JPH0246713A - Manufacture of ceramic capacitor - Google Patents

Manufacture of ceramic capacitor

Info

Publication number
JPH0246713A
JPH0246713A JP19828888A JP19828888A JPH0246713A JP H0246713 A JPH0246713 A JP H0246713A JP 19828888 A JP19828888 A JP 19828888A JP 19828888 A JP19828888 A JP 19828888A JP H0246713 A JPH0246713 A JP H0246713A
Authority
JP
Japan
Prior art keywords
electrode
conductors
ion
dielectric layer
insulating substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19828888A
Other languages
Japanese (ja)
Inventor
Motoharu Fukai
深井 元春
Kouji Shibata
柴田 行治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP19828888A priority Critical patent/JPH0246713A/en
Publication of JPH0246713A publication Critical patent/JPH0246713A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Capacitors (AREA)

Abstract

PURPOSE:To enable ultra compact ceramic capacitors to be mass-produced efficiently at low installation cost by a method wherein an ion-implating device is used as a furnace for the formation of the first and the second electrodes, a dielectric layers and a film as well as for the baking process. CONSTITUTION:A common conductor 12a is formed on an insulating substrate 11 along one side edge in the long direction of the substrate 11; multiple conductors 12b at specified intervals are arranged in a line so that Pt may be ion-plated to form the first electrode 13 between the common conductor 12a and respective conductors 12b using a mask on the conductors 12b partly overlapped with the common conductor 12a; then a dielectric layer 14 is formed on the first electrode 13 as well as between the first electrode 13 and the conductors 12b; successively Pt is deposited in specified thickness using a mask extending over the dielectric layer 14 and respective conductors 12b to form the second electrodes 15. Finally, leads terminals 16, 17 respectively contact-fixed to the common conductor 12a and the conductors 12b using solder, etc., are equally led out in the same long direction of the other side edge on the insulating substrate 11.

Description

【発明の詳細な説明】 (産業上の利用分野〕 本発明は境界層型の磁器コンデンサの製造方法に関する
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method of manufacturing a boundary layer type ceramic capacitor.

(従来の技術〕 磁器コンデンサは焼成磁器を誘電体として利用するコン
デンサであり、チタン酸バリウム系の焼成磁器を用いた
ものは非常に誘電率が高いという特質を有している。
(Prior Art) Porcelain capacitors are capacitors that use fired porcelain as a dielectric material, and those using barium titanate fired porcelain have a characteristic of having an extremely high dielectric constant.

特にチタン酸バリウム系の境界層型磁器コンデンサは半
導体化したチタン酸バリウム(BaTiOg)を主成分
とする素体にBigest Mn0z+ CuO□等の
混合物を泥漿状態で塗布した後高温で焼成し、次に両面
に電極用金属ペーストを塗布した後焼付けて製造され、
誘電率が通常のチタン酸バリウム系の10〜500倍程
度となり、小型大容量のコンデンサが得られる利点があ
る。
In particular, barium titanate-based boundary layer type porcelain capacitors are made by applying a mixture of Bigest Mn0z+CuO□, etc. in a slurry state to an element whose main component is semiconducting barium titanate (BaTiOg), and then firing it at a high temperature. Manufactured by applying electrode metal paste on both sides and then baking.
The dielectric constant is about 10 to 500 times that of a normal barium titanate type, and there is an advantage that a small-sized, large-capacity capacitor can be obtained.

しかし従来におけるチタン酸バリウム系の素体は通常粉
末状チタン酸バリウムを金型プレスにより形成するため
小型化には限界があり、容量が掻めて大きいという境界
層型磁器コンデンサの特性を生かし得ていないのが現状
である。
However, since conventional barium titanate-based elements are usually formed from powdered barium titanate by mold pressing, there is a limit to miniaturization, and it is not possible to take advantage of the characteristics of boundary layer type ceramic capacitors, which have a large capacity. The current situation is that this is not the case.

このため従来にあってはチタン酸バリウムを主成分とす
る誘電体の焼結体をアーク放電型のイオンプレーティン
グ法によって蒸発させ、これを第1の電極用金属層上に
薄膜として堆積させ、次いでこの薄膜上に第2の電極用
金属層を形成することも試みられている(特開昭59−
35415号)。
For this purpose, conventionally, a dielectric sintered body containing barium titanate as a main component is evaporated by an arc discharge type ion plating method, and this is deposited as a thin film on the first electrode metal layer. Subsequently, attempts have been made to form a second electrode metal layer on this thin film (Japanese Unexamined Patent Application Publication No. 1983-1999).
No. 35415).

〔発明が解決しようとする課題〕 しかし従来におけるこの種の試みはチタン酸バリウムを
主成分とする磁器コンデンサの製造に限られ、ペロブス
カイト構造を有するアルカリ土類金属、チタン酸系化合
物を主成分とした磁器コンデンサは全く見られなかった
[Problem to be solved by the invention] However, conventional attempts of this kind have been limited to the production of ceramic capacitors whose main component is barium titanate, and which are mainly composed of alkaline earth metals and titanate compounds having a perovskite structure. No ceramic capacitors were seen.

本発明者はペロブスカイト構造を有するアルカリ土類金
属、チタン酸系化合物を主成分とする磁器コンデンサの
製造方法につき実験、研究を行った結果、イオンプレー
ティング法を用いる方法が極めて効果的であることを知
見した。
The present inventor conducted experiments and research on a method for manufacturing a ceramic capacitor mainly composed of an alkaline earth metal and a titanate compound having a perovskite structure, and found that a method using an ion plating method is extremely effective. I found out.

イオンプレーティング法は新しい蒸着法として注目され
ている。この方法は蒸発源から飛び出した粒子をガスイ
オン等と衝突させてイオン化若しくは励起して機能性を
付与し、粒子同士を結合させ、金属、結晶、セラミック
ス等に付着形成する方法であり、従来の真空蒸着やスパ
ッタリン゛グ法では得られなかった極めて薄いものから
数10μlの厚さの成膜が出来。る外、化合物や複合材
料の一合成膜の形成が可能である特質を有している。
The ion plating method is attracting attention as a new vapor deposition method. This method is a method in which particles ejected from an evaporation source are collided with gas ions, etc. to ionize or excite them, giving them functionality, bonding the particles with each other, and depositing them on metals, crystals, ceramics, etc. It is possible to form extremely thin films with a thickness of several tens of microliters, which could not be obtained using vacuum evaporation or sputtering methods. In addition, it has the characteristic that it is possible to form monosynthetic films of compounds and composite materials.

本発明はかかる知見に基づきなされたものであって、そ
の目的とするところは焼成磁器の小型化が図れるように
した磁器コンデンサの製造方法を提供するにある。
The present invention has been made based on this knowledge, and its purpose is to provide a method for manufacturing a ceramic capacitor that allows the size of fired porcelain to be reduced.

〔課題を解決するための手段〕[Means to solve the problem]

本発明に係る磁器コンデンサの製造方法は絶縁基板上に
Ptをイオンプレートして第1電極を形成し、次いで酸
化チタン又はチタン酸系セラミックスの誘電体成分と半
導体化剤、焼結助剤とを含む原料をイオンプレーティン
グ装置で蒸着して誘電体層を形成し、さらに第1電極に
対して絶縁関係を保持してPtをイオンプレートで第2
電極を゛形成し、更にイオンプレーティング装置で10
00”l上の還元雰囲気中で焼成し、次いで800°C
以上の酸化性雰囲気中で焼成する。
The method for manufacturing a ceramic capacitor according to the present invention includes forming a first electrode by ion-plating Pt on an insulating substrate, and then adding a dielectric component of titanium oxide or titanate ceramic, a semiconductor agent, and a sintering aid. A dielectric layer is formed by depositing the raw material containing Pt using an ion plating device, and Pt is further deposited on a second electrode using an ion plate while maintaining an insulating relationship with the first electrode.
Form an electrode, and then use an ion plating device to
Calcined in a reducing atmosphere above 00”l and then at 800°C
Firing is performed in the above oxidizing atmosphere.

〔作用〕[Effect]

本発明にあってはこれによって誘電体を薄膜形成するこ
とが出来、格段の小型化が可能となる。
According to the present invention, the dielectric material can be formed into a thin film, making it possible to significantly reduce the size of the device.

(以下余白) 〔実施例1〕 表   1 イオンプレーティング装置の坩堝内にPL(白金)を入
れ、また表面を鏡面仕上げしたアルミナセラミック製の
絶縁基板をその上にマスクを載せて配置し、104〜1
0− ’TorrのAr雰囲気下で絶縁基板上にPtを
イオンプレートして第1電極を形成し、次に坩堝内にB
aTi0.を主成分とする誘電体原料を収容したイオン
プレーティング装置を用い、Ar雰囲気中で前記第1電
極上に厚さ1μm当たり2〜3分程度の速度で誘電体の
薄膜をイオンプレートする。
(The following is a blank space) [Example 1] Table 1 PL (platinum) was placed in the crucible of an ion plating device, and an insulating substrate made of alumina ceramic with a mirror-finished surface was placed with a mask placed thereon. ~1
A first electrode is formed by ion-plating Pt on an insulating substrate under an Ar atmosphere of 0-' Torr, and then B is placed in a crucible.
aTi0. Using an ion plating apparatus containing a dielectric raw material containing as a main component, a dielectric thin film is ion plated on the first electrode at a rate of about 2 to 3 minutes per 1 μm in thickness in an Ar atmosphere.

誘電体の原料としてはBaTi0zを主成分とし、これ
に半導体化剤であるLa、03 、焼結助剤MnO2を
夫々表1に示すモル%で混合した粉末を用いた。
As the raw material for the dielectric material, a powder containing BaTiOz as the main component, mixed with La,03 as a semiconductor agent and MnO2 as a sintering aid in the mole percentages shown in Table 1 was used.

勿論これら材料を1100−1300℃で熱処理して焼
結体としたものを用いてもよい。
Of course, a sintered body obtained by heat-treating these materials at 1100-1300°C may also be used.

次に、前記誘電体層上であって、且つ第1電極と対応す
る位置にマスクを用いて、第1電極をイオンプレートし
たのと同じ条件で再度Ptの薄膜をパターン形成し、第
2電極を形成する。
Next, using a mask at a position corresponding to the first electrode on the dielectric layer, a Pt thin film is patterned again under the same conditions as when the first electrode was ion plated, and a second electrode is formed. form.

そして同じイオンプレーティング装置内に設けた基板温
度設定のためのヒータにより、絶縁基板温度を1300
°Cに高め、窒素又は窒素、水素の雰囲気中で4時間焼
成した後、更に800℃の酸素雰囲気中で2時間焼成し
、磁器コンデンサを形成する。
Then, using a heater for setting the substrate temperature installed in the same ion plating equipment, the insulating substrate temperature was set to 1300℃.
C. and fired in a nitrogen or nitrogen or hydrogen atmosphere for 4 hours, and then further fired in an oxygen atmosphere at 800.degree. C. for 2 hours to form a porcelain capacitor.

なお、この焼成プロセスは上述の如く連続的に行っても
よいが個別に行ってもよいことは言うまでもない。
Note that this firing process may be performed continuously as described above, but it goes without saying that it may be performed individually.

〔実施例2〕 表   2 イオンプレーティング装置内に、表面を鏡面仕上げした
アルミナセラミック製の絶縁基板を配置、【\、 すると共に・坩堝内にPtを入れ・lO−′〜10−“
1°′龜の^r雰囲気中で絶縁基板上にPtをイオンプ
レート)して第1電極を形成し、次にイオンプレーティ
ング装置の坩堝を5rTi03を主成分とする誘電体原
料を収容した坩堝と取り替えてio−”〜10−’To
rrの^r雰囲気下で第1電極上に薄い誘電体層を蒸着
させる。誘電体層の原料としては、5rTi03を主成
分とし、これに半導体化剤であるNb2O2、焼結助剤
であるMnO,を表2に示すモル%で混合した粉末を用
いた。勿論このような混合粉末を1100〜1300℃
で熱処理して焼結体としたものを用いてもよいことは言
うまでもない。
[Example 2] Table 2 An insulating substrate made of alumina ceramic with a mirror-finished surface was placed in an ion plating apparatus, and at the same time, Pt was placed in the crucible, and 1O-' to 10-"
A first electrode was formed by ion-plating Pt on an insulating substrate in an atmosphere of 1°', and then the crucible of the ion plating device was changed to a crucible containing a dielectric raw material containing 5rTi03 as a main component. Replace with io-"~10-'To
A thin dielectric layer is deposited on the first electrode under an atmosphere of rr. As the raw material for the dielectric layer, a powder containing 5rTi03 as the main component, mixed with Nb2O2 as a semiconductor agent and MnO as a sintering agent in the mole percentage shown in Table 2 was used. Of course, such a mixed powder is heated to 1100 to 1300℃.
Needless to say, a sintered body obtained by heat treatment may also be used.

次に薄膜の誘電体層上であって、且つ第1電掻と対応す
る位置にマスクを用いて、第1電極をイオンプレートし
たのと同じ条件で再度Ptの薄膜をイオンプレートして
第2電極を形成する。その後、同じイオンプレーティン
グ装置内で基板温度設定のためのヒータにより絶縁基板
温度を1450°Cにまで加熱し、窒素又は窒素、水素
の雰囲気中で4時間焼成した後、続いて1000°Cの
酸素雰囲気中で2時間焼成して磁器コンデンサを構成す
る。なお、この焼成プロセスは連続的に行っても個別に
行ってもよい。
Next, using a mask on the thin film dielectric layer and at a position corresponding to the first electrode, a Pt thin film was ion plated again under the same conditions as the first electrode. Form an electrode. Thereafter, the insulating substrate temperature was heated to 1450°C using a heater for setting the substrate temperature in the same ion plating equipment, and baked in a nitrogen or nitrogen/hydrogen atmosphere for 4 hours, and then heated to 1000°C. A ceramic capacitor is constructed by firing in an oxygen atmosphere for 2 hours. Note that this firing process may be performed continuously or individually.

〔実施例3〕 表   3 イオンプレーティング装置内に表面を鏡面仕上げしたア
ルミナセラミック製の絶縁基板を配置すると共に、坩堝
内にPtを収容し、10−”−10−’TorrのAr
雰囲気中で絶縁基板上にPtをイオンプレートして第1
電極を形成する。
[Example 3] Table 3 An insulating substrate made of alumina ceramic with a mirror-finished surface was placed in an ion plating apparatus, Pt was housed in a crucible, and Ar of 10-''-10-' Torr was placed.
The first step is to ion plate Pt on an insulating substrate in an atmosphere.
Form an electrode.

次にイオンプレーティング装置の坩堝をBaTi0゜を
主成分とする誘電体原料を収容した坩堝と交換して1O
−2〜10− ’Torrの計雰囲気下で前記第1電極
上にイオンプレートにて誘電体層を形成する。
Next, the crucible of the ion plating device was replaced with a crucible containing a dielectric raw material whose main component was BaTi0°.
A dielectric layer is formed on the first electrode using an ion plate under a measuring atmosphere of -2 to 10 Torr.

誘電体原料としては、BaTi0zを主成分とし、これ
にCaTi0:+、半導体化剤としてCe0z、焼結助
剤としてMnO,を表3に示すモル%で混合した粉末を
用いる。
As the dielectric raw material, a powder containing BaTiOz as a main component, mixed with CaTiO:+, CeOz as a semiconducting agent, and MnO as a sintering aid in the mol% shown in Table 3 is used.

勿論これらの混合粉末を1150’Cで熱処理し焼結体
としたものを用いてもよいことは言うまでもない。
Needless to say, a sintered body obtained by heat-treating these mixed powders at 1150'C may also be used.

再び第1電極の形成条件と同じ条件でマスクを用いて前
記誘電体層上であって、且つ第1電極と対応する位置に
Ptをパターン形成し、第2電極を形成する。その後同
じイオンプレーティング装置内で基板温度設定のために
設けであるヒータを用いて絶縁基板を1400°Cに加
熱し、窒素又は窒素。
Again, using a mask under the same conditions as those for forming the first electrode, Pt is patterned on the dielectric layer at a position corresponding to the first electrode, thereby forming a second electrode. Thereafter, in the same ion plating apparatus, the insulating substrate was heated to 1400°C using a heater provided to set the substrate temperature, and then heated with nitrogen or nitrogen.

水素の雰囲気中で2時間焼成し、続いてtooo’cの
酸素雰囲気中で2時間焼成して磁器コンデンサを得る。
A ceramic capacitor is obtained by firing in a hydrogen atmosphere for 2 hours and then in a too'c oxygen atmosphere for 2 hours.

なお焼成プロセスは連続的に行っても個別的に行っても
よい。
Note that the firing process may be performed continuously or individually.

〔天施例4〕 表 (以下余白) この実施例はコンデンサ・アレイとして構成した場合を
示しており、第1図はその平面図、第2図は第1図の■
−■線による断面図である。アルミナセラミック等の磁
性材料製であって表面を鏡面仕上げした絶縁基板1上に
、イオンプレーティング装置を用いて2本−組とする導
体2a、2bを絶縁基板1の長手方向に所要の間隔を隔
てて形成した後、絶縁基板l上にマスクを被せてPt膜
を両導体2a 、 2b間であって、且つ一方の導体2
a上に一部をオーバーラツプさせた状態でイオンプレー
トし、第1電極3をパターン形成する。
[Example 4] Table (blank below) This example shows the case where it is configured as a capacitor array.
It is a sectional view taken along the line -■. On an insulating substrate 1 made of a magnetic material such as alumina ceramic and having a mirror-finished surface, two sets of conductors 2a and 2b are placed at a required distance in the longitudinal direction of the insulating substrate 1 using an ion plating device. After forming the conductors 2a and 2b separately, a mask is placed over the insulating substrate l to form a Pt film between both conductors 2a and 2b, and between one conductor 2.
The first electrode 3 is patterned by placing an ion plate on the electrode 3 in a partially overlapping state.

次にイオンプレーティング装置の坩堝内に、誘電体材料
である粉末(又は焼結体)を収容すると共に、上面にマ
スクを被せた状態の絶縁基板1を配置し、10−2〜1
0− ’Torrの^r減圧下で薄膜をイオンプレート
して誘電体層4を形成する。誘電体原料としてはCaT
iOsを主成分とし、これにDyzO++半導体化剤で
あるCuO□焼結助剤であるMnO□、BizOzを夫
々表4に示す如きモル%で混合した粉末を用いる。勿論
混合粉末を用いる代わりにこれを焼結した焼結体を用い
てもよい。
Next, in the crucible of the ion plating apparatus, a powder (or sintered body) as a dielectric material is placed, and an insulating substrate 1 with a mask placed on the top surface is placed.
The dielectric layer 4 is formed by ion plating the thin film under reduced pressure of 0-' Torr. CaT as dielectric raw material
A powder containing iOs as a main component and mixed with DyzO++, CuO□, which is a semiconducting agent, MnO□, which is a sintering aid, and BizOz, in the mole percentages shown in Table 4, is used. Of course, instead of using the mixed powder, a sintered body obtained by sintering the mixed powder may be used.

再び第1電極3を形成したときと略同じ条件でマスクを
用いてPtをイオンプレートし、第2電極5を形成する
。その後、同じイオンプレーティング装置内で基板温度
調節用のヒータを用いて絶縁基板1の温度を1400″
Cに加熱し、窒素又は窒素。
Pt is ion plated again using a mask under substantially the same conditions as when the first electrode 3 was formed, and the second electrode 5 is formed. After that, in the same ion plating apparatus, the temperature of the insulating substrate 1 was adjusted to 1400'' using a heater for controlling the substrate temperature.
Heat to C and nitrogen or nitrogen.

水素との混合雰囲気中で4時間焼成し、続いて1000
°Cの酸素雰囲気中で2時間焼成し、磁器コンデンサの
コンデンサ・アレイを形成する。なお、この焼成プロセ
スは連続的又は個別的に行ってもよいことは言うまでも
ない。6は各導体2a、2bの同側の端部に接続固定し
たリード端子である。
Calcined for 4 hours in a mixed atmosphere with hydrogen, followed by 1000
C. for 2 hours in an oxygen atmosphere to form a capacitor array of ceramic capacitors. It goes without saying that this firing process may be performed continuously or individually. 6 is a lead terminal connected and fixed to the same end of each conductor 2a, 2b.

而してこのように構成されたコンデンサ・アレイは第3
図にその等価回路を示す如く、絶縁基板1上にその長手
方向に沿って夫々リード端子6間に誘電体層4を介在さ
せて導体2aに接続された第1電極3と導体2bに接続
された第2電極5とを対向させた磁器コンデンサC3を
複数個配列形成した状態となる。
Therefore, the capacitor array configured in this way is
As shown in the figure, the first electrode 3 is connected to the conductor 2a, and the first electrode 3 is connected to the conductor 2b, with a dielectric layer 4 interposed between the lead terminals 6 on the insulating substrate 1 along its longitudinal direction. This results in a state in which a plurality of ceramic capacitors C3 are formed in an array with the second electrodes 5 facing each other.

〔実施例5] 本実施例は他の構造を有するコンデンサ・アレイとして
構成した場合を示しており、第4図はその模式的平面図
、第5図は第4図のV−V線による断面図であり、絶縁
基板11上にその長手方向の一側縁に沿って共通導体1
2aを形成すると共に、この共通導体12aと所要の間
隔を隔てて複数の導体12bを一直線上に並べて形成し
、この上にマスクを用いて共通導体12aと各導体12
bとの間であって、且つ共通導体12a上に一部をオー
バラップさせた状態でPtをイオンプレートして第1電
極13を形成し、次いで実施例4の場合と同様に前記第
1電極13上及び第1電極13と導体12bとの間にわ
たって誘電体層14を形成し、続いてマスクを用いて前
記誘電体層14上及び各導体12b上にわたってPtを
所要厚さに堆積せしめて第2電極15を構成しである。
[Example 5] This example shows a case where it is configured as a capacitor array having another structure, and FIG. 4 is a schematic plan view thereof, and FIG. 5 is a cross section taken along the line V-V in FIG. 4. 2, a common conductor 1 is placed on an insulating substrate 11 along one longitudinal edge of the insulating substrate 11.
2a, a plurality of conductors 12b are formed in a straight line at a required interval from the common conductor 12a, and the common conductor 12a and each conductor 12 are formed using a mask on the common conductor 12a.
b, and in a state where it partially overlaps the common conductor 12a, Pt is ion plated to form the first electrode 13, and then, as in the case of Example 4, the first electrode 13 is formed. A dielectric layer 14 is formed on the dielectric layer 13 and between the first electrode 13 and the conductor 12b, and then Pt is deposited to a required thickness on the dielectric layer 14 and on each conductor 12b using a mask. Two electrodes 15 are configured.

16.17は共通導体12a 、導体12bに夫々半田
等にて接触固定したリード端子であり、絶縁基板11の
長手方向の他側縁側に向けて同一方向に揃えて導出せし
めである。
Reference numerals 16 and 17 denote lead terminals which are fixed in contact with the common conductor 12a and the conductor 12b by soldering or the like, respectively, and are led out in the same direction toward the other longitudinal edge of the insulating substrate 11.

而してこのように構成されたコンデンサ・アレイは第6
図にその等価回路を示す如く、共通導体12aと導体1
2bとの間に誘電体14を挟んで共通導体12aに接続
された第1電極13と導体12bに接する第2電極15
とを上下に対向配置した磁器コンデンサC2が複数個配
列形成された状態となる。
Therefore, the capacitor array configured in this way is the sixth
As shown in the figure, the common conductor 12a and the conductor 1
2b, a first electrode 13 connected to the common conductor 12a with a dielectric 14 in between, and a second electrode 15 in contact with the conductor 12b.
A plurality of ceramic capacitors C2 are arranged in a vertically opposing manner.

なお、上述した実施例1〜5は1層の誘電体層4.14
を第1電極3,13、第2電極5,15間に挟んだ構造
について説明したが、何らこれに限らず、複数の誘電体
層を電極間に介在させた状態で交互に積層した積層型の
コンデンサとしてよいことは言うまでもない。
In addition, in Examples 1 to 5 described above, one dielectric layer 4.14
Although the structure in which the electrodes are sandwiched between the first electrodes 3, 13 and the second electrodes 5, 15 has been described, the present invention is not limited to this, and a multilayer type structure in which a plurality of dielectric layers are alternately stacked with the electrodes interposed between the electrodes has been described. Needless to say, it is good as a capacitor.

〔効果〕〔effect〕

以上の如く本発明方法にあっては、イオンプレーティン
グ装置を第1.第2電極、誘電体層の形成、並びに成膜
形成用及び焼成用の炉として用いることにより、設備コ
ストが安価で、しかも超小型の磁器コンデンサを効率的
に量産することが出来るなど本発明は優れた効果を奏す
るものである。
As described above, in the method of the present invention, the ion plating apparatus is used as the first ion plating apparatus. By using the furnace for forming the second electrode and dielectric layer, as well as for film formation and firing, the equipment cost is low and ultra-small ceramic capacitors can be efficiently mass-produced. It has excellent effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例4によるコンデンサ・プレイを
示す模式的平面図、第2図は同じく第1図の■−■線に
よる断面図、第3図はその等価回路図、第4図は本発明
の実施例5のコンデンサ・アレイを示す模式的平面図、
第5図は同じく第4図のV−V線による断面図、第6図
はその等価回路図である。 1・・・絶縁基板 2a、2b・・・導体 3・・・第
1電極4・・・誘電体 5・・・第2電極 6,7・・
・リード端子11・・・絶縁基板 12a・・・共通導
体 12b・・・導体13・・・第1電極 14・・・
誘電体 15・・・第2電極特 許 出願人 住友金属
工業株式会社代理人 弁理士 河  野  登  夫粥 図 第 図 弔 図
1 is a schematic plan view showing a capacitor play according to a fourth embodiment of the present invention, FIG. 2 is a sectional view taken along the line ■-■ of FIG. 1, FIG. 3 is an equivalent circuit diagram thereof, and FIG. is a schematic plan view showing a capacitor array of Example 5 of the present invention,
FIG. 5 is a sectional view taken along line V-V in FIG. 4, and FIG. 6 is an equivalent circuit diagram thereof. 1... Insulating substrate 2a, 2b... Conductor 3... First electrode 4... Dielectric 5... Second electrode 6, 7...
-Lead terminal 11...Insulating substrate 12a...Common conductor 12b...Conductor 13...First electrode 14...
Dielectric 15...Second electrode patent Applicant Sumitomo Metal Industries Co., Ltd. Agent Patent attorney Noboru Kono

Claims (2)

【特許請求の範囲】[Claims] 1.絶縁基板上にPtをイオンプレートして第1電極を
形成する工程と、 該第1電極上に誘電体成分である酸化チタ ン又はチタン酸系セラミックと、半導体化剤及び焼結助
剤を含む原料をイオンプレートして誘電体層を形成する
工程と、 該誘電体層上に前記第1電極と絶縁状態を 維持してPtをイオンプレートし第2電極を形成する工
程と、 前記絶縁基板をイオンプレーティング装置 により1000℃以上の還元雰囲気中で焼成する工程と を含むことを特徴とする磁器コンデンサの 製造方法。
1. A step of forming a first electrode by ion-plating Pt on an insulating substrate, and forming a raw material containing titanium oxide or titanate ceramic as a dielectric component, a semiconducting agent, and a sintering aid on the first electrode. forming a dielectric layer by ion plating Pt on the dielectric layer while maintaining an insulated state from the first electrode; forming a second electrode by ion plating Pt on the dielectric layer while maintaining an insulated state from the first electrode; A method for manufacturing a ceramic capacitor, comprising the step of firing in a reducing atmosphere at 1000° C. or higher using a plating device.
2.誘電体成分はペロブスカイト構造を有するアルカリ
土類金属を含むチタン酸系化合物であって、SrTiO
_3,MgTiO_3,CaTiO_3,BaTiO_
3,(Ba,Sr)(Ti,Sn)O_3系複合酸化物
、(Ba,Sr)TiO_3系複合酸化物、(Mg,S
r,Ca)TiO_3系複合酸化物、(Sr,Ca)T
iO_3系複合酸化物の1種又は2種以上からなる請求
項1記載の磁器コンデンサの製造方法。
2. The dielectric component is a titanate-based compound containing an alkaline earth metal having a perovskite structure, and is SrTiO.
_3, MgTiO_3, CaTiO_3, BaTiO_
3, (Ba, Sr) (Ti, Sn) O_3 complex oxide, (Ba, Sr) TiO_3 complex oxide, (Mg, S
r,Ca)TiO_3-based composite oxide, (Sr,Ca)T
The method for manufacturing a ceramic capacitor according to claim 1, comprising one or more types of iO_3-based composite oxides.
JP19828888A 1988-08-08 1988-08-08 Manufacture of ceramic capacitor Pending JPH0246713A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19828888A JPH0246713A (en) 1988-08-08 1988-08-08 Manufacture of ceramic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19828888A JPH0246713A (en) 1988-08-08 1988-08-08 Manufacture of ceramic capacitor

Publications (1)

Publication Number Publication Date
JPH0246713A true JPH0246713A (en) 1990-02-16

Family

ID=16388632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19828888A Pending JPH0246713A (en) 1988-08-08 1988-08-08 Manufacture of ceramic capacitor

Country Status (1)

Country Link
JP (1) JPH0246713A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3005615U (en) * 1994-03-14 1995-01-10 日本カーバイド工業株式会社 Capacitor array

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3005615U (en) * 1994-03-14 1995-01-10 日本カーバイド工業株式会社 Capacitor array

Similar Documents

Publication Publication Date Title
JP3251370B2 (en) Nonmagnetic ferrite for composite laminated parts, composite laminated parts, and method of manufacturing the same
EP0794542B1 (en) Dielectric ceramic and monolithic ceramic electronic part using the same
KR100278416B1 (en) Dielectric Ceramic, Method for Producing the Same, Laminated Ceramic Electronic Element, and Method for Producing the Same
US20010026865A1 (en) Oxide having perovskite structure, barium titanate, and manufacturing method therefor, dielectric ceramic, and ceramic electronic component
JP2004035388A (en) Reduction-resistant low-temperature fired dielectric ceramic composition, multilayer ceramic capacitor using it, and its manufacturing method
JP6996945B2 (en) Multilayer ceramic capacitors
JP2020027928A (en) Multilayer ceramic capacitor and method of manufacturing the same
JP2020027929A (en) Multilayer ceramic capacitor and method of manufacturing the same
JP3146967B2 (en) Non-reducing dielectric ceramic and multilayer ceramic electronic component using the same
JP2019140199A (en) Multilayer ceramic capacitor and manufacturing method thereof
US20060171099A1 (en) Electrode paste for thin nickel electrodes in multilayer ceramic capacitors and finished capacitor containing same
JP3935089B2 (en) Manufacturing method of composite electronic component
JP2004128328A (en) Electronic component and its manufacturing method
JP2020031161A (en) Multilayer ceramic capacitor and manufacturing method of them
JPH0684608A (en) Ceramic element
JPS62256422A (en) Laminated type porcelain capacitor
JPH0562855A (en) Laminated porcelain capacitor
Herbert Thin ceramic dielectrics combined with nickel electrodes
US20220230776A1 (en) Dielectric composition and electronic component
JPH06151103A (en) Laminated semiconductor porcelain composition
JP3146966B2 (en) Non-reducing dielectric ceramic and multilayer ceramic electronic component using the same
JPH0246713A (en) Manufacture of ceramic capacitor
JP3924898B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
US11873255B2 (en) Dielectric composition and electronic component
JP3018934B2 (en) Multilayer ceramic capacitors