JPS6149408B2 - - Google Patents

Info

Publication number
JPS6149408B2
JPS6149408B2 JP54120008A JP12000879A JPS6149408B2 JP S6149408 B2 JPS6149408 B2 JP S6149408B2 JP 54120008 A JP54120008 A JP 54120008A JP 12000879 A JP12000879 A JP 12000879A JP S6149408 B2 JPS6149408 B2 JP S6149408B2
Authority
JP
Japan
Prior art keywords
polyester
yarn
minutes
component
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54120008A
Other languages
Japanese (ja)
Other versions
JPS5649015A (en
Inventor
Shiro Kumakawa
Toshimasa Kuroda
Seiji Ishii
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP12000879A priority Critical patent/JPS5649015A/en
Publication of JPS5649015A publication Critical patent/JPS5649015A/en
Publication of JPS6149408B2 publication Critical patent/JPS6149408B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)
  • Polyesters Or Polycarbonates (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はポリエステル繊維に関するものであ
り、更に詳しくはゴム製品を補強するための耐熱
安定性の良好なポリエステル繊維に関するもので
ある。 近年自動車の走行速度の増大及び飛行機の離着
陸速度の高速化によつて空気入りタイヤは次第に
苛酷な取扱いをうけるようになつた。このため、
高速度又は重荷重下の取扱いによる苛烈な衝撃と
高温度に抗するように企画された改良ゴム補強材
を提供するために種々の試みがなされてきた。た
とえばガラス繊維、スチール繊維などの無機質素
材や分子類の剛直な全芳香族ポリアミド繊維など
はそれらの例である。他方より汎用的合成繊維と
して高い強度と低い平衡水分率を有するポリエチ
レンテレフタレートからなるゴム補強材は優れた
寸法安定性、熱的劣化に対して高度の抵抗を有す
ることが知られているが高温度を発する重荷重と
高速度の条件のもとでは引張強度が著しく低下す
る。 ポリエチレンテレフタレート繊維のこのような
欠点は、分子鎖の遊離カルボキシル基が多く加水
分解による解重合が一因であつたり繊維構造にお
いて非晶部分の構造がルーズでゴム中に含まれる
アミン化合物類によつて化学的に劣化させられる
ためと考えられている。特に前者に対しては遊離
カルボキシル基を低下させる幾つかの改良がなさ
れているが、これらによつては同時に後者の要因
を除去することができないのが現状である。 本発明の目的は上記2つの要因になる欠点を排
除し高温度を発する重荷重、高速度の条件下で
も、充分な強度を有するポリエステル繊維を提供
するものである。更に本発明の他の目的は比較的
容易に低コストで所望のポリエステル繊維を提供
することにある。 本発明によれば エチレンテレフタレートを主たる繰返し単位と
して含有するポリエステルの末端に、該ポリエス
テルの重量を基準として、ジカルボン酸成分及び
ジオキシ成分のいずれにも少くとも一個のベンゼ
ン環を有するエステルのモノマー、プレポリマー
又はポリマーを0.5〜7wt%添加反応させてなる組
成物からなる耐熱安定性良好なポリエステル繊維 が提供される。 本発明においていう“ポリエステル”とは、エ
チレンテレフタレート繰返し単位を主たる構成成
分とするものでポリエチレンテレフタレートを主
たる対象とするがその性質を本質的に変化させな
い範囲(例えば15モル%以下)で第3成分を共重
合させたコポリエステルでもよい。更には斯界で
よく知られている添加剤特に耐熱安定剤、たとえ
ば立体障害フエノール(lrganox)、芳香族アミ
ン(スミライザーPB)、含リン化合物、含硫黄
化合物(スミライザーTPL)を上記ポリエス
テルに添加含有させることも本発明では有用であ
る。 更に上記ポリエステルの重合度はポリエステル
の種類やその用途に応じて適宜選定すべきである
が、一般にポリエチレンテレフタレートの場合35
℃のO−クロロフエノール溶液で測定した固有粘
度が0.5以上のものが適当である。しかし固有粘
度が0.90を越えると後述する如くエステル乃至ポ
リマーの添加反応後の組成物の溶融粘度が増大し
繊維状に溶融成型するのに多くの困難を伴うので
0.5〜0.9とするのが望ましい。 本発明においては上記ポリエステルにジカルボ
ン酸成分及びジオキシの成分のいずれにも少くと
も1個のベンゼン環を有するエステルのモノマ
ー、プレポリマー又はポリマーを0.5〜7wt%添加
反応させてポリエステル組成物をうる。 ここで少くとも1個のベンゼン環を有する酸成
分としてはたとえばテレフタル酸、イソフタル
酸、メチルテレフタル酸、又は4・4′−ジフエニ
ルジカルボン酸などが又少くとも1個のベンゼン
環を有するジオキシ成分とはたとえば下記構造式
で示される如き化合物が挙げられる。 上記のジカルボン酸成分は単独でも又二種以上
を混合して使用してもよいのは言うまでもない。 これらジカルボン酸成分とジオキシ成分から形
成されるエステルはモノマーのまゝオリゴマーを
含むプレポリマー又はポリマーの状態で前記ポリ
エステルに添加反応させる。 本発明では上記ジカルボン酸成分及びジオキシ
成分より得られるエステルのモノマー、プレポリ
マー又はポリマーをポリエステルの重合完結前又
はポリエステルの重合完結後に添加する。前者の
場合、ポリエステルの重合完結前に、モノマー又
はプレポリマーを添加し混合系を少くとも280℃
以上に保持させ、線状ポリエチレンテレフタレー
トに反応させることが好適である。又後者の場
合、ポリエステルの重合完結後該ポリエステルを
ペレツト又は粉末状にし同様の形状の上記ジカル
ボン酸成分及びジオキシ成分より得られるポリマ
ーを例えばドラムタンブラー、リボンブレンダー
等を用いて混合後、両者を280℃以上の温度で加
熱反応させるか、両ポリマーを280℃以上の溶融
状態でブレンドし反応させることも好適である。
いずれにしても線状ポリエチレンテレフタレート
の分子末端に少くとも上記の如き剛直性のジカル
ボン酸成分、ジオキシ成分が有効的に反応するよ
うにポリエステルに対して0.5〜7wt%の範囲で添
加し280℃以上に加熱することが必要である。該
添加量が0.5%未満では所望の耐熱安定性の効果
がなく、又7%を越えると線状ポリエチレンテレ
フタレートの分子鎖中にランダムにジカルボン酸
成分及びジオキシ成分が組み込まれるため、得ら
れるポリエステル組成物の融点降下が大きく耐熱
安定性の効果がなくなる。 本発明における耐熱安定性良好なポリエステル
繊維は一般に以下の如き種々の条件で得られる。 即ち、上記の如くして得られたポリエステル組
成物を溶融成型可能な程度の溶融粘度に調整後紡
糸口金より吐出し常法により繊維状に成型する。 この場合、吐出後冷却し一度未延伸糸状に巻取
つた後別工程で高倍率に加熱延伸熱処理する方
法、吐出後冷却し一度未延伸糸状に巻取らずに直
ちに高倍率に加熱延伸熱処理する方法など随時採
用できる。特に後者の直延伸法においては溶融吐
出後未だ固化していない糸条を直ちに高倍率に2
段延伸熱処理することが得られる繊維の性能の点
で有用である。 本発明のポリエステル繊維においては、ポリエ
ステルに添加反応する少くとも1個のベンゼン環
を分子中に有するジカルボン酸成分及びジオキシ
成分からなるエステルが分子末端に結合し、結果
的に遊離カルボキシル濃度の比較的低いポリエス
テル繊維になつているのみならず、繊維状に成型
し配向結晶化を行わしめて繊維構造を組織化した
場合、たとえば結晶相−非晶相の如き2層構造モ
デルにあつては非晶相が剛直性の大きいベンゼン
環の存在のため比較的緻密になつているために耐
薬品性(特にアミン)に優れているという特徴を
有する。又成型法の組み合せによつては繊維構造
が比較的均質構造で結晶相−非晶相が明瞭でない
のでアミン分解に対しても比較的安定である。従
つて本発明で得られるポリエステル繊維を常法に
よりコードにしゴム補強材として使用すれば、高
温度を発する重荷重と高速度の条件のもとでも強
力低下が少く極めて有用な補強材となる。 このようなゴム補強材にあつては、該ポリエス
テル繊維は前述の如き成型方法で充分な分子配向
性と結晶性を付与することが必須であるが、一方
前記ポリエステル組成物を他の溶融成型方法を適
用して得たポリエステル繊維も他の用途(例えば
スダレの緯糸)に合つた耐熱安定性が良好である
ので有用である。即ち、前記ポリエステル組成物
を溶融し、紡糸口金を通して吐出し部分配向糸条
になる如く2000m/min好ましくは2500m/min以
上の高速度で引取り、巻取糸の伸度を70〜200%
に調節するか或は紡糸速度を2000m/min未満特
に800〜1500m/minとして一旦未延伸糸として巻
取り更にこれを低倍率(1.3〜3.0)で延伸して延
伸糸の最終伸度を70〜200%に調節して得た糸条
に関してである。この糸条をスチーム処理し、
150℃、30分での乾熱収縮率を+5〜−2%にし
た熱処理糸はタイヤコード織物緯糸用原子として
極めて優良なのである。即ち、245℃、2分間フ
リー収縮熱処理後でも60%以上の切断伸度を有し
ている。 従つて前記熱処理糸を緯糸として用いたタイヤ
コード織物(生機)においては、緯糸の室温にお
ける寸法安定性が優れているので緯糸の不均一収
縮による生機の巾不同の懸念がなく、経糸は等間
隔で保持される。しかもこの生機はデイツプ処理
(245℃数分)後においてさえその緯糸の伸度は実
質低下していないのでタイヤ成型時(特に膨張
時)に緯糸は均一に伸びその結果経糸間隔を均一
に保持し均質なタイヤが得られるのである。 上述の如く本発明のポリエステル繊維は、高温
処理時の耐熱安定性に優れているため、ゴム補強
材のみならずタイヤコード織物緯糸用原糸として
も有用であり極めて工業的意味が大きい。 以下本発明の実施例を詳述するが本発明はこれ
に限定されるものではない。 実施例 1 固有粘度が0.64のポリエチレンテレフタレート
ペレツトにポリアクリレート(Polyarylate)ペ
レツト(ユニチカ株式会社製U−8000ナチユラ
ル)を第1表の如き割合で混合し160℃で6時間
乾燥後エクストルーダーを備えた溶融紡糸機に供
給し最高330℃の温度に加熱溶融し、孔径0.4mm、
孔数192個の紡糸口金より吐出し冷却後オイリン
グして400m/minで巻取つた。然る後80m/minで
回転している100℃の加熱ロール、140℃に加熱さ
れている第2ロール、195℃に加熱されている第
3ロールを用いて全延伸倍率6.0に延伸し熱処理
した。得られた糸条を250℃の恒温槽で60分定長
で熱劣化させた場合の強度、伸度維持率を第1表
に示す。
The present invention relates to polyester fibers, and more particularly to polyester fibers with good heat resistance stability for reinforcing rubber products. In recent years, pneumatic tires have come to be increasingly subjected to harsh handling due to the increase in the traveling speed of automobiles and the faster takeoff and landing speeds of airplanes. For this reason,
Various attempts have been made to provide improved rubber reinforcements designed to withstand the severe impacts and high temperatures of handling at high speeds or under heavy loads. Examples include inorganic materials such as glass fibers and steel fibers, and rigid wholly aromatic polyamide fibers. On the other hand, rubber reinforcements made of polyethylene terephthalate, which has higher strength and lower equilibrium moisture content as a general-purpose synthetic fiber, are known to have excellent dimensional stability and a high degree of resistance to thermal degradation at high temperatures. Under conditions of heavy loads and high speeds, the tensile strength decreases significantly. These disadvantages of polyethylene terephthalate fibers may be due to the large number of free carboxyl groups in the molecular chain and depolymerization due to hydrolysis, or the loose structure of the amorphous part of the fiber structure and the amine compounds contained in the rubber. This is thought to be due to the chemical deterioration caused by heat. In particular, some improvements have been made to reduce the number of free carboxyl groups for the former, but the current situation is that these cannot simultaneously eliminate the latter factor. The object of the present invention is to eliminate the above-mentioned two factors and provide a polyester fiber that has sufficient strength even under heavy load and high speed conditions that generate high temperatures. Yet another object of the present invention is to provide desired polyester fibers relatively easily and at low cost. According to the present invention, an ester monomer having at least one benzene ring in both the dicarboxylic acid component and the dioxy component, based on the weight of the polyester, is added to the end of the polyester containing ethylene terephthalate as a main repeating unit. A polyester fiber having good heat resistance stability is provided which is made of a polymer or a composition obtained by adding and reacting a polymer in an amount of 0.5 to 7 wt%. The term "polyester" used in the present invention refers to a substance whose main constituent is ethylene terephthalate repeating units, and which mainly contains polyethylene terephthalate, but contains a third component within a range that does not essentially change its properties (for example, 15 mol% or less). A copolyester obtained by copolymerizing may also be used. Furthermore, additives well known in the field, particularly heat stabilizers, such as sterically hindered phenol (lrganox), aromatic amines (Sumilizer PB), phosphorus-containing compounds, and sulfur-containing compounds (Sumilizer TPL) are added to the above polyester. This is also useful in the present invention. Furthermore, the degree of polymerization of the above-mentioned polyester should be selected appropriately depending on the type of polyester and its use, but generally in the case of polyethylene terephthalate, the degree of polymerization is 35%.
A suitable material has an intrinsic viscosity of 0.5 or more as measured with an O-chlorophenol solution at .degree. However, if the intrinsic viscosity exceeds 0.90, the melt viscosity of the composition increases after the addition reaction of the ester or polymer, making it difficult to melt and mold it into a fiber shape, as will be described later.
It is desirable to set it to 0.5-0.9. In the present invention, a polyester composition is obtained by adding and reacting 0.5 to 7 wt % of an ester monomer, prepolymer or polymer having at least one benzene ring to both the dicarboxylic acid component and the dioxy component to the above polyester. Here, examples of the acid component having at least one benzene ring include terephthalic acid, isophthalic acid, methyl terephthalic acid, or 4,4'-diphenyl dicarboxylic acid, and the dioxy component having at least one benzene ring. Examples of this include compounds represented by the following structural formula. It goes without saying that the above dicarboxylic acid components may be used alone or in combination of two or more. The ester formed from the dicarboxylic acid component and the dioxy component is reacted with the polyester in the form of a monomer, a prepolymer containing an oligomer, or a polymer. In the present invention, the ester monomer, prepolymer or polymer obtained from the dicarboxylic acid component and dioxy component is added before or after the completion of polymerization of the polyester. In the former case, the monomer or prepolymer is added and the mixture is heated to at least 280°C before the polyester polymerization is completed.
It is preferable to maintain the temperature above and react with linear polyethylene terephthalate. In the latter case, after the polymerization of the polyester is completed, the polyester is made into pellets or powder, and a polymer obtained from the above-mentioned dicarboxylic acid component and dioxy component in the same shape is mixed using, for example, a drum tumbler, a ribbon blender, etc. It is also preferable to carry out the reaction by heating at a temperature of 280°C or higher, or by blending both polymers in a molten state at 280°C or higher.
In any case, at least the above-mentioned rigid dicarboxylic acid component and dioxy component are added to the molecular terminal of the linear polyethylene terephthalate in a range of 0.5 to 7 wt% based on the polyester so that they react effectively and the temperature is higher than 280℃. It is necessary to heat it to If the amount added is less than 0.5%, the desired heat resistance stability effect will not be achieved, and if it exceeds 7%, the dicarboxylic acid component and dioxy component will be randomly incorporated into the molecular chain of linear polyethylene terephthalate, resulting in a poor polyester composition. The melting point of the substance decreases significantly, and the effect of heat resistance stability is lost. Polyester fibers with good heat resistance stability in the present invention are generally obtained under various conditions as described below. That is, the polyester composition obtained as described above is adjusted to a melt viscosity that can be melted and molded, and then discharged from a spinneret and molded into a fiber by a conventional method. In this case, there is a method in which the product is cooled after being discharged, wound once into an undrawn yarn shape, and then heated and stretched at a high magnification in a separate step, or cooled after discharged, and immediately heated and stretched at a high magnification without being wound once into an undrawn yarn shape. etc. can be adopted at any time. In particular, in the latter direct drawing method, the yarn that has not yet solidified after being melted and discharged is immediately drawn at a high magnification.
The stage drawing heat treatment is useful in terms of the performance of the resulting fibers. In the polyester fiber of the present invention, an ester consisting of a dicarboxylic acid component and a dioxy component having at least one benzene ring in the molecule that reacts with the polyester is bonded to the molecular end, resulting in a relatively low free carboxyl concentration. Not only does it have a low polyester fiber, but when it is formed into a fiber and is oriented and crystallized to organize the fiber structure, for example, in the case of a two-layer structure model such as a crystalline phase and an amorphous phase, it becomes an amorphous phase. Due to the presence of a highly rigid benzene ring, it is relatively dense and has excellent chemical resistance (especially to amines). Also, depending on the combination of molding methods, the fiber structure is relatively homogeneous and the crystalline phase and amorphous phase are not clearly defined, so it is relatively stable against amine decomposition. Therefore, if the polyester fiber obtained according to the present invention is made into cords by a conventional method and used as a rubber reinforcing material, it will become an extremely useful reinforcing material with little loss of strength even under conditions of heavy loads and high speeds that generate high temperatures. For such rubber reinforcing materials, it is essential to impart sufficient molecular orientation and crystallinity to the polyester fibers by the above-mentioned molding method. Polyester fibers obtained by applying the method are also useful because they have good heat resistance stability suitable for other uses (for example, weft yarns for sudare). That is, the polyester composition is melted, discharged through a spinneret, and taken off at a high speed of 2,000 m/min, preferably 2,500 m/min or more, so as to become a partially oriented yarn, and the elongation of the wound yarn is adjusted to 70 to 200%.
Alternatively, the spinning speed is adjusted to less than 2000 m/min, especially 800 to 1500 m/min, and the undrawn yarn is wound and further stretched at a low magnification (1.3 to 3.0) to give the final elongation of the drawn yarn to 70 to 1500 m/min. This is about the yarn obtained by adjusting it to 200%. This yarn is treated with steam,
Heat-treated yarn with a dry heat shrinkage rate of +5 to -2% at 150°C for 30 minutes is extremely suitable as a weft for tire cord fabrics. That is, it has a cutting elongation of 60% or more even after being heat-treated for free shrinkage at 245°C for 2 minutes. Therefore, in a tire cord fabric (gray fabric) using the heat-treated yarn as the weft yarn, the weft yarn has excellent dimensional stability at room temperature, so there is no concern about uneven width of the gray fabric due to uneven shrinkage of the weft yarn, and the warp yarns are spaced evenly apart. is held in Moreover, the elongation of the weft threads of this gray fabric does not substantially decrease even after dip treatment (245℃ for several minutes), so the weft threads stretch uniformly during tire molding (especially during inflation), and as a result, the warp spacing remains uniform. This results in a homogeneous tire. As mentioned above, the polyester fiber of the present invention has excellent heat resistance stability during high-temperature processing, and therefore is useful not only as a rubber reinforcing material but also as a yarn for weft yarns of tire cord fabrics, and has great industrial significance. Examples of the present invention will be described in detail below, but the present invention is not limited thereto. Example 1 Polyarylate pellets (U-8000 Natural, manufactured by Unitika Co., Ltd.) were mixed with polyethylene terephthalate pellets having an intrinsic viscosity of 0.64 in the proportions shown in Table 1, dried at 160°C for 6 hours, and then equipped with an extruder. It is fed to a melt spinning machine and heated to a maximum temperature of 330℃ to melt it, and the pore size is 0.4 mm.
The material was discharged from a spinneret with 192 holes, cooled, oiled, and wound at 400 m/min. Thereafter, it was stretched to a total stretching ratio of 6.0 and heat treated using a heated roll at 100°C rotating at 80 m/min, a second roll heated to 140°C, and a third roll heated to 195°C. . Table 1 shows the strength and elongation retention when the obtained yarn was thermally degraded for 60 minutes in a constant temperature bath at 250°C.

【表】 実施例 2 固有粘度が0.64のポリエチレンテレフタレート
ペレツトにポリアクリレートペレツト(ユニチカ
株式会社製U−8000ナチユラル)を2.5wt%混合
し、160℃で6時間乾燥後エクストルーダーを備
えた溶融紡糸機に供給し、最高320℃の温度に加
熱溶融し、孔径0.35mm、孔数36個の紡糸口金より
吐出し冷却後オイリングして3300m/minで部分
配向糸として巻取つた。巻取つた糸条を100t/m
に撚糸しつつシリンダーに捲き返し、この状態で
135℃で30分間スチーム処理した。更にこのセツ
ト糸を(a)150℃で30分、(b)230℃で2分間、(c)240
℃で2分間、(d)245℃で2分間個々にフリー熱処
理した後の150℃の乾熱収縮率(DHS)と伸度
(DE)を測定した。結果を第2表に示す。
[Table] Example 2 Polyethylene terephthalate pellets with an intrinsic viscosity of 0.64 were mixed with 2.5 wt% of polyacrylate pellets (U-8000 Natural, manufactured by Unitika Co., Ltd.), dried at 160°C for 6 hours, and then melted using an extruder. It was supplied to a spinning machine, heated and melted to a maximum temperature of 320°C, discharged from a spinneret with a hole diameter of 0.35 mm and 36 holes, cooled, oiled, and wound as a partially oriented yarn at 3300 m/min. Winding ivy yarn at 100t/m
While twisting the yarn, turn it back into the cylinder, and in this state
Steam treatment was performed at 135°C for 30 minutes. Furthermore, this set yarn was heated at (a) 150℃ for 30 minutes, (b) 230℃ for 2 minutes, (c) 240℃
The dry heat shrinkage (DHS) and elongation (DE) at 150°C were measured after free heat treatment at 245°C for 2 minutes and (d) at 245°C for 2 minutes. The results are shown in Table 2.

【表】【table】

【表】 比:比較例
実施例 3 エチレンテレフタレートを常法により重合し、
重合完結15分前に別途作成していた。酸成分(テ
レフタル酸/イソフタル酸=50/50モル%)とジ
オール成分(ビスフエノールA)とのエステル3
量体を2.5wt%添加し、300℃で15分反応させ固有
粘度0.66のポリエステル組成物を得た。この組成
物をエクストルーダーを備えた紡糸機に供給し
300℃で溶融し、〔実施例1〕と同様にして延伸熱
処理糸を(実験No.10)又〔実施例2〕と同様に
して部分配向糸を(実験No.11)得た。実験
No.10については250℃、60分後の強伸度維持率
を、又実験No.11については(a)150℃×30分、(d)
245℃×2分間処理後のDHSとDEAを求めた。結
果を夫々第3表及び第4表に示す。
[Table] Ratio: Comparative Example Example 3 Ethylene terephthalate was polymerized by a conventional method,
It was prepared separately 15 minutes before polymerization was completed. Ester 3 of acid component (terephthalic acid/isophthalic acid = 50/50 mol%) and diol component (bisphenol A)
A polyester composition having an intrinsic viscosity of 0.66 was obtained by adding 2.5 wt% of polymer and reacting at 300°C for 15 minutes. This composition is fed into a spinning machine equipped with an extruder.
After melting at 300° C., a stretched and heat-treated yarn (Experiment No. 10) was obtained in the same manner as in [Example 1], and a partially oriented yarn (Experiment No. 11) was obtained in the same manner as in [Example 2]. experiment
For No. 10, the strength elongation retention rate after 60 minutes at 250℃, and for Experiment No. 11, (a) 150℃ x 30 minutes, (d)
DHS and DEA after treatment at 245°C for 2 minutes were determined. The results are shown in Tables 3 and 4, respectively.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 エチレンテレフタレートを主たる繰返し単位
として含有するポリエステルの末端に、該ポリエ
ステルの重量を基準として、ジカルボン酸成分及
びジオキシ成分のいずれにも少くとも1個以上の
ベンゼン環を有するエステルのモノマー、プレポ
リマー又はポリマーを0.5〜7wt%添加反応させて
なる組成物からなることを特徴とする耐熱安定性
の良好なポリエステル繊維。
1 At the end of a polyester containing ethylene terephthalate as a main repeating unit, an ester monomer, prepolymer, or A polyester fiber with good heat resistance stability characterized by being made of a composition obtained by adding and reacting 0.5 to 7 wt% of a polymer.
JP12000879A 1979-09-20 1979-09-20 Polyester fiber with high heat stability Granted JPS5649015A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12000879A JPS5649015A (en) 1979-09-20 1979-09-20 Polyester fiber with high heat stability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12000879A JPS5649015A (en) 1979-09-20 1979-09-20 Polyester fiber with high heat stability

Publications (2)

Publication Number Publication Date
JPS5649015A JPS5649015A (en) 1981-05-02
JPS6149408B2 true JPS6149408B2 (en) 1986-10-29

Family

ID=14775614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12000879A Granted JPS5649015A (en) 1979-09-20 1979-09-20 Polyester fiber with high heat stability

Country Status (1)

Country Link
JP (1) JPS5649015A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6197418A (en) * 1984-10-18 1986-05-15 Nippon Ester Co Ltd Polyarylate fiber
JP2593924B2 (en) * 1988-09-20 1997-03-26 株式会社クラレ Easy-dyed polyester drawn yarn and false twist yarn

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS495231A (en) * 1972-04-28 1974-01-17
JPS5131774A (en) * 1974-09-11 1976-03-18 Mitsubishi Plastics Ind HORIESUTERUMATSUTOFUIRUMU NO SEIZOHOHO
JPS533446A (en) * 1976-06-30 1978-01-13 Sumitomo Chem Co Ltd Polyester resin compositions

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS495231A (en) * 1972-04-28 1974-01-17
JPS5131774A (en) * 1974-09-11 1976-03-18 Mitsubishi Plastics Ind HORIESUTERUMATSUTOFUIRUMU NO SEIZOHOHO
JPS533446A (en) * 1976-06-30 1978-01-13 Sumitomo Chem Co Ltd Polyester resin compositions

Also Published As

Publication number Publication date
JPS5649015A (en) 1981-05-02

Similar Documents

Publication Publication Date Title
EP0080906B1 (en) Polyester fibres and their production
CN1298460A (en) Polyester fiber and methods for making same
JP7059446B2 (en) High modulus, low shrinkage, activated polyester industrial yarn and its manufacturing method
KR20100131487A (en) Polyethylene naphthalate fiber and process for producing the polyethylene naphthalate fiber
PL184254B1 (en) Yarn made of continuous polyester monofilaments, polyester tyre reinforcement cord and method of making them
KR100499220B1 (en) High tenacity polyethylene-2,6-naphthalate fibers having excellent processability, and process for preparing the same
US3378055A (en) Spinnable composition of polyamides and polyesters prepared from a polyamide polyester dispersion and a polyamidepolyester reaction product
JPH06136614A (en) Polyester fiber having improved dimensional stability and its production
JPS6149408B2 (en)
US4043985A (en) Tire monofilaments
CN108914228A (en) Geotextile high mould flatness polyester industrial yarn and its production method
JPS6328127B2 (en)
US5693275A (en) Method of making an improved pre-adherized polyester filament yarn
JPS6125801B2 (en)
JP2004100087A (en) Recycled polyester fiber
KR100306316B1 (en) Elastic fibers, process for producing the same and polyester elastomer to be used therein
JPH06108311A (en) Core-sheath type conjugate fiber and its production
EP0359692A2 (en) Solution spinning process
JPH0450407B2 (en)
JPH0323644B2 (en)
JPH05279919A (en) High-tenacity polyester yarn and its production
US5061425A (en) Solution spinning process for producing a polyethylene terephthalate filament
JPH0147575B2 (en)
JPH0321647B2 (en)
KR101456547B1 (en) Preparing method of high tenacity polyethylene naphthalate fibers