JPH0368127B2 - - Google Patents

Info

Publication number
JPH0368127B2
JPH0368127B2 JP60042595A JP4259585A JPH0368127B2 JP H0368127 B2 JPH0368127 B2 JP H0368127B2 JP 60042595 A JP60042595 A JP 60042595A JP 4259585 A JP4259585 A JP 4259585A JP H0368127 B2 JPH0368127 B2 JP H0368127B2
Authority
JP
Japan
Prior art keywords
polyester
stretching
temperature
molded product
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60042595A
Other languages
Japanese (ja)
Other versions
JPS61207615A (en
Inventor
Shiro Kumakawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP4259585A priority Critical patent/JPS61207615A/en
Publication of JPS61207615A publication Critical patent/JPS61207615A/en
Publication of JPH0368127B2 publication Critical patent/JPH0368127B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は、高分子量ポリエステルからなる未延
伸成型物を溶剤蒸気雰囲気中で処理した後、高倍
率2段延伸を行ない高強力のポリエステル成型物
を製造する方法に関する。 従来の技術 ポリエステル成型物は、種々の優れた特性を有
しているため、衣料用のみならず工業用として広
く使用されている。特に高強度のポリエステル繊
維は、工業用途において有用であり、タイヤ用途
のみならず各種の産業資材用途にも益々使用され
るようになつてきている。 ポリエステルは、溶融成型が可能であつて、通
常は、経済的に有利な溶融成型法が採用されてお
り、工業用成型物に要求される高強度を発現させ
るためには、高重合度ポリエステルを用いて溶融
成型し、次いで高倍率の延伸を行なうのが一般的
である。 発明が解決しようとする問題点 従来の溶融成型、高倍率延伸による方法では、
得られた成型物の強度に限界があり、強度10g/
de以上の繊維、あるいは強度50Kg/mm2以上のフ
イルムを工業的に製造することは不可能であつ
た。 本発明の目的は、未延伸成型物の溶剤蒸気雰囲
気下での処理と高倍率2段延伸との組み合せによ
り、かかる従来技術における成型物の強度の壁を
打破し、従来にない高強力の成型物を製造する方
法を提供することにある。 問題点を解決するための手段 本発明は、固有粘度が0.9以上のポリエステル
からなる未配向成型物を、該ポリエステルに対し
て溶解性を有する溶剤蒸気の雰囲気下、室温〜90
℃の温度で5〜24時間処理した後、Tg以上Tg+
20℃以下の温度でネツキング延伸し、次いでαc
散温度以上、融点以下の温度で第2段延伸を行な
い、全延伸倍率を7倍以上とすることを特徴とす
る高強力ポリエステル成型物の製造法である。 本発明において対象とするポリエステルは、芳
香族ジカルボン酸を主たる成分とし、エチレング
リコールを主たるグリコール成分とするものであ
る。ここに「主たる」とは、50モル%を越えるこ
とをいう。従つて50モル%未満の他の成分が入つ
ていてもよい。 また、芳香族ジカルボン酸とは、テレフタル
酸、イソフタル酸、ナフタレンジカルボン酸、ジ
フエニルジカルボン酸、ジフエニルエーテルジカ
ルボン酸等、芳香族環にカルボン酸が直結した化
合物であり、特にテレフタル酸が好ましい。 更に、本発明におけるポリエステルに共重合し
うる第3成分としては、該ポリエステルの主構成
成分以外の芳香族ジカルボン酸、シユウ酸、マロ
ン酸、コハク酸、アジピン酸、セバシン酸、デカ
ンジカルボン酸等の脂肪族ジカルボン酸;ヘキサ
ヒドロテレフタル酸、デカリンジカルボン酸、テ
トラリンジカルボン酸等の脂環族ジカルボン酸;
グリコール酸、p−オキシ安息香酸;トリメチレ
ングリコール、プロピレングリコール、1、4ブ
タンジオール、1、3ブタンジオール、ネオペン
チルグリコール、1、6ヘキサンジオール等の該
ポリエステル主構成成分以外の脂肪族ジオール;
シクロヘキサンジメチロール、トリシクロデカン
ジメチロール等の脂環族ジオール;ビスフエノー
ルA、ビスフエノールS、ビスヒドロキシエトキ
シビスフエノールA、テトラブロモビスフエノー
ルA等の芳香族ジオールなどが例示される。 また、これらのポリエステルには、10重量%以
下の他のポリマーを含んでもよく、更に安定剤、
着色剤等の添加剤を含んでも差しつかえない。 本発明における成型物は、繊維、フイルム、そ
の他の成型物を総称するものであるが、特に繊維
の場合に顕著な効果を奏することができる。 本発明に使用するポリエステルは、25℃の0−
クロロフエノール溶液から求めた固有粘度が0.9
以上であることが必要である。固有粘度が0.9未
満では、目的とする高強力のポリエステル成型物
が得られない。固有粘度としては、0.9〜1.5が好
ましい。このように固有粘度の大きい高分子量ポ
リエステルは、従来周知の固相重合法によつても
得ることができるが、溶液重合法において、固有
粘度が0.8以上になつた段階で、重合条件下にお
いて気体であり且つ実質的にポリエステルの分子
量を低下させない物質、例えば炭素数6〜20の脂
肪族ジカルボン酸とエチレングリコールからなる
エステル化合物を存在させて、重合反応を継続さ
せることにより、効率的に製造することが可能で
ある。 かかる高分子量ポリエステルを任意の方法で成
型し、未配向ポリエステル成型物を得る。 この未配向ポリエステル成型物を、該ポリエス
テルに対して溶解性を有する溶剤蒸気の雰囲気下
で処理する。未配向成型物を構成するポリエステ
ルに対して溶解性を有する溶剤としては、0−ク
ロロフエノール、ベンジルアルコール、ニトロベ
ンゼン、m−クレゾール、フエノール−四塩化エ
タン混合物、フエノール−キシレン混合物、二塩
化酢酸、三塩化酢酸−四塩化エタン混合物、三塩
化酢酸−クロロホルム混合物等を挙げることがで
きる。就中、二塩化酢酸が好適に使用される。こ
こで、特に注意すべきことは、未配向ポリエステ
ル成型物の処理を溶剤蒸気の雰囲気中で行うこと
である。溶剤液中へ浸漬処理したのでは、未配向
ポリエステル成型物の結晶化が進行し、高倍率延
伸を行うことができず、従つて、本発明の目的と
する高強力の成型物を得ることができない。溶解
雰囲気中での処理は室温〜90℃の温度で5〜24時
間行うのが好適である。過度の処理を行うと結晶
化が起り延伸性が低下して、延伸倍率を高くする
ことができず、高強力の成型物が得られない。溶
剤蒸気処理が不十分だと分子の易動性が上らない
ため、高倍率延伸が行なえず、高強力の成型物が
得られない。 次いで、かくして溶剤蒸気雰囲気中で処理され
た未配向ポリエステル成型物をTg以上、Tg+20
℃以下の温度でネツキング延伸し、次いで全延伸
倍率が7倍以上となるように、αc分散温度以上、
融点以下の温度で第2段延伸を行なう。ここで、
Tgは未配向ポリエステル成型物を構成するポリ
エステルの2次転移点を、またαc分散温度は岩本
製作所製スペクトロメーターVES−F型を用い
て、長さ3cmのサンプルに0.25g/deの静荷重を
かけて0.17%の振幅で周波数10Hz、昇温速度1.6
℃/分の条件で測定したもので、力学的損失弾性
率の温度分散に現われる結晶サイドの主分散のピ
ーク温度を意味する。 ネツキング延伸温度及び第2段延伸温度が上記
の範囲外になると、延伸を円滑に行なうことがで
きなくなり、延伸中の断糸が頻発し、延伸後の成
型物の強力も低下する。 第1段のネツキング延伸では、数百%/分の速
度で目然延伸倍率前後の倍率で延伸し、第2段延
伸では数%/分の速度で自然延伸倍率の数倍に延
伸するのが、高倍率で円滑な延伸を行なううえで
望ましい。特にネツキング延伸は300%/分前後
の速度で3.75倍以上の倍率で行うのが好ましく、
又、第2段延伸は5%/分前後の速度で1.87倍以
上の倍率で行うのが特に好ましい。 延伸後の成型物は、必要に応じて収縮、定長又
は伸張下で熱処理することができる。 作 用 溶剤蒸気雰囲気下で処理された未配向ポリエス
テル成型物は、溶剤蒸気の作用によつて分子鎖の
からみ合いが少なく、高倍率での延伸が容易であ
り、その結果、延伸後の成型物の内部構造欠陥が
少なくなる。しかも、第1段のネツク延伸を未延
伸ラメラの引き伸しに適したTg付近の温度で行
ない、第2段の延伸を分子鎖の解きほぐしに適し
た結晶軟化温度近辺で行うから、内部構造に欠陥
が発生せず、高度の分子配向が行われ、そのた
め、単に未配向成型物を高倍率で延伸するという
従来の方法に比較して、高い強力の成型物が得ら
れる。 実施例 以下、実施例により本発明を詳述する。 実施例 ポリエチレンテレフタレートよりなるポリエス
テルを常法により、孔数250個を有する紡糸口金
より溶融吐出し、冷却後油剤を付与して800m/
分で巻取つた。 その後、該未延伸繊維を、二塩化酢酸溶媒蒸気
の雰囲気下で処理した後、直径9cmの加熱ロール
で予備後、300%/分の速度で第1段延伸を行い
捲取つた。次いで、長さ1mの加熱プレートを介
在して5%/分の速度で第2段延伸を行つた。こ
の際、該ポリエステル繊維のTg(2次転移温度)
は70℃、ac分散温度は210℃、融点は258℃であ
る。 本実施例において、ポリエステルの固有粘度、
溶媒蒸気雰囲気下での処理条件、第1段延伸条
件、第2段延伸条件、全延伸倍率を第1表記載の
如く変化させた場合に得られる延伸繊維の性能を
第1表に示した。
INDUSTRIAL APPLICATION FIELD The present invention relates to a method for producing a high-strength polyester molded product by treating an unstretched molded product made of high molecular weight polyester in a solvent vapor atmosphere and then performing two-stage stretching at a high magnification. BACKGROUND ART Polyester molded products have various excellent properties and are therefore widely used not only for clothing but also for industrial purposes. In particular, high-strength polyester fibers are useful in industrial applications, and are increasingly being used not only for tires but also for various industrial material applications. Polyester can be melt-molded, and the economically advantageous melt-molding method is usually used. In order to develop the high strength required for industrial molded products, high-polymerization degree polyester is used. It is common to melt and mold using a polyester resin, followed by stretching at a high magnification. Problems to be solved by the invention In the conventional methods of melt molding and high-magnification stretching,
There is a limit to the strength of the molded product obtained, and the strength is 10g/
It has been impossible to industrially produce fibers with a strength of 50 Kg/mm 2 or higher or films with a strength of 50 Kg/mm 2 or higher. The purpose of the present invention is to break through the wall of strength of molded products in the prior art by combining treatment in a solvent vapor atmosphere of unstretched molded products and high-strength two-stage stretching, and to achieve high strength molding that has never been seen before. The goal is to provide a method for manufacturing things. Means for Solving the Problems The present invention provides an unoriented molded product made of a polyester having an intrinsic viscosity of 0.9 or more in an atmosphere of a solvent vapor having a solubility for the polyester at room temperature to 90%
After processing for 5 to 24 hours at a temperature of ℃, Tg or above Tg+
Production of a high-strength polyester molded product characterized by netting stretching at a temperature of 20°C or lower, followed by second-stage stretching at a temperature higher than the α c dispersion temperature and lower than the melting point, so that the total stretching ratio is 7 times or higher. It is the law. The polyester targeted in the present invention has an aromatic dicarboxylic acid as a main component and ethylene glycol as a main glycol component. Here, "mainly" means more than 50 mol%. Therefore, less than 50 mol% of other components may be contained. Further, the aromatic dicarboxylic acid refers to a compound in which a carboxylic acid is directly bonded to an aromatic ring, such as terephthalic acid, isophthalic acid, naphthalene dicarboxylic acid, diphenyl dicarboxylic acid, diphenyl ether dicarboxylic acid, etc., and terephthalic acid is particularly preferred. Furthermore, as the third component that can be copolymerized with the polyester in the present invention, aromatic dicarboxylic acids other than the main constituent components of the polyester, oxalic acid, malonic acid, succinic acid, adipic acid, sebacic acid, decanedicarboxylic acid, etc. Aliphatic dicarboxylic acids; alicyclic dicarboxylic acids such as hexahydroterephthalic acid, decalin dicarboxylic acid, and tetralin dicarboxylic acid;
Glycolic acid, p-oxybenzoic acid; aliphatic diols other than the main constituent components of the polyester such as trimethylene glycol, propylene glycol, 1,4 butanediol, 1,3 butanediol, neopentyl glycol, 1,6 hexanediol;
Examples include alicyclic diols such as cyclohexane dimethylol and tricyclodecane dimethylol; aromatic diols such as bisphenol A, bisphenol S, bishydroxyethoxybisphenol A, and tetrabromobisphenol A. These polyesters may also contain up to 10% by weight of other polymers, as well as stabilizers,
It may contain additives such as colorants. The molded product in the present invention is a general term for fibers, films, and other molded products, and particularly in the case of fibers, remarkable effects can be achieved. The polyester used in the present invention is 0-
Intrinsic viscosity determined from chlorophenol solution is 0.9
It is necessary that it is above. If the intrinsic viscosity is less than 0.9, the desired high-strength polyester molded product cannot be obtained. The intrinsic viscosity is preferably 0.9 to 1.5. High molecular weight polyesters with high intrinsic viscosity can also be obtained by the conventionally well-known solid-phase polymerization method, but in the solution polymerization method, when the intrinsic viscosity reaches 0.8 or more, gaseous polyester is produced under the polymerization conditions. It is efficiently produced by continuing the polymerization reaction in the presence of a substance that does not substantially reduce the molecular weight of polyester, such as an ester compound consisting of an aliphatic dicarboxylic acid having 6 to 20 carbon atoms and ethylene glycol. Is possible. This high molecular weight polyester is molded by any method to obtain a non-oriented polyester molded product. This unoriented polyester molded product is treated in an atmosphere of solvent vapor that is soluble in the polyester. Examples of solvents that are soluble in the polyester constituting the unoriented molded product include 0-chlorophenol, benzyl alcohol, nitrobenzene, m-cresol, phenol-tetrachloroethane mixture, phenol-xylene mixture, dichloroacetic acid, Examples include acetic acid chloride-ethane tetrachloride mixture, acetic acid trichloride-chloroform mixture, and the like. Among these, acetic acid dichloride is preferably used. Particular attention should be paid here to the fact that the unoriented polyester molded product is treated in an atmosphere of solvent vapor. If immersion treatment is performed in a solvent solution, crystallization of the unoriented polyester molded product progresses, making it impossible to perform high-strength stretching, and therefore, it is impossible to obtain a molded product with high strength, which is the object of the present invention. Can not. The treatment in the dissolving atmosphere is preferably carried out at a temperature of room temperature to 90°C for 5 to 24 hours. If excessive treatment is performed, crystallization occurs and the drawability decreases, making it impossible to increase the draw ratio and making it impossible to obtain a molded product with high strength. If the solvent vapor treatment is insufficient, the mobility of molecules will not increase, so high-strength stretching cannot be performed and a molded product with high strength cannot be obtained. Then, the unoriented polyester molding thus treated in a solvent vapor atmosphere is heated to a temperature of T g or higher, T g +20.
Netting stretching is carried out at a temperature of ℃ or lower, and then α c or higher than the dispersion temperature, so that the total stretching ratio is 7 times or higher.
Second stage stretching is performed at a temperature below the melting point. here,
T g is the second-order transition point of the polyester constituting the unoriented polyester molded product, and α c is the dispersion temperature measured using a spectrometer VES-F manufactured by Iwamoto Seisakusho. Frequency 10Hz, heating rate 1.6 with 0.17% amplitude under load
It is measured under the conditions of °C/min, and means the peak temperature of the main dispersion of the crystal side that appears in the temperature dispersion of the mechanical loss modulus. If the netting stretching temperature and the second stage stretching temperature are outside the above ranges, stretching cannot be carried out smoothly, yarn breakage occurs frequently during stretching, and the strength of the molded product after stretching decreases. In the first stage of netting stretching, stretching is carried out at a speed of several hundred percent per minute, at a ratio around the natural stretch ratio, and in the second stage, stretching is performed at a speed of several hundred percent per minute to several times the natural stretching ratio. , is desirable for smooth stretching at high magnification. In particular, it is preferable that netting stretching be performed at a speed of around 300%/min and at a magnification of 3.75 times or more.
Further, it is particularly preferable that the second stage stretching is carried out at a speed of about 5%/min and at a magnification of 1.87 times or more. The molded product after stretching can be heat-treated under contraction, constant length, or expansion, as required. Effect: Unoriented polyester molded products treated in a solvent vapor atmosphere have less molecular chain entanglement due to the action of the solvent vapor, and can be easily stretched at high magnifications. internal structural defects are reduced. Moreover, the first stage of net stretching is carried out at a temperature near T g , which is suitable for stretching unstretched lamellae, and the second stage is carried out at a temperature near crystal softening temperature, which is suitable for disentangling molecular chains. No defects occur in the process, and a high degree of molecular orientation is achieved.Therefore, compared to the conventional method of simply stretching an unoriented molded product at a high magnification, a molded product with high strength can be obtained. Examples Hereinafter, the present invention will be explained in detail with reference to Examples. Example A polyester made of polyethylene terephthalate was melted and discharged from a spinneret having 250 holes by a conventional method, and after cooling, an oil was applied and the material was spun for 800 m/s.
I wound it up in minutes. Thereafter, the undrawn fibers were treated in an atmosphere of dichloroacetic acid solvent vapor, and after preliminary drawing with a heated roll having a diameter of 9 cm, the first drawing was performed at a speed of 300%/min and wound up. Next, a second stage of stretching was performed at a rate of 5%/min through a heating plate with a length of 1 m. At this time, T g (secondary transition temperature) of the polyester fiber
is 70℃, the a c dispersion temperature is 210℃, and the melting point is 258℃. In this example, the intrinsic viscosity of polyester,
Table 1 shows the performance of the drawn fibers obtained when the processing conditions in the solvent vapor atmosphere, the first-stage stretching conditions, the second-stage stretching conditions, and the total stretching ratio were changed as shown in Table 1.

【表】【table】

【表】 ×印は本発明の範囲外の条件を示す。
発明の効果 本発明によれば、従来法では工業的に生産する
ことのできなかつた強度10g/de以上(繊維)、
50Kg/mm2以上(フイルム)といつた高強力のポリ
エステル成型物を極めて円滑に生産することが可
能となる。
[Table] × marks indicate conditions outside the scope of the present invention.
Effects of the Invention According to the present invention, fibers with a strength of 10 g/de or more, which could not be industrially produced using conventional methods,
It becomes possible to produce highly strong polyester molded products with a weight of 50 kg/mm 2 or more (film) extremely smoothly.

Claims (1)

【特許請求の範囲】 1 固有粘度が0.9以上のポリエステルからなる
未配向成型物を、該ポリエステルに対して溶解性
を有する溶剤蒸気の雰囲気下、室温〜90℃の温度
で5〜24時間処理した後、Tg以上Tg+20℃以下
の温度でネツキング延伸し、次いでαc分散温度
以上、融点以下の温度で第2段延伸を行ない、全
延伸倍率を7倍以上とすることを特徴とする高強
力ポリエステル成型物の製造法。 2 成型物が繊維である特許請求の範囲第1項記
載の製造法。 3 ポリエステルがポリエチレンテレフタレート
である特許請求の範囲第1項又は第2項記載の製
造法。
[Claims] 1. An unoriented molded product made of polyester having an intrinsic viscosity of 0.9 or more is treated in an atmosphere of solvent vapor that is soluble in the polyester at a temperature of room temperature to 90°C for 5 to 24 hours. After that, netting stretching is performed at a temperature of T g or more and T g +20°C or less, and then a second stage of stretching is performed at a temperature that is not less than the αc dispersion temperature and not more than the melting point, so that the total stretching ratio is 7 times or more. A method for manufacturing strong polyester moldings. 2. The manufacturing method according to claim 1, wherein the molded product is a fiber. 3. The manufacturing method according to claim 1 or 2, wherein the polyester is polyethylene terephthalate.
JP4259585A 1985-03-06 1985-03-06 Production of formed polyester having high strength Granted JPS61207615A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4259585A JPS61207615A (en) 1985-03-06 1985-03-06 Production of formed polyester having high strength

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4259585A JPS61207615A (en) 1985-03-06 1985-03-06 Production of formed polyester having high strength

Publications (2)

Publication Number Publication Date
JPS61207615A JPS61207615A (en) 1986-09-16
JPH0368127B2 true JPH0368127B2 (en) 1991-10-25

Family

ID=12640412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4259585A Granted JPS61207615A (en) 1985-03-06 1985-03-06 Production of formed polyester having high strength

Country Status (1)

Country Link
JP (1) JPS61207615A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4851508A (en) * 1986-07-02 1989-07-25 Toyo Boseki Kabushiki Kaisha Polyester fibers having high strength and high modulus and process for producing the same
US4968471A (en) * 1988-09-12 1990-11-06 The Goodyear Tire & Rubber Company Solution spinning process
CN116284991A (en) * 2023-05-19 2023-06-23 广东绿王新材料有限公司 Method for preparing polyester powder from waste polyester material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50100316A (en) * 1974-01-09 1975-08-08
JPS50100315A (en) * 1974-01-09 1975-08-08
JPS5921714A (en) * 1982-07-23 1984-02-03 Toray Ind Inc Method for drawing polyester fiber

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50100316A (en) * 1974-01-09 1975-08-08
JPS50100315A (en) * 1974-01-09 1975-08-08
JPS5921714A (en) * 1982-07-23 1984-02-03 Toray Ind Inc Method for drawing polyester fiber

Also Published As

Publication number Publication date
JPS61207615A (en) 1986-09-16

Similar Documents

Publication Publication Date Title
JPS61215715A (en) Polyarylene thioether fiber of high performance and production thereof
JPH0368127B2 (en)
JPS6119812A (en) Polyester fiber
KR0140230B1 (en) Manufacturing method of dimensional stability polyester yarn
JPH0368128B2 (en)
KR100306316B1 (en) Elastic fibers, process for producing the same and polyester elastomer to be used therein
JPH03266628A (en) Preparation of copolymerized polyester film
JPH0450407B2 (en)
JPH0323644B2 (en)
JPH04119119A (en) Production of naphthalate polyester fiber
KR20170085880A (en) Manufacturing method of polyethylene terephthalate having high strength and low shrinkage
JPH0151565B2 (en)
JPH0418115A (en) Production of polyimide fiber
KR960002887B1 (en) High strength and low shrinkage polyester fiber and the method for manufacturing thereof
JPH0617317A (en) Production of polyester fiber
JP2006322110A (en) Method for producing polyethylene naphthalate fiber
JPH0141722B2 (en)
DE2751653B2 (en) Melt-spinnable polyester and its use for the production of moldings and fibers
JPH06346322A (en) Polyethylene terephthalate yarn and its production
JPH06200410A (en) Production of high-molecular weight polyester yarn
JPH0321647B2 (en)
JPS6149408B2 (en)
KR960012827B1 (en) Manufacturing method of high strong polyester fiber
JPH04163314A (en) Polyester fiber and production thereof
KR20220094642A (en) Method for producing para-aramid fibers and para-aramid fibers producted thereform