊維強度の向上が発現されるのである。また,
本発明では,前記紡糸液を窒素により加圧しながら圧力
降下室を有する紡糸孔を通して紡出し,紡出直後に溶媒
を瞬間的に気化させて網状の繊維構造を形成するが,こ
の窒素を溶媒と共に用いることにより,さらに繊維強度
の向上が得られる。すなわち,繊維の強度は重合体の分
子鎖自体が十分に延伸・配向されることにより発現され
るのであり,フラツシユ紡糸法においてはこの延伸・配
向を紡出直後の瞬間的な溶媒の気化に伴う爆発力によっ
て行う。この爆発力とは,溶媒が瞬間的に気化する際の
気化力であり,通常,0.1秒以下の時間で溶媒が一気
に気化するときの力を意味する。本発明では,フラツシ
ユ紡出直後に溶媒である塩化メチレンが瞬間的に気化す
ると共に窒素が瞬間的に放出されるため,前記爆発力が
従来より一層向上し,したがって重合体の分子鎖が十分
に延伸・配向され,さらに繊維強度の向上が発現される
のである。In the present invention, a spinning solution is prepared by heating and kneading a solution containing a polyester polymer as a solute and methylene chloride as a solvent while heating and kneading under nitrogen pressure. By injecting nitrogen from the front and then flash-spinning the resulting spinning solution while pressurizing it with nitrogen, it is possible to obtain high-strength fibers having a structure in which extremely fine fibrils are aggregated and spread in a mesh. That is, in order to form such a fiber made of ultrafine fibrils, it is necessary to dissolve the polyester polymer as a solute sufficiently and uniformly in methylene chloride as a solvent. Since inert nitrogen is injected into the solvent and pressure is applied to the solvent before warming, the solubility can be improved. Since an inert gas is used, thermal degradation of the polymer and solvent can be prevented. It is possible to lower the melting temperature and the spinning temperature by improving the temperature, so that thermal deterioration of the polymer can be further prevented. By using a solution in which the polymer is dissolved at such a lower melting temperature than the conventional one and the polymer is uniformly dissolved in the solvent without being thermally deteriorated as a spinning solution, and moreover, in the case of flash spinning, a lower temperature than the conventional one is used. Good fibrillation and improvement in fiber strength are exhibited by spinning at the spinning temperature of temperature. Also,
In the present invention, the spinning solution is spun through a spinning hole having a pressure drop chamber while being pressurized with nitrogen, and the solvent is instantaneously vaporized immediately after spinning to form a reticulated fiber structure. By using it, the fiber strength can be further improved. That is, the strength of the fiber is expressed by sufficiently stretching / orienting the polymer molecular chain itself, and in the flash-spinning method, this stretching / orientation is accompanied by the instantaneous vaporization of the solvent immediately after spinning. Do by explosive force. The explosive force is the vaporizing force when the solvent is instantly vaporized, and usually means the force when the solvent vaporizes at once in 0.1 second or less. In the present invention, since the solvent methylene chloride is instantaneously vaporized and nitrogen is instantaneously released immediately after the flash spinning, the explosive force is further improved as compared with the conventional one, and thus the molecular chain of the polymer is sufficiently improved. The fiber is stretched and oriented, and the fiber strength is further improved.
【0013】[0013]
【実施例】次に,実施例に基づいて本発明を具体的に説
明する。なお,実施例における各種特性の測定及び評価
は,次の方法により実施した。 重合体の融点:パーキンエルマ社製示差走査型熱量計D
SC−2型を用い,昇温速度20℃/分で測定した融解
吸収熱曲線の極値を与える温度を融点とした。 重合体の相対粘度A:テトラクロールエタンとフエノー
ルとの等重量混合液を溶媒として試料濃度0.5重量%
かつ温度20℃で測定した。 繊維の繊度(デニール):JIS L−1090に記載
の方法にしたがい,正量繊度で求めた。 繊維の引張強度(g/デニール):東洋ボールドウイン
社製テンシロンUTM−4−1−100を用い,試料長
が10cmの試料20本につき各々20回/5cmの撚
りを加え,把持間隔5cm,引張速度5cm/分で測定
し,得られた引張強力の平均値を正量繊度当りに換算
し,繊維の強度(g/デニール)とした。 繊維の引張伸度(%):東洋ボールドウイン社製テンシ
ロンUTM−4−1−100を用い,前記試料20本に
つき各々引張速度5cm/分で測定し,得られた引張伸
度の平均値を繊維の引張伸度(%)とした。 繊維の比表面積(m2 /g):日本ベル株式会社製窒素
吸着装置BELSORP28型を用い,BET窒素吸着
法によって繊維の比表面積(m2 /g)を求めた。 繊維の粘度低下率(%):前記重合体の相対粘度Aと同
様にして求めた繊維の相対粘度Bとを用い,次式(1)
により繊維の粘度低下率(%)を算出した。 繊維の粘度低下率(%)=(A−B)×100/A ・・・・・・・(b)EXAMPLES Next, the present invention will be specifically described based on Examples. The measurement and evaluation of various characteristics in the examples were carried out by the following methods. Melting point of polymer: Differential scanning calorimeter D manufactured by Perkin Elmer
The melting point was defined as the temperature at which the exothermic value of the melting and absorption heat curve measured using the SC-2 type at a temperature rising rate of 20 ° C./min. Relative viscosity of polymer A: sample concentration of 0.5% by weight using an equal weight mixture of tetrachlorethane and phenol as a solvent
And it measured at the temperature of 20 degreeC. Fiber fineness (denier): The fineness was determined according to the method described in JIS L-1090. Tensile strength (g / denier) of fiber: Tensilon UTM-4-1-100 manufactured by Toyo Baldwin Co., Ltd. was used, and 20 times / 5 cm of twist was added to each of 20 samples having a sample length of 10 cm, and a gripping interval was 5 cm and a tensile force was applied. The tensile strength was measured at a speed of 5 cm / min, and the average value of the obtained tensile strengths was converted to the fineness per unit weight to obtain the fiber strength (g / denier). Tensile elongation of fiber (%): Tensilon UTM-4-1-100 manufactured by Toyo Baldwin Co., Ltd. was used to measure the above 20 samples at a tensile rate of 5 cm / min. The tensile elongation (%) of the fiber was used. Specific surface area (m 2 / g) of fiber: The specific surface area (m 2 / g) of the fiber was determined by the BET nitrogen adsorption method using a nitrogen adsorption device BELSORP28 type manufactured by Bell Japan. Fiber viscosity reduction rate (%): Using the relative viscosity A of the polymer and the relative viscosity B of the fiber obtained in the same manner, the following equation (1)
The viscosity reduction rate (%) of the fiber was calculated by. Fiber viscosity reduction rate (%) = (A−B) × 100 / A ···· (b)
【0014】実施例1 融点が256℃,相対粘度Aが1.6のポリエチレンテ
レフタレート重合体50gと塩化メチレン200ccを
オートクレーブに充填・閉鎖し,次いで窒素をオートク
レーブの内圧が50kg/cm2 Gに上昇するまで注入
した後,適度な速度で混練しながら昇温を開始した。こ
の溶液は,重合体濃度が20重量%,塩化メチレンが8
0重量%である。このとき,オートクレーブの内温が1
00℃から上昇し220℃に到達するまでの昇温時間は
25分間であった。次いで,この溶液を温度220℃で
5分間混練して均一な溶液を得た。このとき,オートク
レーブの内圧は102kg/cm2 Gであった。引き続
き,この内圧すなわち紡糸圧力102kg/cm2 Gで
直ちにオートクレーブのバルブを開放して圧力降下室を
有する孔径0.7mmで孔長/孔径の比が1の紡出孔よ
り紡糸液を大気中に紡出し,前記ポリエチレンテレフタ
レート重合体からなる網状繊維を得た。このとき,圧力
降下室の圧力は93kg/cm2であった。製造条件と
得られた繊維の特性を表1に示す。この網状繊維は,フ
イブリル化の状態が良好であって,粘度低下が少なく,
しかも強度が高いものであった。Example 1 An autoclave was filled and closed with 50 g of a polyethylene terephthalate polymer having a melting point of 256 ° C. and a relative viscosity A of 1.6 and 200 cc of methylene chloride, and then the internal pressure of the autoclave was increased to 50 kg / cm 2 G. After injecting until the temperature rises, the temperature rise is started while kneading at an appropriate speed. This solution has a polymer concentration of 20% by weight and methylene chloride of 8%.
It is 0% by weight. At this time, the internal temperature of the autoclave is 1
The temperature rising time from the temperature rise from 00 ° C to 220 ° C was 25 minutes. Then, this solution was kneaded at a temperature of 220 ° C. for 5 minutes to obtain a uniform solution. At this time, the internal pressure of the autoclave was 102 kg / cm 2 G. Then, at this internal pressure, that is, the spinning pressure of 102 kg / cm 2 G, the valve of the autoclave was immediately opened to bring the spinning solution into the atmosphere through a spinning hole having a pressure drop chamber of 0.7 mm and a hole length / hole diameter ratio of 1. By spinning, a reticulated fiber made of the polyethylene terephthalate polymer was obtained. At this time, the pressure in the pressure drop chamber was 93 kg / cm 2 . Table 1 shows the production conditions and the properties of the obtained fiber. This reticulated fiber has a good fibrillation state, a small decrease in viscosity,
Moreover, the strength was high.
【0015】実施例2 融点が256℃,相対粘度Aが1.7のポリエチレンテ
レフタレート重合体30gと塩化メチレン200ccを
オートクレーブに充填・閉鎖し,次いで窒素をオートク
レーブの内圧が50kg/cm2 Gに上昇するまで注入
した後,適度な速度で混練しながら昇温を開始した。こ
の溶液は,重合体濃度が13重量%,塩化メチレンが8
7重量%である。このとき,オートクレーブの内温が1
00℃から上昇し220℃に到達するまでの昇温時間は
20分間であった。次いで,この溶液を温度200℃で
5分間混練して均一な溶液を得た。このとき,オートク
レーブの内圧は99kg/cm2 Gであった。引き続
き,この内圧すなわち紡糸圧力99kg/cm2 Gで,
以降実施例1と同様にして紡糸液を大気中に紡出し,前
記ポリエチレンテレフタレート重合体からなる網状繊維
を得た。このとき,圧力降下室の圧力は90kg/cm
2 であった。製造条件と得られた繊維の特性を表1に示
す。この網状繊維は,フイブリル化の状態が良好であっ
て,粘度低下が少なく,しかも強度が高いものであっ
た。Example 2 An autoclave was filled with 30 g of a polyethylene terephthalate polymer having a melting point of 256 ° C. and a relative viscosity A of 1.7 and 200 cc of methylene chloride and then closed, and then the internal pressure of the autoclave was increased to 50 kg / cm 2 G. After injecting until the temperature rises, the temperature rise is started while kneading at an appropriate speed. This solution has a polymer concentration of 13% by weight and methylene chloride of 8%.
It is 7% by weight. At this time, the internal temperature of the autoclave is 1
The temperature rising time from the temperature rise from 00 ° C to 220 ° C was 20 minutes. Then, this solution was kneaded at a temperature of 200 ° C. for 5 minutes to obtain a uniform solution. At this time, the internal pressure of the autoclave was 99 kg / cm 2 G. Then, at this internal pressure, that is, the spinning pressure of 99 kg / cm 2 G,
Thereafter, the spinning solution was spun into the atmosphere in the same manner as in Example 1 to obtain reticulated fibers made of the polyethylene terephthalate polymer. At this time, the pressure in the pressure drop chamber is 90 kg / cm
Was 2 . Table 1 shows the production conditions and the properties of the obtained fiber. The reticulated fiber was in a good fibrillated state, had little decrease in viscosity, and had high strength.
【0016】実施例3〜7 融点が256℃,相対粘度Aが1.4のポリエチレンテ
レフタレート重合体66.7gと塩化メチレン200c
cをオートクレーブに充填・閉鎖し,次いで窒素をオー
トクレーブの内圧が表1に示した各圧力に上昇するまで
注入した後,混練しながら昇温を開始した。この溶液
は,重合体濃度が25重量%,塩化メチレンが75重量
%である。次いで,この溶液を表1に示した各温度で5
分間混練して各々均一な溶液を得た。引き続き,実施例
1と同様にして紡糸液を大気中に紡出し,前記ポリエチ
レンテレフタレート重合体からなる網状繊維を得た。製
造条件と得られた繊維の特性を表1に示す。実施例3〜
5で得られた網状繊維は,いずれもフイブリル化の状態
が良好であって,極めて極細のフイブリルから構成され
るため比表面積が高く,粘度低下が少なく,しかも強度
が高いものであった。実施例6で得られた網状繊維は,
溶解・紡糸温度が高いため繊維の粘度低下が大きく,こ
れを反映して強度が低いものであった。実施例7で得ら
れた網状繊維は,溶解・紡糸温度が低いため細いフイブ
リルが少しは存在するものの,多くのフイブリルがその
側面で相互に接合し,かつ内部に空洞を有する中空構造
を形成しており,比表面積が低く,しかも強度が低いも
のであった。Examples 3 to 7 66.7 g of a polyethylene terephthalate polymer having a melting point of 256 ° C. and a relative viscosity A of 1.4 and 200 m of methylene chloride.
c was filled and closed in the autoclave, and then nitrogen was injected until the internal pressure of the autoclave increased to each pressure shown in Table 1, and then the temperature rising was started while kneading. This solution has a polymer concentration of 25% by weight and methylene chloride of 75% by weight. Then, this solution was added at 5
The mixture was kneaded for a minute to obtain a uniform solution. Subsequently, the spinning solution was spun into the atmosphere in the same manner as in Example 1 to obtain reticulated fibers made of the polyethylene terephthalate polymer. Table 1 shows the production conditions and the properties of the obtained fiber. Example 3-
All of the reticulated fibers obtained in Example 5 had a good fibrillation state, and because they were composed of extremely fine fibrils, they had a high specific surface area, a small decrease in viscosity, and a high strength. The reticulated fiber obtained in Example 6 was
Since the melting / spinning temperature was high, the viscosity of the fiber decreased significantly, and the strength was low reflecting this. The reticulated fiber obtained in Example 7 has a small number of fine fibrils because of its low melting / spinning temperature, but many fibrils are joined to each other on their side faces and form a hollow structure having cavities inside. The specific surface area was low and the strength was low.
【0017】比較例1 融点が256℃,相対粘度Aが1.4のポリエチレンテ
レフタレート重合体66.7gと塩化メチレン200c
cをオートクレーブに充填・閉鎖し,次いで窒素を注入
することなく混練しながら昇温を開始した。この溶液
は,重合体濃度が25重量%,塩化メチレンが75重量
%である。次いで,この溶液を表1に示した各温度で5
分間混練して各々均一な溶液を得,引き続き,実施例1
と同様にして紡糸液を大気中に紡出し,前記ポリエチレ
ンテレフタレート重合体からなる網状繊維を得た。製造
条件と得られた繊維の特性を表1に示す。この網状繊維
は,窒素の注入を行っていないため紡糸液中の重合体が
粘度低下を生じており,繊維の粘度も低く,これを反映
して強度が極めて低いものであった。Comparative Example 1 66.7 g of polyethylene terephthalate polymer having a melting point of 256 ° C. and a relative viscosity A of 1.4 and 200 m of methylene chloride.
c was charged into the autoclave and closed, and then the temperature was started while kneading without injecting nitrogen. This solution has a polymer concentration of 25% by weight and methylene chloride of 75% by weight. Then, this solution was added at 5
The mixture was kneaded for a minute to obtain a uniform solution.
The spinning solution was spun into the atmosphere in the same manner as in 1. to obtain reticulated fibers made of the polyethylene terephthalate polymer. Table 1 shows the production conditions and the properties of the obtained fiber. This reticulated fiber had a low viscosity because the polymer in the spinning solution had a reduced viscosity because nitrogen was not injected, and the strength of the reticulated fiber was extremely low, reflecting this.
【0018】[0018]
【表1】 [Table 1]
【0019】実施例8〜10 重合体濃度と溶媒濃度を表2に示したように変更し,ま
た,溶解・紡糸温度を210℃,溶解時間すなわちオー
トクレーブの内温が100℃から上昇し210℃に到達
するまでの昇温時間を30分間とした以外は実施例3と
同様にして紡糸液を大気中に紡出し,前記ポリエチレン
テレフタレート重合体からなる網状繊維を得た。製造条
件と得られた繊維の特性を表2に示す。実施例9で得ら
れた網状繊維は,フイブリル化の状態が良好であって,
粘度低下が少なく,しかも強度が高いものであった。実
施例8で得られた網状繊維は,フイブリル化の状態が良
好であって,極細のフイブリルから構成され,粘度低下
が少なく,強度が高いものであったが,紡糸液の重合体
濃度が低いためフイブリルが集合した長繊維を形成しな
い部分を部分的に含有するものであった。一方,実施例
10で得られた網状繊維は,強度は高いものの,紡糸液
の重合体濃度が高いため一部のフイブリルがその側面で
相互に接合し,かつ内部に空洞を有する中空構造を形成
しており,比表面積が若干低いものであった。Examples 8 to 10 The polymer concentration and solvent concentration were changed as shown in Table 2, the melting / spinning temperature was 210 ° C, and the melting time, that is, the internal temperature of the autoclave was increased from 100 ° C to 210 ° C. The spinning solution was spun into the atmosphere in the same manner as in Example 3 except that the temperature rising time until the temperature reached 30 minutes was 30 minutes to obtain reticulated fibers made of the polyethylene terephthalate polymer. Table 2 shows the production conditions and the properties of the obtained fiber. The reticulated fiber obtained in Example 9 had a good fibrillation state,
The viscosity was low and the strength was high. The reticulated fiber obtained in Example 8 had a good fibrillation state, was composed of extremely fine fibrils, had a small decrease in viscosity and high strength, but had a low concentration of polymer in the spinning solution. Therefore, the fibrils partially contained a portion that did not form a continuous fiber. On the other hand, the reticulated fiber obtained in Example 10 has a high strength, but since the polymer concentration of the spinning solution is high, some of the fibrils are joined to each other on their side surfaces and form a hollow structure having a cavity inside. The specific surface area was slightly low.
【0020】[0020]
【表2】 [Table 2]
【0021】実施例11〜13 溶解・紡糸温度を210℃とし,また,溶解時間すなわ
ちオートクレーブの内温が100℃から上昇し210℃
に到達するまでの昇温時間を表3に示したように変更し
た以外は実施例3と同様にして紡糸液を大気中に紡出
し,前記ポリエチレンテレフタレート重合体からなる網
状繊維を得た。製造条件と得られた繊維の特性を表3に
示す。実施例11で得られた網状繊維は,フイブリル化
の状態が良好であって,極細のフイブリルから構成され
るため比表面積が高く,重合体の溶解時間が短いため繊
維の粘度低下が極めて少なく,しかも強度が高いもので
あった。実施例12から13に移るにしたがい,得られ
た網状繊維は,重合体の溶解時間が長くなるため繊維の
粘度低下が大きくなり,それにしたがって強度が低下す
る傾向にある。Examples 11 to 13 The melting / spinning temperature was 210 ° C., and the melting time, that is, the internal temperature of the autoclave increased from 100 ° C. to 210 ° C.
The spinning solution was spun into the atmosphere in the same manner as in Example 3 except that the temperature rising time until reaching the temperature was changed as shown in Table 3 to obtain reticulated fibers made of the polyethylene terephthalate polymer. Table 3 shows the production conditions and the properties of the obtained fiber. The reticulated fiber obtained in Example 11 has a good fibrillation state, has a high specific surface area because it is composed of ultrafine fibrils, and has a very low viscosity decrease of the fiber because the dissolution time of the polymer is short, Moreover, the strength was high. As shown in Examples 12 to 13, the obtained reticulated fibers tended to have a large decrease in the viscosity of the polymer due to the long dissolution time of the polymer, resulting in a decrease in the strength.
【0022】[0022]
【表3】 [Table 3]
【0023】[0023]
【発明の効果】本発明のポリエステル系網状繊維の製造
方法は,ポリエステル系重合体を溶質としかつ塩化メチ
レンを溶媒とする溶液を窒素加圧下で昇温・混練しなが
ら作成して紡糸液とし,この紡糸液を窒素により加圧し
ながら圧力降下室を有する紡糸孔を通して紡出し,紡出
直後に溶媒を瞬間的に気化させて網状の繊維構造を形成
しようとするものであり,本発明によれば,極細かつ高
強度のポリエステル系網状繊維を安定して製造すること
ができる。そして,得られた網状繊維は,高度にフイブ
リル化され,高い強度を有し,織物,編物あるいは不織
布用素材として好適である。Industrial Applicability The method for producing polyester reticulated fiber of the present invention is a spinning solution prepared by heating and kneading a solution containing a polyester polymer as a solute and methylene chloride as a solvent under nitrogen pressure, According to the present invention, the spinning solution is spun through a spinning hole having a pressure drop chamber while being pressurized with nitrogen, and the solvent is instantaneously vaporized immediately after spinning to form a reticulated fiber structure. , It is possible to stably manufacture ultrafine and high strength polyester reticulated fiber. The obtained reticulated fiber is highly fibrillated, has high strength, and is suitable as a material for a woven fabric, a knitted fabric, or a nonwoven fabric.
【手続補正書】[Procedure amendment]
【提出日】平成6年5月13日[Submission date] May 13, 1994
【手続補正1】[Procedure Amendment 1]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0014[Correction target item name] 0014
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0014】実施例1 融点が256℃,相対粘度Aが1.6のポリエチレンテ
レフタレート重合体50gと塩化メチレン200gをオ
ートクレーブに充填・閉鎖し,次いで窒素をオートクレ
ーブの内圧が50kg/cm2 Gに上昇するまで注入し
た後,適度な速度で混練しながら昇温を開始した。この
溶液は,重合体濃度が20重量%,塩化メチレンが80
重量%である。このとき,オートクレーブの内温が10
0℃から上昇し220℃に到達するまでの昇温時間は2
5分間であった。次いで,この溶液を温度220℃で5
分間混練して均一な溶液を得た。このとき,オートクレ
ーブの内圧は102kg/cm2 Gであった。引き続
き,この内圧すなわち紡糸圧力102kg/cm2 Gで
直ちにオートクレーブのバルブを開放して圧力降下室を
有する孔径0.7mmで孔長/孔径の比が1の紡出孔よ
り紡糸液を大気中に紡出し,前記ポリエチレンテレフタ
レート重合体からなる網状繊維を得た。このとき,圧力
降下室の圧力は93kg/cm2であった。製造条件と
得られた繊維の特性を表1に示す。この網状繊維は,フ
イブリル化の状態が良好であって,粘度低下が少なく,
しかも強度が高いものであった。Example 1 An autoclave was filled with 50 g of a polyethylene terephthalate polymer having a melting point of 256 ° C. and a relative viscosity A of 1.6 and 200 g of methylene chloride, and then the autoclave was filled with nitrogen so that the internal pressure of the autoclave was 50 kg / cm 2 G. After injecting until the temperature rises, the temperature rise was started while kneading at an appropriate speed. This solution has a polymer concentration of 20% by weight and methylene chloride of 80%.
% By weight. At this time, the internal temperature of the autoclave is 10
The temperature rise time from 0 ℃ to 220 ℃ is 2
It was 5 minutes. Then, this solution is heated at 220 ° C. for 5
Kneading for minutes gave a uniform solution. At this time, the internal pressure of the autoclave was 102 kg / cm 2 G. Then, at this internal pressure, that is, the spinning pressure of 102 kg / cm 2 G, the valve of the autoclave was immediately opened to bring the spinning solution into the atmosphere through a spinning hole having a pressure drop chamber of 0.7 mm and a hole length / hole diameter ratio of 1. By spinning, a reticulated fiber made of the polyethylene terephthalate polymer was obtained. At this time, the pressure in the pressure drop chamber was 93 kg / cm 2 . Table 1 shows the production conditions and the properties of the obtained fiber. This reticulated fiber has a good fibrillation state, a small decrease in viscosity,
Moreover, the strength was high.
【手続補正2】[Procedure Amendment 2]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0015[Name of item to be corrected] 0015
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0015】実施例2 融点が256℃,相対粘度Aが1.7のポリエチレンテ
レフタレート重合体30gと塩化メチレン200gをオ
ートクレーブに充填・閉鎖し,次いで窒素をオートクレ
ーブの内圧が50kg/cm2 Gに上昇するまで注入し
た後,適度な速度で混練しながら昇温を開始した。この
溶液は,重合体濃度が13重量%,塩化メチレンが87
重量%である。このとき,オートクレーブの内温が10
0℃から上昇し220℃に到達するまでの昇温時間は2
0分間であった。次いで,この溶液を温度200℃で5
分間混練して均一な溶液を得た。このとき,オートクレ
ーブの内圧は99kg/cm2 Gであった。引き続き,
この内圧すなわち紡糸圧力99kg/cm2 Gで,以降
実施例1と同様にして紡糸液を大気中に紡出し,前記ポ
リエチレンテレフタレート重合体からなる網状繊維を得
た。このとき,圧力降下室の圧力は90kg/cm2 で
あった。製造条件と得られた繊維の特性を表1に示す。
この網状繊維は,フイブリル化の状態が良好であって,
粘度低下が少なく,しかも強度が高いものであった。Example 2 An autoclave was filled with 30 g of a polyethylene terephthalate polymer having a melting point of 256 ° C. and a relative viscosity A of 1.7 and 200 g of methylene chloride, and then the autoclave was filled with nitrogen so that the internal pressure of the autoclave was 50 kg / cm 2 G. After injecting until the temperature rises, the temperature rise was started while kneading at an appropriate speed. This solution has a polymer concentration of 13% by weight and methylene chloride of 87%.
% By weight. At this time, the internal temperature of the autoclave is 10
The temperature rise time from 0 ℃ to 220 ℃ is 2
It was 0 minutes. Then, this solution was heated at a temperature of 200 ° C for 5
Kneading for minutes gave a uniform solution. At this time, the internal pressure of the autoclave was 99 kg / cm 2 G. Continuing,
At this internal pressure, that is, the spinning pressure of 99 kg / cm 2 G, the spinning solution was spun into the atmosphere in the same manner as in Example 1 to obtain reticulated fibers made of the polyethylene terephthalate polymer. At this time, the pressure in the pressure drop chamber was 90 kg / cm 2 . Table 1 shows the production conditions and the properties of the obtained fiber.
This reticulated fiber has a good fibrillation state,
The viscosity was low and the strength was high.
【手続補正3】[Procedure 3]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0016[Correction target item name] 0016
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0016】実施例3〜7 融点が256℃,相対粘度Aが1.4のポリエチレンテ
レフタレート重合体66.7gと塩化メチレン200g
をオートクレーブに充填・閉鎖し,次いで窒素をオート
クレーブの内圧が表1に示した各圧力に上昇するまで注
入した後,混練しながら昇温を開始した。この溶液は,
重合体濃度が25重量%,塩化メチレンが75重量%で
ある。次いで,この溶液を表1に示した各温度で5分間
混練して各々均一な溶液を得た。引き続き,実施例1と
同様にして紡糸液を大気中に紡出し,前記ポリエチレン
テレフタレート重合体からなる網状繊維を得た。製造条
件と得られた繊維の特性を表1に示す。実施例3〜5で
得られた網状繊維は,いずれもフイブリル化の状態が良
好であって,極めて極細のフイブリルから構成されるた
め比表面積が高く,粘度低下が少なく,しかも強度が高
いものであった。実施例6で得られた網状繊維は,溶解
・紡糸温度が高いため繊維の粘度低下が大きく,これを
反映して強度が低いものであった。実施例7で得られた
網状繊維は,溶解・紡糸温度が低いため細いフイブリル
が少しは存在するものの,多くのフイブリルがその側面
で相互に接合し,かつ内部に空洞を有する中空構造を形
成しており,比表面積が低く,しかも強度が低いもので
あった。Examples 3 to 7 66.7 g of a polyethylene terephthalate polymer having a melting point of 256 ° C. and a relative viscosity A of 1.4 and 200 g of methylene chloride.
Was filled and closed in the autoclave, and then nitrogen was injected until the internal pressure of the autoclave increased to each pressure shown in Table 1, and then the temperature rising was started while kneading. This solution is
The polymer concentration is 25% by weight and the methylene chloride is 75% by weight. Then, this solution was kneaded at each temperature shown in Table 1 for 5 minutes to obtain a uniform solution. Subsequently, the spinning solution was spun into the atmosphere in the same manner as in Example 1 to obtain reticulated fibers made of the polyethylene terephthalate polymer. Table 1 shows the production conditions and the properties of the obtained fiber. Each of the reticulated fibers obtained in Examples 3 to 5 has a good fibrillation state, and since it is composed of extremely fine fibrils, it has a high specific surface area, a small decrease in viscosity, and a high strength. there were. The reticulated fiber obtained in Example 6 had a high melting / spinning temperature and thus had a large decrease in fiber viscosity, and the strength was low reflecting this. The reticulated fiber obtained in Example 7 has a small number of fine fibrils because of its low melting / spinning temperature, but many fibrils are joined to each other on their side faces and form a hollow structure having cavities inside. The specific surface area was low and the strength was low.
【手続補正4】[Procedure amendment 4]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0017[Correction target item name] 0017
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0017】比較例1 融点が256℃,相対粘度Aが1.4のポリエチレンテ
レフタレート重合体66.7gと塩化メチレン200g
をオートクレーブに充填・閉鎖し,次いで窒素を注入す
ることなく混練しながら昇温を開始した。この溶液は,
重合体濃度が25重量%,塩化メチレンが75重量%で
ある。次いで,この溶液を表1に示した各温度で5分間
混練して各々均一な溶液を得,引き続き,実施例1と同
様にして紡糸液を大気中に紡出し,前記ポリエチレンテ
レフタレート重合体からなる網状繊維を得た。製造条件
と得られた繊維の特性を表1に示す。この網状繊維は,
窒素の注入を行っていないため紡糸液中の重合体が粘度
低下を生じており,繊維の粘度も低く,これを反映して
強度が極めて低いものであった。Comparative Example 1 66.7 g of a polyethylene terephthalate polymer having a melting point of 256 ° C. and a relative viscosity A of 1.4 and 200 g of methylene chloride.
Was filled and closed in an autoclave, and then the temperature was started while kneading without injecting nitrogen. This solution is
The polymer concentration is 25% by weight and the methylene chloride is 75% by weight. Next, this solution was kneaded at each temperature shown in Table 1 for 5 minutes to obtain a uniform solution. Subsequently, a spinning solution was spun into the atmosphere in the same manner as in Example 1 and was composed of the polyethylene terephthalate polymer. A reticulated fiber was obtained. Table 1 shows the production conditions and the properties of the obtained fiber. This reticulated fiber
Since nitrogen was not injected, the viscosity of the polymer in the spinning solution decreased, and the fiber viscosity was low, reflecting this, and the strength was extremely low.
Claims (5)
化メチレンを溶媒とする溶液を窒素加圧下で昇温・混練
しながら作成して紡糸液とし,この紡糸液を窒素により
加圧しながら圧力降下室を有する紡糸孔を通して紡出
し,紡出直後に溶媒を瞬間的に気化させて網状の繊維構
造を形成することを特徴とするポリエステル系網状繊維
の製造方法。1. A spinning solution prepared by heating and kneading a solution containing a polyester polymer as a solute and methylene chloride as a solvent under nitrogen pressurization. A method for producing a polyester-based reticulated fiber, which comprises spun through a spinning hole having the above, and instantaneously evaporates the solvent immediately after spinning to form a reticulated fiber structure.
合体が5重量%以上30重量%以下,溶媒である塩化メ
チレンが95重量%以下70重量%以上であることを特
徴とする請求項1記載のポリエステル系網状繊維の製造
方法。2. The spinning solution contains 5 wt% to 30 wt% of a solute polyester polymer and 95 wt% to 70 wt% of a solvent methylene chloride. A method for producing the polyester-based reticulated fiber described.
60分以下であることを特徴とする請求項1又は2記載
のポリエステル系網状繊維の製造方法。3. The method for producing a polyester reticulated fiber according to claim 1, wherein the dissolution time of the solute in the solvent is 5 minutes or more and 60 minutes or less.
0℃以下であることを特徴とする請求項1,2又は3記
載のポリエステル系網状繊維の製造方法。4. A melting temperature and a spinning temperature of 170 ° C. or higher 24
The method for producing the polyester network fiber according to claim 1, wherein the temperature is 0 ° C. or lower.
20kg/cm2 以下であることを特徴とする請求項
1,2,3又は4記載のポリエステル系網状繊維の製造
方法。5. A spinning pressure of 40 kg / cm 2 or more 1
20 kg / cm 2 or less, The method for producing a polyester-based reticulated fiber according to claim 1, 2, 3 or 4.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6344793A JPH06257012A (en) | 1993-02-26 | 1993-02-26 | Production of polyester-based grid fiber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6344793A JPH06257012A (en) | 1993-02-26 | 1993-02-26 | Production of polyester-based grid fiber |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06257012A true JPH06257012A (en) | 1994-09-13 |
Family
ID=13229516
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6344793A Pending JPH06257012A (en) | 1993-02-26 | 1993-02-26 | Production of polyester-based grid fiber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06257012A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6692826B2 (en) | 2000-03-22 | 2004-02-17 | E. I. Du Pont De Nemours And Company | Plexifilamentary strands of polyester |
-
1993
- 1993-02-26 JP JP6344793A patent/JPH06257012A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6692826B2 (en) | 2000-03-22 | 2004-02-17 | E. I. Du Pont De Nemours And Company | Plexifilamentary strands of polyester |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1152272A (en) | Filaments of high tensile strength and modulus | |
KR0140229B1 (en) | Manufacturing Process and Stretched Polyethylene Terephthalate Multifilament Yarn for Tire Cord with Excellent Dimensional Stability | |
KR930000561B1 (en) | Method of preparing high strength and modulus poly (vinyl alcohol) fibers | |
JPS6385107A (en) | Production of filament high in modulus and tensile strength | |
KR100248530B1 (en) | Solution of ppd-t and pvp and articles made therefrom | |
WO2021255957A1 (en) | Method for producing polyamide 4 fiber | |
JP3317703B2 (en) | Fiber having network structure and method for producing the same | |
JPH06257012A (en) | Production of polyester-based grid fiber | |
JP2851943B2 (en) | Halogenated carbon for flash spinning of polyethylene plexifilament | |
US20050161854A1 (en) | Dimensionally stable yarns | |
JPS62104915A (en) | Production of polyethylene terephthalate fiber | |
JPH02104720A (en) | Solution spinning method | |
KR100230899B1 (en) | High elongation(p-phenylene terephthalamide)fiber | |
JP3806320B2 (en) | Method for producing polytrimethylene terephthalate short fiber | |
JPH0429765B2 (en) | ||
JPS62250220A (en) | Production of polyethylene terephthalate fiber | |
JPH08127951A (en) | Network fiber nonwoven fabric and its production | |
JP2758672B2 (en) | Heat treatment method for melt anisotropic fiber | |
JP2916242B2 (en) | Spinning method of polyvinyl alcohol fiber | |
JP4133546B2 (en) | Polyester fiber that can be made into ultrafine fibers | |
JPS62243642A (en) | Method for preparing polyethylene terephthalate solution | |
JPH06272109A (en) | Hygroscopic netlike fiber and its production | |
US5061425A (en) | Solution spinning process for producing a polyethylene terephthalate filament | |
JPH1112854A (en) | Precursor fiber for acrylic carbon fiber and its production | |
JPS6034614A (en) | Preparation of spinning dope for high-tenacity fiber |