JPH0246724A - Processing of metal thin film - Google Patents

Processing of metal thin film

Info

Publication number
JPH0246724A
JPH0246724A JP63198384A JP19838488A JPH0246724A JP H0246724 A JPH0246724 A JP H0246724A JP 63198384 A JP63198384 A JP 63198384A JP 19838488 A JP19838488 A JP 19838488A JP H0246724 A JPH0246724 A JP H0246724A
Authority
JP
Japan
Prior art keywords
metal thin
thin film
frequency power
etching
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63198384A
Other languages
Japanese (ja)
Inventor
Masafumi Nakaishi
中石 雅文
Masao Yamada
雅雄 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP63198384A priority Critical patent/JPH0246724A/en
Publication of JPH0246724A publication Critical patent/JPH0246724A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent a readhesion of a reaction product from causing by a method wherein a metal thin film and a high-frequency power applying electrode are connected to each other and the metal thin film is used as the high-frequency power applying electrode at the time of reactive ion etching. CONSTITUTION:A direct-coupled cover 6 is formed of a conductor, a metal thin film 1' and a high-frequency power applying electrode 3 are arranged in such a way that they are electrically continued to each other and the film 1' is contrived in such a way that a high-frequency power is directly applied to the film 1' itself. As a result, the film 1' is directly turned into the electrode, whereby a dielectric substance on a side where a plasma sheath exists and a dielectric substance on the side opposite to the above side holding the metal thin film surface between the dielectric substances are completely shielded electrostatically and the combination of a high-frequency power at the part of a supporting substrate 2', at which the high-frequency power has been hitherto generated, and the combination of a high-frequency power at parts, at which insulator rings 5 are arranged, become equivalent to each other. As a result, the etching rates in both parts become equal to each other.

Description

【発明の詳細な説明】 〔概要〕 金属薄膜の微細なパターンを作製する方法に関し、 反応生成物の再付着が起こらない反応性イオンエツチン
グ方法を提供することを目的とし、不均一な膜厚を有す
る絶縁物を介して被着された金属薄膜を反応性イオンエ
ツチングによりパタニングする方法において、 該金属薄膜と高周波電力印加電極とを接続することによ
り該金属薄膜を反応性・イオンエツチング時に高周波電
力印加電極として使用するように構成する。
[Detailed Description of the Invention] [Summary] The purpose of this invention is to provide a reactive ion etching method that does not cause re-deposition of reaction products with respect to a method for producing fine patterns of metal thin films, and to reduce uneven film thickness. In a method of patterning a metal thin film deposited through an insulator by reactive ion etching, the metal thin film is connected to a high frequency power application electrode to apply high frequency power to the metal thin film during reactive/ion etching. Configured for use as an electrode.

〔産業上の利用分野〕[Industrial application field]

本発明は金属薄膜加工方法に係り、特にX線マスクなど
の微細なパターンを作製する方法に関する。
The present invention relates to a metal thin film processing method, and particularly to a method for producing fine patterns such as X-ray masks.

超LSIの製造工程において、微細な回路バタンを転写
形成する手段として要請されているX線露光技術におい
て、不均一な膜厚を有する絶縁物を介して被着した金属
薄膜を精密に加工することが必要である。超LSIの集
積度が増すごとに回路パターンの設計ルールは微小化の
一途を辿り、パターン加工をより高精度に行うことが重
要になっている。
In the X-ray exposure technology required as a means to transfer and form fine circuit patterns in the VLSI manufacturing process, precision processing of metal thin films deposited through insulators with non-uniform film thickness is required. is necessary. As the degree of integration of VLSIs increases, the design rules for circuit patterns become smaller and smaller, making it important to perform pattern processing with higher precision.

〔従来の技術〕[Conventional technology]

従来のRIE(反応性イオンエツチング)を用いたX線
マスクの吸収体となる金属薄膜の加工方法を説明するた
めに、第3図に従来の装置の構成図を示している。X線
吸収体りは、例えばTa等の金属薄膜で形成され、2〜
4μm程度の薄いBNまたはSiC等のX線マスク支持
基板2で支持し、それにさらにセラミックの絶縁体リン
グ5を接着して構成している。そして、X線吸収体1の
表面にはマスク材パターン10が形成されており、反応
性イオンエツチングにより、そのパターンをXwA吸収
体1に転写するようになっている。なお、図中、3は高
周波電力印加電極、4は接地電極、7は反応室外壁、8
はエツチングガス導入口、9は真空排気系、11は高周
波電源である。
In order to explain a method of processing a metal thin film which becomes an absorber of an X-ray mask using conventional RIE (reactive ion etching), FIG. 3 shows a block diagram of a conventional apparatus. The X-ray absorber is formed of a metal thin film such as Ta, and
It is supported by an X-ray mask support substrate 2 made of BN or SiC or the like with a thickness of approximately 4 μm, and a ceramic insulator ring 5 is further bonded thereto. A mask material pattern 10 is formed on the surface of the X-ray absorber 1, and the pattern is transferred to the XwA absorber 1 by reactive ion etching. In the figure, 3 is a high-frequency power application electrode, 4 is a ground electrode, 7 is an outer wall of the reaction chamber, and 8 is a ground electrode.
9 is an etching gas inlet, 9 is a vacuum exhaust system, and 11 is a high frequency power source.

以上の構成において、X線マスク支持基板2は、電気的
に浮遊状態にあり、高周波電力の結合状態は、X線マス
ク支持基板2のみの部分と、絶縁体リング5を配した部
分とで異なり、その結果、1のX線吸収体の金属薄膜の
エツチング速度が異なってくる。そして、例えば金1%
 m 膜のTaをC12及びCCl4 の混合ガスでR
IEするような場合には、このエツチング速度の差が反
応生成物の再付着を促す、RIEのメカニズムにおいて
は、イオンの化学反応と共に、イオン衝撃で物理的にス
パッタエツチングされる要因が共存して碑おり、後者の
影響が大である。実際に反応が生じても、それをイオン
ではじきとばす要因が少なく、よりイオンの衝撃が少な
い(温度が低い)ところに反応生成物が溜まろうとする
傾向がある。
In the above configuration, the X-ray mask support substrate 2 is in an electrically floating state, and the coupling state of high-frequency power is different between the portion where only the X-ray mask support substrate 2 is provided and the portion where the insulator ring 5 is arranged. As a result, the etching speed of the metal thin film of the X-ray absorber 1 differs. For example, gold 1%
R the Ta of the m film with a mixed gas of C12 and CCl4.
In the case of IE, this difference in etching speed promotes redeposition of reaction products.In the RIE mechanism, there is a coexistence of physical sputter etching due to ion bombardment as well as chemical reaction of ions. The influence of the latter is significant. Even if a reaction actually occurs, there are few factors that can repel it with ions, and reaction products tend to accumulate in areas where there is less ion bombardment (lower temperature).

第3図の絶縁体リング5の境界上のa、a’の部分は、
上記のように高周波電力の結合状態が異なるためにイオ
ンの衝撃が少なり(温度が低く)X線マスク支持基板2
上のTaのエツチングが完了してもX線マスク支持基板
2と絶縁体リング5を配した部分との境界には、RIE
による反応生成物が再付着する。ここで、Taのエツチ
ングの場合、比較的蒸気圧が低い塩化タンタルが生成さ
れ、X線マスク支持基板2の温度が相対的に低い部分に
再付着することがわかっている。この反応生成物は固く
、−旦付着すると除去することが困難であり、それ自体
マスクとしての欠陥となる可能性がある。また、反応生
成物の付着厚さが数μmとなることがあり、X線露光時
に、X線マスクと被露光体とを正確に近接配置すること
の妨げともなる。その結果、X線マスクとしての歩留り
が低下するといった問題が生じていた。
The portions a and a' on the boundary of the insulator ring 5 in FIG.
As mentioned above, since the bonding state of the high-frequency power is different, the impact of ions is small (the temperature is low), and the X-ray mask support substrate 2
Even if etching of the upper Ta layer is completed, the boundary between the X-ray mask support substrate 2 and the portion where the insulator ring 5 is arranged is not exposed to RIE.
reaction products are redeposited. Here, in the case of etching Ta, it is known that tantalum chloride having a relatively low vapor pressure is generated and redeposited on the portions of the X-ray mask support substrate 2 where the temperature is relatively low. This reaction product is hard and difficult to remove once deposited, and may itself be a defect as a mask. Further, the adhesion thickness of the reaction product may be several micrometers, which also hinders accurate placement of the X-ray mask and the object to be exposed in close proximity during X-ray exposure. As a result, a problem has arisen in that the yield of X-ray masks is reduced.

このような反応生成物に対する従来の対応は、次の■、
■であった。
Conventional responses to such reaction products are as follows:
■It was.

■機械的に掻きとり、洗浄する。■Mechanically scrape and wash.

この場合、X線マスク支持基板2のみが存在する極めて
薄い部分に近接しているので、破損する恐れがあり困難
である。
In this case, since the X-ray mask support substrate 2 is close to an extremely thin portion where only the X-ray mask support substrate 2 exists, there is a risk of damage, which is difficult.

■反応生成物が再付着する恐れがある部分(先のa、a
’の部分)をエツチングしないようにマスクパターンを
設計する。
■ Areas where reaction products may re-deposit (a, a)
Design the mask pattern so as not to etch the ' part).

マスク設計の自由度を損なうという問題があり、対応が
制限される。
There is a problem that the degree of freedom in mask design is lost, which limits the measures that can be taken.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は、上記従来の問題である反応生成物の再付着が
起こらない反応性イオンエツチング方法を提供すること
を目的とするものである。
An object of the present invention is to provide a reactive ion etching method that does not cause the re-deposition of reaction products, which is the conventional problem.

(課題を解決するための手段〕 本発明は、反応性イオンエツチング方法のメカニズムに
ついての基本的考察に基づき、改良した反応性イオンエ
ツチング方法を提供するものである。
(Means for Solving the Problems) The present invention provides an improved reactive ion etching method based on basic considerations regarding the mechanism of the reactive ion etching method.

第1図は本発明の原理説明図であり、図中、第3図と同
一部分には同一符号を付してあり、l。
FIG. 1 is an explanatory diagram of the principle of the present invention, in which the same parts as in FIG. 3 are designated by the same reference numerals.

は金属薄膜、2°は支持基板、3は高周波電力印加電極
、4は接地電極、5ば絶縁体リング、6は直結カバー 
7は反応室外壁、8はエツチングガス導入口、9は真空
排気系、10はマスク材パターンである。
is a metal thin film, 2° is a support substrate, 3 is a high frequency power application electrode, 4 is a ground electrode, 5 is an insulator ring, and 6 is a direct connection cover.
7 is an outer wall of the reaction chamber, 8 is an etching gas inlet, 9 is a vacuum exhaust system, and 10 is a mask material pattern.

ここで、直結カバー6は導体で形成されており、金属薄
膜1°と高周波電力印加電極3を電気的に導通させるよ
うに配し、金属薄膜1“そのものに高周波電力が直接印
加されるような構造をとる。
Here, the direct connection cover 6 is formed of a conductor, and is arranged so that the metal thin film 1° and the high-frequency power application electrode 3 are electrically connected, so that the high-frequency power is directly applied to the metal thin film 1'' itself. Take structure.

〔作用〕[Effect]

この結果、金属薄膜1°が直接電極となることにより、
該金属薄膜面を挟んで、プラズマシースの存在する側と
反対側にある誘電体物質は完全に静電遮蔽され、従来生
じていた支持基板2“の部分と、絶縁体リング5を配し
た部分との高周波電力の結合は等価になり、その結果、
画部分のエツチング速度は等しくなる。
As a result, 1° of the metal thin film becomes a direct electrode, and
The dielectric material on the opposite side of the plasma sheath across the metal thin film surface is completely electrostatically shielded, and the part where the supporting substrate 2'' is conventionally formed and the part where the insulator ring 5 is placed are completely shielded from static electricity. The coupling of high frequency power with becomes equivalent, resulting in
The etching speed of the image area becomes equal.

〔実施例〕〔Example〕

第2図は本発明の一実施例の構成図であり、図中、第1
図、第3図で示したものと同一のものは同一の記号で示
しである。1のX線マスク吸収体としてTaを用い、エ
ツチングガスとしては、塩素((1!t)及び四塩化炭
素(CCj!4)の混合ガスを用いる。直結カバー6は
、金属導体で形成され、X線吸収体1のTaの周囲に接
触するように構成され、3の高周波電力印加電極と1の
X線吸収体との導通をとっている。12は四塩化炭素ボ
ンベ、13は塩素ガスボンベ、14はガス導入ライン、
15は反応室内ガス圧力調整弁である。
FIG. 2 is a block diagram of one embodiment of the present invention, and in the figure, the first
Components that are the same as those shown in FIGS. 3 and 3 are designated by the same symbols. Ta is used as the X-ray mask absorber of No. 1, and a mixed gas of chlorine ((1!t) and carbon tetrachloride (CCj!4) is used as the etching gas. The direct-coupling cover 6 is formed of a metal conductor, It is configured to be in contact with the periphery of Ta of the X-ray absorber 1, and conduction is established between the high-frequency power application electrode 3 and the X-ray absorber 1. 12 is a carbon tetrachloride cylinder, 13 is a chlorine gas cylinder, 14 is a gas introduction line;
15 is a reaction chamber gas pressure regulating valve.

X線吸収体の表面にレジストあるいはそれに準じるもの
をRIEのマスク材パターンlOとして形成してあり、
該マスク材のパターンをX線吸収体1のTaに転写する
A resist or something similar is formed on the surface of the X-ray absorber as an RIE mask material pattern 1O,
The pattern of the mask material is transferred to Ta of the X-ray absorber 1.

エツチング条件例としては、下記の範囲が適当である。As an example of etching conditions, the following range is suitable.

エツチングガス体積混合比: C1* / (C1よ +CCea )〜0.4〜0.
8ガス圧カニ 0 、  ITorr〜0 、 2Torr高周波放電
電力密度: 0 、 08 W’/c+m” 〜0 、 30 W/
am!エツチングガス混合比が上記の値より小さいと炭
素の付着が顕著になり、エツチングが進行しない、また
、大きい場合には、異方性が失われ、パターン断面形状
が逆テーパー状になり、その結果寸法変動を引き起こす
Etching gas volume mixing ratio: C1*/(C1+CCea)~0.4~0.
8 Gas Pressure Crab 0, ITorr ~ 0, 2Torr High Frequency Discharge Power Density: 0, 08 W'/c+m" ~ 0, 30 W/
am! If the etching gas mixture ratio is smaller than the above value, carbon adhesion will be noticeable and etching will not proceed; if it is larger, the anisotropy will be lost and the cross-sectional shape of the pattern will become inversely tapered, resulting in Causes dimensional variations.

ガス圧力は上記の値より大きくても小さくてもマスク材
に対するTaエツチングの選択比が低下する。さらに高
周波電力放電電力密度が標記の値より小さければエツチ
ングが進行せず、大きければX線マスク支持基板2に損
傷を与える。
Whether the gas pressure is higher or lower than the above value, the selectivity of Ta etching with respect to the mask material decreases. Further, if the high-frequency power discharge power density is smaller than the specified value, etching will not proceed, and if it is larger, the X-ray mask support substrate 2 will be damaged.

上記のエツチング条件を用いることにより、X線マスク
支持基板2上に成膜されたTaをXyIマスク支持基板
2のみの部分と、絶縁体リング5を配した部分とのエツ
チング速度の差を生ずることなく、等速度でエツチング
することが可能となる。
By using the above-mentioned etching conditions, a difference in the etching speed of the Ta film formed on the X-ray mask support substrate 2 can be created between the portion where only the XyI mask support substrate 2 is located and the portion where the insulator ring 5 is arranged. This makes it possible to perform etching at a constant speed.

以上、本発明について、TaのX線吸収体をもつX線マ
スクの製造の実施例を示したが、本発明はこれに限らず
、広く不均一な膜厚を有する絶縁物を介在して被着した
金属m1ll、例えばシリコンウェハ上に絶縁膜を介在
して被着した金属薄膜、或いはガラスウェハ上に被着し
た金属FIN等の反応性イオンエツチングに適用できる
ものである。
In the above, an embodiment of the present invention has been shown for manufacturing an X-ray mask having a Ta X-ray absorber, but the present invention is not limited to this. This method can be applied to reactive ion etching of deposited metal ML, for example, a metal thin film deposited on a silicon wafer with an insulating film interposed therebetween, or a metal FIN deposited on a glass wafer.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によればエツチング速度の
均一性が向上し、不均一な膜厚の境界部分に残渣が発生
しなくなり、X線マスク等の極めて精密なパターンの製
造歩留り向上に寄与すること大である。
As explained above, the present invention improves the uniformity of the etching rate, eliminates the generation of residue at the boundaries of uneven film thickness, and contributes to improving the manufacturing yield of extremely precise patterns such as X-ray masks. It's a big thing to do.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の原理説明図、 第2図は本発明の一実施例の構成図、 第3図は従来の装置の構成図である。 1“は金属薄膜 ■はX線吸収体 2′は支持基板 2はX線マスク支持基板 3は高周波電力印加電極 4は接地電極 5は絶縁体リング 6は直結カバー 7は反応室外壁 8はエツチングガス導入口 9は真空排気系 10はレジストパターン 13は塩素ガスボンベ 14はガス導入ライン 15は反応室内ガス圧力調整弁 FIG. 1 is a diagram explaining the principle of the present invention, FIG. 2 is a configuration diagram of an embodiment of the present invention, FIG. 3 is a block diagram of a conventional device. 1" is a metal thin film ■ is an X-ray absorber 2' is the support substrate 2 is the X-ray mask support board 3 is a high frequency power application electrode 4 is the ground electrode 5 is an insulator ring 6 is a direct cover 7 is the outer wall of the reaction chamber 8 is the etching gas inlet 9 is vacuum exhaust system 10 is resist pattern 13 is a chlorine gas cylinder 14 is the gas introduction line 15 is the reaction chamber gas pressure regulating valve

Claims (1)

【特許請求の範囲】 1、不均一な膜厚を有する絶縁物を介して被着された金
属薄膜を反応性イオンエッチングによりパターニングす
る方法において、 該金属薄膜と高周波電力印加電極とを接続することによ
り該金属薄膜を反応性イオンエッチング時に高周波電力
印加電極として使用することを特徴とする金属薄膜加工
方法。 2、請求項1記載の金属薄膜加工方法において、前記金
属薄膜はX線マスク支持基板上に形成されたX線吸収体
であり、該X線マスク支持基板はリング状の絶縁物で補
強されてなることを特徴とする金属薄膜加工方法。
[Claims] 1. In a method of patterning a metal thin film deposited via an insulator having a non-uniform thickness by reactive ion etching, the metal thin film and a high-frequency power applying electrode are connected to each other. A method for processing a metal thin film, characterized in that the metal thin film is used as a high-frequency power application electrode during reactive ion etching. 2. The metal thin film processing method according to claim 1, wherein the metal thin film is an X-ray absorber formed on an X-ray mask support substrate, and the X-ray mask support substrate is reinforced with a ring-shaped insulator. A metal thin film processing method characterized by:
JP63198384A 1988-08-09 1988-08-09 Processing of metal thin film Pending JPH0246724A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63198384A JPH0246724A (en) 1988-08-09 1988-08-09 Processing of metal thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63198384A JPH0246724A (en) 1988-08-09 1988-08-09 Processing of metal thin film

Publications (1)

Publication Number Publication Date
JPH0246724A true JPH0246724A (en) 1990-02-16

Family

ID=16390229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63198384A Pending JPH0246724A (en) 1988-08-09 1988-08-09 Processing of metal thin film

Country Status (1)

Country Link
JP (1) JPH0246724A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04216550A (en) * 1990-12-18 1992-08-06 Mitsubishi Electric Corp Production of mask for exposure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04216550A (en) * 1990-12-18 1992-08-06 Mitsubishi Electric Corp Production of mask for exposure

Similar Documents

Publication Publication Date Title
EP0106623B1 (en) Sputtering apparatus
US5405491A (en) Plasma etching process
JP3559920B2 (en) Plasma processing equipment
JPS63238288A (en) Dry etching method
JPH10251849A (en) Sputtering device
KR20010043965A (en) Pedestal insulator for a pre-clean chamber
TW201015657A (en) Vacuum processing apparatus
JP2886878B2 (en) Vacuum processing equipment
JPH0246724A (en) Processing of metal thin film
JPH1027780A (en) Plasma treating method
JP2761172B2 (en) Plasma generator
JPH0618182B2 (en) Dry etching equipment
JP3180438B2 (en) Plasma processing device substrate fixing method
JPS62188777A (en) Bias sputtering device
JPH09289198A (en) Plasma treatment equipment and protective member for plasma treatment equipment
JP3357737B2 (en) Discharge plasma processing equipment
JPS61190944A (en) Dry etching device
JPS5890731A (en) Plasma processing apparatus
JPS58100430A (en) Plasma processor
JP2506389B2 (en) Dry etching method for mask substrate
JPS6355939A (en) Dry etching device
JPH04330723A (en) Semiconductor manufacturing apparatus and manufacture of semiconductor device
JP2548164B2 (en) Dry etching method
JPH0637064A (en) Dry etching method
JPH01200629A (en) Dry etching apparatus